地源热泵+冰蓄冷系统

地源热泵+冰蓄冷系统
地源热泵+冰蓄冷系统

南京国睿博拉贝尔环境能源有限公司

N a n ji n g G la ru n P o l a rB e a r e n vi ro n m e n ta l e n e r g y L td. .

上海市北高新(集团)有限公司7#13#地块能源站规划方案

2011年6月14日

Index目录

一、建筑节能实施意义 (3)

1、建筑节能改造概述 (3)

2、国家建筑节能改造的相关法规 (4)

3、系统节能规划的指导思想 (5)

四、南京国睿博拉贝尔环境能源有限公司 (5)

五、空调能源站设计(地源热泵+冰蓄冷+冷却塔) (6)

1、地源热泵+冰蓄冷 (6)

2、地埋管+冷却塔(复合式系统) (7)

六、项目概况 (7)

七、设计依据 (8)

1、设计依据 (8)

2、设计计算参数 (8)

八、建筑负荷计算 (8)

九、空调系统设计 (9)

十、主机配置 (10)

十一、地埋管系统设计 (11)

1、地埋管系统形式 (11)

2、地埋管系统计算 (11)

十二、冷却塔辅助系统设计 (12)

十三、地源热泵系统+冰蓄冷与风冷热泵系统对比 (12)

1、地源热泵优点 (12)

2、本项目初投资比较 (13)

3、运行费用分析 (14)

4、对比结论 (16)

一、建筑节能实施意义

1、建筑节能改造概述

近年来,随着我国工业化、城镇化进程加快,我国能源消费增长速度明显快于经济增长速度,经济发展面临的能源约束矛盾日益突出,主要矿产资源人均占有量不足世界平均水平的一半,能源利用率只有约32%,比国外先进水平低10多个百分点。《中华人民共和国国民经济和社会发展第十一个五年规划纲要》提出“十一五”期末单位国内生产总值能源消耗比“十五”期末降低20%左右,主要污染物排放总量减少10%的约束性指标。

节约能源是我国的一项长期战略方针,是落实科学发展观的必然要求。目前,建筑能源消耗已经占全国能源消耗总量的27.5%,单位面积建筑能耗是气候相近发达国家的3倍以上。因此既有建筑节能改造是节能减排工作的重要组成部分,是当前建筑节能工作的重点。据统计,民用建筑节能达标率2007年仅为71%,节能潜力巨大。迫切需要加强对民用建筑节能的管理,降低民用建筑使用过程中的能源消耗,提高能源利用效率。在对既有建筑进行全面摸底调查,并依据不同建筑的使用年限、结构以及内部制冷供热设施运行等实际情况,科学合理制定既有建筑节能改造专项实施方案,确定重点改造项目,并力求与建筑修缮等项目有机的结合。

国家领导人和专家多次强调了大力扶持节能新技术在建筑节能中的应用,并对一些已投产、正在运行的节能建筑进行了充分的肯定。

在暖通空调系统中,为了确保空间舒适的人居环境,中央空调系统必须长时间投入运转。目前,中央空调系统已经成为建筑物内部的重点能耗设备,每年的能源消耗大约要占整座建筑能耗的40%以上,其中暖通系统中大量的水泵、风机,用电量约占空调总用电量的30%-40%。中央空调系统的有效节能可以显著降低建筑的能耗水平,其中,空调水系统和风系统的节能是空调节能的重要方面,也是节能工作的一个重要突破口。空调冷冻水、冷却水系统配置的大功率、高扬程水泵,而实际是在低扬程、大流量、低效率、高功耗的不利工况状态下运行,从而造成60%以上的功率白白浪费。风机、水泵的节电潜力很大。我国大部分的中

央空调还有40%以上的节能潜力没有被挖掘出来。采用节能技术也是帮助运营单位降低经营成本、改善设备效率和提高经济效益的重要途径。

节能是一项基本国策,需要对建筑物内各系统设备的运行进行全面技术经济分析。变流量节能技术、集成自动控制系统和建筑能源管理系统正是顺应了这一潮流,能够确保建筑系统机电设备的正常运行并达到最佳状态,利用计算机系统进行信息处理,数据分析,逻辑判断和图形处理,对整个系统作出集中监测和控制;通过计算机系统及时启停各有关设备,避免设备不必要的运行,又可以节省系统运行能耗,出现故障时,能够及时发现何时何地出现何种故障,并作出相应的处理,使事故消除在萌芽状态,最终使整体工艺设备系统处于最良好的工作状态,提供最佳的运行效果,减少管理人员的工作量和降低系统的运行和维护成本。

2、国家建筑节能改造的相关法规

国务院、相关职能部委及北京市发改委等相关职能部门对建筑空调节能提出了具体的要求:

《国务院关于加强节能工作的决定》(发文单位:国务院,文号:国发〔2006〕28号)的第四条、着力抓好重点领域节能要求中有几项具体要求:第十一项:推动既有建筑的节能改造。

第十五项:推动政府机构节能。各级政府部门和领导干部要从自身做起、厉行节约,在节能工作中发挥表率作用。重点抓好政府机构建筑物和采暖、空调、照明系统节能改造以及办公设备节能。

