高岭土的表面改性

高岭土的表面改性
高岭土的表面改性

高岭土表面改性

(化学与环境工程学院学硕2014 140920020 田敏)

摘要:高岭土是一种重要的工业矿物,在造纸、陶瓷、橡胶、油漆、塑料、涂料、耐火材料等领域得到广泛的应用,但在用作填料和涂料等时需要进行表面改性处理。本文主要介绍高岭土表面改性方法、改性效果的表征和应用。常用的高岭土表面改性方法有煅烧改性和偶联剂改性;高岭土表面改性效果表征方法主要有沉浮法、活化指数法、材料性能测定法。

关键词:高岭土、表面改性、偶联剂

正文:

―高岭土(Kaolin)‖一词来源于中国江西景德镇高岭村产的一种可以制瓷的白色粘土而得名。高岭土是一种非金属矿产,是一种以高岭石族粘土矿物为主的粘土和粘土岩。质纯的高岭土呈洁白细腻、松软土状,具有良好的可塑性和耐火性等性质。将高岭土用物理、化学或机械方法进行表面改性处理,改变其表面的物理化学性质(如表面晶体结构、官能团、表面能、表面电性、表面浸润性、表面吸附性和反应特性等),从而改善其在橡胶、电缆、塑料、油漆、涂料、化工载体等方面的应用性能,得到广泛的使用。

1 高岭土表面改性方法

高岭土主要成分是含水硅酸铝,属于层状硅酸盐矿物,一般认为其化学式为Al2O3·2SiO2·2H2O[1,2] (结晶水以羟基的形式存在),是由SiO4四面体的六方网层与AlO2(OH)4八面体层按1∶1结合成层状结构。由于层间之间的氢键力和范德华力相互作用,因而晶层之间连接紧密,性能稳定。表面的结构官能团有:—Si(Al)—OH,—Si—O—Al—和—Si(Al)—O,这些活性点是对高岭土进行表面改性的基础。

常用的表面改性剂有硅烷偶联剂、有机硅(硅油)、聚合物、表面活性剂以及有机酸等。用途不同,用的表面改性剂的种类不同。

1. 1煅烧改性

煅烧改性是通过物理方法对高岭土进行热处理,使高岭土的晶体结构发生改变(主要由层间的氢键断裂及结晶水脱除引起),表面活性点的种类和数量都增多,使其反应活性增大;使高岭土粒径增大,表面能降低,使高岭土分散性提高。煅烧还会使高岭土产生如下变化:硬度增大导致耐磨性提高;酸性增强,未煅烧高岭土的pH值为6~7,煅烧后为5.6~6.1;电性能提高;白度增大。

煅烧高岭土时应注意温度的选择,在较低温度煅烧,高岭土的活性较大;在较高温度煅烧,可形成铝尖晶石,并在一定温度下有莫来石产生,此时高岭土的活

性