第二十七项:控制室内空调温度。所有公共建筑内的单位,包括国家机关、社会团体、企事业组织和个体工商户,除特定用途外,夏季室内空调温度设置不低于26摄氏度,冬季室内空调温度设置不高于20摄氏度。有关部门要据此修订完善公共建筑室内温度有关标准,并加强监督检查。

《国务院关于印发节能减排综合性工作方案的通知》((发文单位:国务院,文号:国发〔2007〕15号)中第五条、依靠科技,加快技术开发和推广的第十九项要求:加快建立节能技术服务体系。重点支持专业化节能服务公司为企业以及党政机关办公楼、公共设施和学校实施节能改造提供诊断、设计、融资、改造、

运行管理一条龙服务。

3、系统节能规划的指导思想

上海市北高新(集团)有限公司7#13#地块为新建项目,根据建筑物使用状况,本着节能减排的出发点,提出空调能源站的规划指导思想:技术先进、方案可行、经济合理、效益明显、确保效果。建议采用(地源热泵+冰蓄冷+冷却塔)的复合式系统。

四、南京国睿博拉贝尔环境能源有限公司

国睿集团有限公司由中国电子科技集团公司第十四研究所全资设立,注册成立于2007年,注册资金5000万元人民币,是十四所民品产业发展的运作平台,国睿集团将重点发展军工电子、交通电子、无线通信、新能源、汽车电子和现代物流服务业等六大产业板块。

十四所是我国电子信息领域中历史久、规模大、专业覆盖面广、研发力量强、技术成果丰富的大型综合性高技术研究所。拥有天线与微波国家级重点实验室,EMC实验室、综合环境实验中心、柔性加工中心等优质资源;拥有一支包括3名中国工程院院士在内的优秀员工队伍,现有在职职工5000人左右,科研人员占60%以上,包括120余名国家、省部级有突出贡献中青年专家、享受政府特殊津贴专家,900多名高工与研究员级高工。

十四所先后承担两弹一星、载人航天、登月工程、奥运工程、三峡工程等重大工程任务,为国防现代化事业和国民经济建设做出了重要贡献。为国家提供众多大型装备,取得多项科研成果,其中国家级成果奖60余项,部、省级成果奖340余项。为国睿集团有限公司产品开发提供了良好的技术条件,有力助推了国睿集团的快速、健康发展。

近两年,南京国睿集团依托十四所的技术、品牌优势资源和多年来积累的科技成果,通过搭建优质平台把高科技技术转化为民用技术,运用于国民经济领域,目前已成功在电子信息等相关产业领域取得重大突破,2008年集团产值将近73亿人民币,力争两年内,实现产值超百亿元。

国睿集团有限公司是2008年南京市高成长科技创新型百优企业、南京市20

家优秀创新型企业,2009年度南京市创新型企业。

我司近年在上海世界博览会德国汉堡之家、2012年西安园艺博览会、江苏无锡尚德尚能太阳能电力有限公司零能耗生态大楼、南京郎诗科技地产、中国联合网络通信有限公司沈阳分公司基站改造、北京KT09项目等一系列的中央空调节能和改造方面的设计施工经验,并参考同类项目的节能设计、实施和运行的效果来看,均取得了明显的经济效益和社会效益,单台自适应节能装置的节能效果均达到30%以上,尤其是有效地改善了空调系统的启动性能,优化主机运行环境,减少人员的操作费用与成本,降低整体系统能耗,为业主和用户创造了可观的经济效益。

五、空调能源站设计(地源热泵+冰蓄冷+冷却塔)

1、地源热泵+冰蓄冷

冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。

1.削峰填谷、平衡电力负荷。

2.改善发电机组效率、减少环境污染。

3.减小机组装机容量、节省空调用户的电力花费。

4.改善制冷机组运行效率。

5.蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合如办公楼、体育馆、影剧院、音乐厅等。

6.应用蓄冷空调技术,可扩大空调区域使用面积。

7.可获得国家节能奖励政策和补贴。

与普通空调相比所具有的优势

(1)节省电费。

(2)节省电力设备费用与用电困扰。

(3)蓄冷空调效率高。

(4)节省冷水设备费用。

(5)节省空调箱倒设备费用。

(6)除湿效果良好。

(7)断电时利用一般功率发电机仍可保持室内空调运行。

(8)可快速达到冷却效果。

(9)节省空调及电力设备的保养成本。

(10)降低噪乱冷水流量与循环风上减少,即水泵与空调机组运转振动及噪音降低。

(11)使用寿命长。

与普通空调相比所具有的缺点

(1)对于冰蓄冷系统,其运行效率将降低。

(2)增加了蓄冷设备费用及其占用的空间。

(3)增加水管和风管的保温费用。

(4)冰蓄冷空调系统的制冷主机性能系数(COP)要下降。运行策略和工作模式。

2、地埋管+冷却塔(复合式系统)

辅助冷却热泵系统的运行策略决定该系统的初投资和运行经济性

地埋管+冷却塔并联(调峰);

地埋管+冷却塔串联;

在系统运行间歇,机组停止运行时,可以使冷却塔和地下埋管换热器在无负荷状况下串联运行,利用冷却塔将埋管周围温度较高的蓄积热量排走,埋管周围土壤降温。次日机组运行的时候可以得到一个相对较低的EFT,提高热泵系统性能。

六、项目概况

项目名称:上海市北高新(集团)有限公司 7#13#地块

项目简介:

该项目为上海市北高新(集团)有限公司 7#、13#地块能源站规划。该建筑主要功能为商业用房及行政办公,7#地块地上168330m2、地下20000 m2;13#地块地上87240m2、地下10000 m2,共计285570m2。

项目总建筑面积约为285570㎡,各部分详细情况如下表。

本项目中央空调系统设计范围为7#、13#两个地块,总建筑面积约为285570㎡。根据与业主的前期交流,现确定本项目中央空调采用集中式地源热泵系统+

冰蓄冷的运行模式,详细设计如下。

七、设计依据

1、设计依据

《采暖通风与空气调节设计规范》(GB50019-2003)

《公共建筑节能设计标准》(GB50189-2005)

《地源热泵系统工程技术规范》(GB50366-2005)

《埋地聚乙烯(PE)管材》(CJJ101-2004)

《实用供暖空调设计手册》

《空气调节设计手册》

《通风与空调工程施工质量验收规范》(GB50243-2002)

《地源热泵工程技术指南》,徐伟译

06K610冰蓄冷系统设计与施工图集(建筑标准图集)

2、设计计算参数

项目地区室外空气设计参数:

冬季大气压力:102.51kPa 夏季大气压力:100.53kPa

冬季空调室外计算干球温度:-4℃

冬季空调室外计算相对湿度:75%

夏季空调室外计算干球温度:34℃

夏季空调室外计算湿球温度:28.2℃

室内设计参数

夏季t室内=24~28℃;相对湿度60%

冬季t室内=18~22℃,相对湿度50%

八、建筑负荷计算

在空调系统方案设计阶段,建筑冷热负荷计算采用负荷估算法,根据《实用供热空调手册》及相关工程经验,本项目办公楼夏季空调冷负荷指标取110W/

㎡,商业用房夏季空调冷负荷指标取150W/㎡冬季采暖热负荷取70W/㎡,即可完全保证使用需求,详细计算如下表:

由上述计算可知,本项目建筑总空调冷负荷为30699kw,总的采暖热负荷为19991kw。

九、空调系统设计

本项目建筑为办公和商业用房,空调系统总负荷大、空调使用时间集中。根据上述特点,中央空调系统采用集中式系统,系统设置集中空调机房,地源热泵机组和双工况制冷主机制取空调负载水后输送到各楼各层室内末端,双工况机组利用夜间低谷负荷电力制冰储存在蓄冰装置中,并在日间高峰用电时间将储存的冰融解释放冷量,提供空调负荷要求,以达到减少运转压缩机的目的,如此将空调用电量由高峰时间转移到离峰时间,不但可以降低高峰用电负荷,同时可以享受夜间离峰用电的优惠电价,节省电费。蓄冷比例的确定是非常重要的一个环节,在方案设计中一般先初步选择较典型的值(40%),经设备初选型,根据当地有关的电力政策并根据当地有关的电力政策并计算初投资、运行费、并考虑其它因素最后选定较佳的比例值。

主机方案:由计算得,本项目建筑总冷负荷为30699kw,根据公司相关经验,确定采用螺杆式热泵机组,满足建筑夏季制冷、冬季采暖的需求。主机及相关配套设备(水泵、定压装置、冰蓄冷槽等)设置于13#地块东北角区域集中机

房,同时为7#、13#地块提供空调负载水,机房详细位置应与土建方面协商后再确定。主机详细配置见后续设计。

末端方案:根据泵项目的具体功能待定,推荐空调系统室内末端采用风机盘管(或空调箱)+新风系统的形式,一方面能充分满足室内房间制冷/采暖及新风需求需求,一方面又能减少工程初投资。

室外热源:根据前面约定,空调系统室外热源采用节能环保型的地下环路系统,空调系统采用地下环路系统能充分保证主机在冬夏季均在在良好、稳定的工况下运行。考虑到项目规划用地有限,地埋管系统规模受到约束,不能完全满足建筑夏季的峰值排热量,故地埋管系统以冬季采暖负荷为设计依据,地埋管系统满足冬季建筑的吸热量要求即可,在夏季,地埋管系统排热量不足的部分,通过增加冷却塔辅助系统解决。

十、主机配置

根据上述空调系统设计思路,系统空调主机采用螺杆式地源热泵机组。选型如下表:

2、地下环路制冷工况:源水侧进出水温度为25/30℃;负载侧进出水温度12/7℃;

地下环路制热工况:源水侧进出水温度为10℃;负载侧进出水温度40/45℃;

3、表格中规格参数可根据当地气候条件、地质情况决定的实际进出水温度进行修正。

说明:

通过上表数据可以看出,采用地源热泵系统,空调主机能效比可达5.5左右,空调系统综合能效比也可达4.5左右,远远高于风冷热泵系统。故对于本项目采用地源热泵中央空调系统,机房所需要的配电容量要低于风冷热泵系统。

十一、地埋管系统设计

1、地埋管系统形式

由于缺少本项目当地地质资料,在进行地埋管系统设计时,根据本公司相关工程经验,初步确本项目地埋管系统形式及各项参数如下:

2、地埋管系统计算

针对本项目,根据前方的系统设计思路,地埋管系统按照冬季参数进行设计,地埋管系统详细设计如下:

本表按竖井深度100m计,孔径约为130mm。单U形式,本方案实际钻孔间距取3~4m。对于规则的布管区域,采用菱形布管可节约埋管面积17.5%(以4m间距为例,方形占地4×4m2,菱形占地13.2m2)。

针对本项目,地埋管系统已考虑一定的富裕量,最终地埋管系统设计孔数取4373个,打孔所需面积约为59472㎡。

地源热泵的地下换热器所处的位置是在地壳中的浅层地表岩土层中,岩土的类型、热特性、热传导性、密度、湿度等对地源热泵系统的性能影响较大。因此在实际工程中,需结合所提供当地的地质报告,以确定合适的竖井深度与埋管数量。

十二、冷却塔辅助系统设计

根据空调系统设计,空调系统室外热源配置冷却塔辅助系统,用以在夏季制冷季,弥补地埋管系统排热量的不足。

根据闭式冷却塔标准设计工况,冷却塔进出水温差取5℃,冷却水量应考虑1.1~1.2的安全系数,各板块冷却塔系统选型计算如下表:

十三、地源热泵系统+冰蓄冷与风冷热泵系统对比

1、地源热泵优点

大地土壤作为地源热泵系统夏季空调的排热源和冬季采暖的取热源,深度可在几十米至百米,全年温度基本恒定,为室外地埋管式空调系统提供了得天独厚的自然条件。

?地源热泵系统不直接消耗煤、燃油、天然气等能源;不产生环境污染;

?夏季地源热泵系统在不影响地下温度场的情况下从土壤中取热,冬季将室

内的热量转移到地下土壤中存放,从源头上根除了空调系统对生活居住环境产生的热岛效应;

?地源热泵系统采用高智能控制系统,实现了系统能量输出和建筑物能量需

求的直接对应平衡,减少能耗,降低成本;

?高效地源热泵系统使得空调机组长期处于适宜的工况下运行,输出同等量

的能力仅仅消耗30~60%的耗功率,有效实现地位能的最直接利用。

2、本项目初投资比较

针对本项目,采用方案(一)地源热泵系统+冰蓄冷与采用方案(二)风冷热泵系统,分别的工程量及初投资分析如下:

地源热泵及风冷热泵系统工程初投资均为根据工程经验进行的估算,仅作为参考,实际工程价格应待项目施工图出来之后再进行校核、计算。

3、运行费用分析

制冷/制热运行能耗对比

为了进行上述两类空调系统运行费用比较,费用计算约定:

1、当地商用峰时段(中午9点到下午7点)电价0.95元/k W·h,谷时段(晚

上10点到凌晨6点)电价0.44元/k W·h (根据实际运行成本分析,取综合平均值),假设双工况机组在谷时段(共10个小时)制冰,在峰时段融冰供给空调系统冷水;

2、全年制冷取120天,每天运行10小时,总制冷时间为1200h;

3、全年制热取120天,每天运行10小时,总制热时间为1200h;

根据上述约定,对上述两类系统进行全年运行费用进行分析计算,计算过程如下:

地源热泵系统+冰蓄冷制冷/制热

风冷热泵系统制冷/制热

4、对比结论

冰蓄冷中央空调系统

☆冰蓄冷中央空调系统☆ 冰蓄冷概念冰蓄冷就是利用夜间谷期低价电力,满负荷运行制冰主机,使水发生相变制成冰,存储在专用的蓄冰槽中,然后在白天用电高峰时段融冰供冷。冰蓄冷系统与常规空调系统结合构成冰蓄冷空调系统,是电力系统及用户削峰填谷、平衡用电负荷的最有效方法。 冰蓄冷空调系统工作原理图 冰蓄冷空调系统工作模式 运行模式冷却泵乙二醇泵循环泵V1阀V2阀V3阀V4阀 制冷机蓄冰开开关开关开关 冷机蓄冰又供冷开开开开关调节调节 蓄冰槽单独供冷关开开调节调节关开 制冷机单独供冷开开开关开关开 冷机和冰槽联合供冷开开开调节调节关开 上述工作模式的相互切换是由共盈公司开发的冰蓄冷计算机控制系统自动完成的。 冰蓄冷空调系统组成由双工况制冷主机、储冰盘管及蓄冰槽、乙二醇溶液、乙二醇水泵、板式换热器、共盈冰蓄冷自动控制系统(包括流量传感器、温度传感器、电磁阀、电脑、控制软件等)、常规空调配件等部件组成。 冰蓄冷空调的优点 ◆节省初投资:新建冰蓄冷空调可节省主机、附属设备及配电设备初投资,包括变压器、配电柜等一次电力投资费用,但冰蓄冷专用设备的投资较大。 ◆节省运行电费:由于充分利用了廉价的电力低谷期满负荷蓄冰蓄冷,供高峰期融冰供冷,所以只要峰谷电价比达到3∶1以上,即可在全年节省电费达到30%以上。 ◆节省基本电费:冰蓄冷空调系统可减少主机和循环水泵装机容量和功率达30%~50%,平衡用电负荷,降低配电容量,由此每月可节省18元/kV A的基本电费,数量相当可观。 ◆系统安全可靠:整套系统采用智能控制,实行电脑监控,无须专人值守,管理简单可靠。蓄冷系统作为相对独立的冷源,增加了集中空调系统的运行可靠性。 ◆增大供冷能力:常规空调系统配上冰蓄冷设备可以提高30%-50%的供冷能力。 冰蓄冷自控系统简介冰蓄冷空调系统比较复杂,不可能靠手动操作控制系统运行,必须借助共盈蓄冷自控系统,根据室外温度、天气走势、历史记录、电价政策以及各种传感器件信息,自动选择主机优先、融冰优先模式或全量融冰模式,自动切换制冰、制冷工况与融冰、供冷模式,自动控制制冷主机和其它设备的启停,监视记录统计各设备工作状况与运行参数,自动诊断系统故障,使系统在任何负荷情况下都能达到用户要求,保证空调系统始终处于最经济的运行状态,提高系统的自动化水平,提高系统的管理效率,实乃冰蓄冷空调系统的关键部分。 冰蓄冷与水蓄冷比较

冰蓄冷设计说明

冰蓄冷设计说明 1.1设计概述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 成都市电网分时电价表 2.2冰蓄冷系统方案设计 本工程是医药厂房,冷负荷集中在电力高峰时段和电力平峰时段,电力低谷时段,电力低谷时段空调系统根本没有冷负荷,且全年供冷期内负荷极不平衡,选择常规制冷主机设备容量大,且直接制冷的结果是制冷主机高价来制冷,低价电时段闲置,造成不必要的浪费。因此为了减少中央空调白天的用电峰值,充分利用峰谷电差价,大幅度地降低空调的运行费用,同时为了提高空调品质,本工程中央空调设计采用冰蓄冷中央空调系统。

·以上方式中使用最多的为:冰球(或蕊心冰球)和外融冰的盘管式蓄冰装置 ·本工程采用外融冰钢制盘管冰蓄冷方式的冷源。 2)、部分(分量)蓄冰模式:如图2,部分(分量)蓄冰模式是指在夜间非用电高峰时制冷设备运行,蓄存部分冷量。白天空调高 蓄冰方式 动态制冰 静态制冷 冰浆(或冰晶) 片冰滑落式 盘管式蓄冰 封装冰 外融冰 冰球(或蕊心冰球) 外板 内融冰

峰期间一部分空调负荷(尖峰负荷)由蓄冷设备承担,另一部分则由制冷设备负担。在设计计算日(空调负荷高峰期)制冷机昼夜运行。部分蓄冷制冷机利用率高,蓄冷设备容量小,制冷机比常规空调制冷机容量小30-40%,是一种更经济有效的运行模式。根据以上分析考虑初期投资费用及机房占地,本工程冰蓄冷设计采用分量蓄冰模式。,本设计方案采用部分蓄冰模式 3.4蓄冰流程选择 3.4.1 蓄冰流程的选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。 融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。 乙二醇溶液系统的流程有两种:并联流程和串联流程。a、并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程原理如图3。 b、串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套 循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。串联系统原理如图4:

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

浅谈流态冰蓄冷系统设计

浅谈 流态冰蓄冷系统设计 (第三代)

目录 说明 (3) 产品特点 (3) 安装事项 (3) 项目经济性分析表 (4) 一、峰谷电价政策 (5) 1、国家电力现状及电力优惠政策 (5) 二、冰蓄冷空调系统简介 (5) 1、冰蓄冷空调原理 (5) 2、实施目的 (6) 3、直接接触式的主要特点 (6) 三、直接接触式设计方案 (6) 1、贵项目基本情况 (6) 2、建设冰蓄冷系统的可行性...................................................................................错误!未定义书签。 3、设计计算依据 (7) 4、冰蓄冷空调系统运行费用表 (8) 5、实施费用................................................................................................................错误!未定义书签。 1﹑冰蓄冷冷站增加设备及工程费用...................................................................错误!未定义书签。 6、结论 (15) 四、直接接触式控制以及主机群控系统 (16) 1、冰蓄冷控制系统 (16) 2、控制功能 (16) 3、主机群控系统 (17)

说明 通过“移峰填谷”,可使*******公司整个空调系统每年节省运行电费109.35万元。 不改动系统和空调主机,冰蓄冷与现有空调系统并联运行,安全可靠。 产品特点 冰蓄冷系统是通过制冰方式,以冰的相变潜热为主蓄存冷量的蓄冰系统,利用夜间电网低价电力运转制冷机制冷并以冰的形式储存起来,在白天用电高峰时(高峰电价约为低谷电价的3~5倍)将冰融化供冷,以达到降低运行费用的目的。我司自主研发的独特冰蓄冷技术,突破了传统冰蓄冷的概念,效益更高。 ⑴.自主设计定指标生产的高效二次蓄冰主机,蓄冰COP可达到10; ⑵.直接蒸发式的蓄冰方式,蒸发温度可控制在-1℃; ⑶.外融冰设计,采用冷水直灌,融冰效率极高。 安装事项 ⑴.安装过程简单快捷、占地面积小,可利用建筑物外绿化带面积等,蓄冰罐可以放置室外。 ⑵.不改动原有空调系统,安装过程基本不影响生产; ⑶.安装调试共需约4个星期。

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

(整理)冰蓄冷中央空调运行费用的估算.

冰蓄冷中央空调运行费用的估算 前言 本文冰蓄冷中央空调运行费用计算是按照本公司采用法国西亚特STL蓄冰球,法国西亚特单螺杆机组,优化设计的条件进行的。因此计算结果仅仅适合本公司设计的冰蓄冷空调系统。其它形式的冰蓄冷空调可以参照计算方法进行计算。当冰蓄冷中央空调管道系统阻力不同;建筑物谷电有冷负荷;以及甲方有特殊要求,设计有所不同;整个计算需要作相应调正。 本文谨供企业负责人在选择中央空调系统时作冰蓄冷中央空调年度运行费用估算用。 随着社会生产力的发展,人民生活水平的提高,人们对电力的需求也越来越大。由于人类的活动主要在白天,因此随着电力系统的发展,电网峰谷电量的差也越来越大。为了节约宝贵的能源资源,移峰填谷,平衡电网,一项重要技术,就是冰蓄冷中央空调。为了推广这项技术,政府,电力部门推出一系列的优惠政策,其中最主要的是峰谷电电价差。根据国内已经完成的工程实践和国外资料,当峰谷电电价差达到3:1时,冰蓄冷中央空调投资和运行的综合效益与其他形式的空调相比具有绝对的优势。但是冰蓄冷中央空调和其他形式的空调相比究竟能节约多少费用,许多人都不十分清楚,当工程完成后又不能再搞一个同样大小其他形式的空调系统,以同样运行效果来比较运行费用的大小。因此应该以深入的科学分析来比较冰蓄冷中央空调和其他类型空调的运行费用。下面首先分析影响冰蓄冷中央空调运行费用的主要因素:1峰谷电价:冰蓄冷中央空调是利用夜间廉价谷电蓄冰,在白天 峰电期间供冷,因此直接影响运行费用的首要因素是峰谷电电价差,浙江省谷电电价0.3元,峰电电价0.879元。 2冰蓄冷中央空调蓄冰量的大小:根据目前已经完成的工程,最佳状态是蓄冰主机和蓄冰罐处于完全匹配的状态。也就是说夜间谷电期间主机能完全用于蓄冰和供冷,峰电期间蓄冰量和主机供冷正好满足空调供冷的需要。这时冰蓄冷中央空调投资增加较小,而运行取得的经济效益最大。如果蓄冰量减小,虽然投资回收比较快,但是夜间主机部分空置,影响了运行的经济效益,综合效益比较差;如果蓄冰量过大,部分主机成为单纯的蓄冰主机,这部分蓄冰能力的投资太大,投资回收比较慢,而夏季过渡季节空调有可能因峰电期间负荷太小而蓄冰量无法放完,造成运行经济效益并不大。

上海某酒店地源热泵 冰蓄冷设计方案

XX公寓式酒店地源热泵+冰蓄冷设计方案工程概况 XX公寓式酒店位于上海浦东,总占地面积34988 平方米,总建筑面积88375平方米,框架结构。由3幢11层~14层公寓式酒店,1组2层商业裙房及其附属配套设施组成。商业裙房部分夏季空调负荷为2227KW,冬季空调负荷为1486KW;公寓式酒店夏季生活热水负荷为925KW,冬季生活热水负荷为1272kW。 设计方案 本项目商业裙房设计采用中央空调系统,为节约能源采用地源热泵系统,降低建筑能耗,并同时向公寓式酒店供应生活热水。由于商业部分主要为9:00~22:00 营业,故采用冰蓄冷技术进行移峰填谷。采用三台地源热泵机组,其中两台为空调用三工况机组,一台为生活热水用地源热泵机组。地源热泵系统地下换热器采用垂直埋管,并联双U型连接,共计打孔480口。 冰蓄冷部分采用部分负荷蓄冰技术,制冷设备和蓄冰设备并联连接,供应7℃冷冻水,载冷剂采用25%乙二醇溶液。冰蓄冷系统可按以下四种模式运行:主机制冰、主机供冷、融冰供冷、主机与融冰同时供冷。夜间电价低谷时段制冰系统将冰蓄满,白天电价高峰时段融冰供冷,电价平峰时段制冷系统补充供冷,各工况转换通过电动阀门开关自动切换。空调水系统采用二管制,夏季冷冻水供回水温度分别为7℃/12℃,冬季热水供回水温度分别为45℃/40℃。空调末端系统采用风机盘管加新风的形式,便于室温独立控制,气流组织上送上回。 系统运行策略 由于本项目的中央空调系统为多种节能技术综合而成的复合系统,为了有效的实现设计的初衷,真正达到节能环保的要求,需制定专门的地源热泵冰蓄冷空调系统年运行方案,以中央空调能源管理系统的形式实施,实现长期有效稳定的节能运行。 秋、冬、春三季运行策略 XX公寓式酒店项目要求冬季可满足商业部分的供热需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制热模式满足商业部分的空调采暖需求,而由生活热水地源热泵机组满足生活热水的需求。在春秋季,项目要求满足公寓式酒店的生活热水供应,商业部分没有空调需求。此时生活热水需求由生活热水地源热泵机组满足。以上两种运行模式为较为普遍的热泵机组运行模式,故在此不再赘述。 夏季运行策略 XX公寓式酒店项目要求夏季可满足商业部分的供冷需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制冷模式,同时能源管理系统切换至冰蓄冷供冷运行模式。根据冰蓄冷运行的特点,有以下四种运行模式: 三工况地源热泵机组制冰模式 利用夜间低电费和商业部分无空调供冷需求的因素,三工况地源热泵机组切换为制冰模式,全力制冰蓄冷,此时公寓式酒店的生活热水需求通过三工况地源热泵机组的热回收模块免费制取。

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

冰蓄冷中央空调系统

冰蓄冷中央空调系统 摘要:本文在分析了目前为解决峰谷用电量差应运而生的冰蓄冷中央空调系统,对其原理,分类,优缺点,效益等方面做了简要介绍;并在此基础上,说明了评价冰蓄冷系统的一系列指标,如冰蓄冷系统的蒸发温度,制冷率与融冰率,热损失,安全性与可靠性等;此外,介绍了国外的冰蓄冷系统的技术发展趋势及特点,另外,对于国内冰蓄冷系统发展面临的问题也做了总结以及一些可行的建议。 关键词:冰蓄冷;移峰填谷;蓄能 Ice-Thermal-Storage Center Air Conditioning System Abstract: This paper analyses the ice-thermal-storage center air conditioning system for solving the problem of the peak and valley of electricity and introduces the the principle, advantages and disadvantages, classification, benefits and so on. Furthermore, the paper also explains a series of index that evaluate the ice-thermal-storage center air conditioning system, such as the evaporation temperature, the refrigeration rate and thaw rate, the heat loss, the security and reliability and so on. In addition, it shows the technology trends and characteristics of the ice-thermal-storage center air conditioning system abroad and puts forward some suggestions of how to do in our country when we popularize the ice-thermal-storage center air conditioning system. Key words:The ice storage technology,; Peak load shaving; Energy storage 引言 众所周知,夏季用电紧张,时常导致拉闸限电的事情发生。到了夏季,随着空调用电的加大,让城市电力系统峰谷差急剧放大,电网负荷明显加大。中科院广州能源研究所博士冯自平称“电力紧张有很大一部分是由峰谷差造成的,峰谷差造成浪费几乎是‘天文数字’。”,在我国电力结构中,空调是造成电力负荷峰谷差的主要因素之一。 综合全天的电量供应,其实电力紧张只出现在用电高峰时段,用电低谷期发电能力富裕的电量却往往因得不到有效利用而被白白消耗掉,造成巨大的能源浪费。特别在夏季高温期间,电力供需矛盾突出,重点是空调负荷呈现出“爆发性”增长,这种增长与气温密切相关。夏天电力出现缺口的时段主要集中在上午9时至11时、下午1时至3时和晚上6时30分至8时30分,夜间及凌晨为用电低谷期。在用电高峰期,由于负荷增加较大,与低谷形成峰谷差。据有关报道,去年广东空调的负荷绝对值就已超过1000万千瓦,而空调开启带来的负荷占总用电负荷已经达到35%以上。空调用电不仅增加了高峰负荷,而且加大了电网的峰谷差。 我国的电力工业发展很快,96年发电装机容量已达到世界第2位,到97年底全国发电装机容量达2.5亿千瓦,2004年装机容量达到4.4亿千瓦,预计2005年要突破5亿千瓦,仅比美国装机容量少3亿千瓦左右。但是,尽管如此,我国的电力供应仍日益紧缺,尤其是

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

外文翻译--PLC在冰蓄冷中央空调系统控制中的应用

PLC in the ice storage central air-conditioning system of control 1 Introduction In PLC in 30 years which developed, it passes through develops unceasingly, already could unify simulates I/O, the network corresponds as well as uses new programming standard like IEC 61131-3. However, engineers only must use digital I/O and few simulations I/O number as well as simple programming skill on potential 80% industrial application. PLC has been widely used in all industrial sectors. According to "The United States market information" World PLC and software market report, in 1995 the global software PLC and its economies of scale of about 5 billion US dollars [5]. As electronic technology and the development of computer technology, Because uses traditional the tool to be possible to solve 80% industrial application, like this intensely needs to have low cost simple PLC; Thus promoted the low cost miniature PLC growth, it has the useful trapezoidal logical programming digital I/O. However, this has also created the discontinuity in the control technology, on the one hand 80% application need to use the simple low cost controller, but on the other hand other 20% application then have surpassed the function which the tradition control system can provide. Engineer is developing these 20% application to need to have the higher circulation speed, the senior control algorithm, the more simulations function as well as can well and the enterprise network integration. In 80 and the 90's, these must develop "20% application" engineers had considered uses PC in the industry control. PC provides the software function may carry out the senior task, provides the rich programming and the user environment, and the PC COTS part enables control engineer the technology which develops unceasingly to use in other applications. These technologies including floating point processor; High speed I/O main line, like PCI and ethernet; Fixed data memory; software development kit. Moreover PC also can provide the incomparable flexibility, highly effective software as well as senior low cost hardware. Ice thermal storage air conditioning is the central power grid could be redundant-night ice electricity in the form of cold storage, in the daytime peak hours

冰蓄冷系统的设计与施工

冰蓄冷系统的设计与施工 一、工程概述 XXXX位于XX东侧,建设单位是XXX房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全 国最大的冰蓄冷工程项目。该项目由XXXX安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑 面积1200m2蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。 二、设备配置 (一)冷源 1. 双工况螺 杆式冷水机组3台(YSFAFAS55CNE约克(合资) 2.基载 离心式冷水机组2台(YKFBEBH55CPE勺克(合资) (二)冷却塔:大连斯频得 冷却塔共计5台,CTA-600UFW两台,CTA-450UFW三台。 (三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16 (四)蓄冰槽(现场加工) 蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT。(见表1) (五)乙二醇循环水泵:德国KSB 乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。 (六)冷却水循环泵:德国KSB

冷却水循环泵选用卧式离心泵4台,其中1台备用 三、运行策略: (一)负荷说明 根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为 11428KW(3250RT。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100獗荷情况逐时空调负荷:(见表2) 蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。 根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负 荷:11428KW( 3250RT 设计日冷负荷:151705KWH( 43144RTH 最大小时基载冷负荷:2286KW( 650RT 扣除基载冷负荷后的最大小时冷负荷:9142.33KW (2600RT 扣除设计日基载冷负荷后冷负荷:96852.4KWH (27544RTH (二)系统流程简述 本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW( 1126RT,用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9根据冷负荷变化,通过电动调节阀 CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

冰蓄冷中央空调技术原理及经济性分析

冰蓄冷中央空调技术原理及经济性分析 江苏安厦工程项目管理有限公司□卢义生 摘要:由于冰蓄冷中央空调系统具有节能环保等诸多优点,近几年在我国得到了迅速发展。以滁州第一人民医院为例,通过冰蓄冷中央空调系统与常规中央空调系统的经济性分析对比,可以看出冰蓄冷中央空调系统在实际应用中的优势。 关键词:冰蓄冷空调系统常规空调系统经济性分析 国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代,但随着机械制造业的进步,蓄能技术的发展很快停滞下来。直到二十世纪八十年代初期,蓄能空调在美国、日本等发达国家再次得到研究推广。到九十年代中后期,美国、日本、欧洲等国家和我国台湾地区的蓄能空调系统已得到广泛的应用,并取得了良好的经济效益。我国于九十年代中期正式引入冰蓄冷空调系统,近年来国家及地方电力部门相继制定了峰谷电价政策及优惠措施以促进冰蓄冷空调的发展。2000年,国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度,为此,全国多个省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠,在政策上支持冰蓄冷空调的发展。近两年来,随着我国节能减排政策的不断推广,冰蓄冷空调技术得到了迅猛发展。中国建筑设计研究院机电专业设计研究院总工程师、北京制冷学会常务理事宋孝春表示:“冰蓄冷空调系统是人类在面对能源危机时优化资源配置、保护生态环境的一项技术革新,能产生良好的社会效应和经济效益……。我国冰蓄冷空调市场已走向成熟,全国范围内,近两年的工程几乎等于前十年的总和。未来一段时间内,这个数字仍以几何级数字向上递增……” 1冰蓄冷技术介绍 1.1冰蓄冷系统原理 冰蓄冷中央空调是在夜间利用制冷主机制冰,将冷量以冰的形式蓄存起来,然后在白天根据空调负荷要求释放这些冷量,这样在电力低谷段蓄冰,在用电高峰时期就可以少开甚至不开主机。这样就可以将电网高峰时间的空调用电量转移至电网低谷时使用,从而利用峰谷电价政策,达到为用户节约电费的目的。 在一般大楼中,空调系统用电量占总耗电量的35%~65%,而制冷主机的电耗在空调系统耗电量中又占65%~75%。在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在大部分情况下都处于低效率的部分负荷状态运行,设备利用率也低,投资效益低。

相关文档
最新文档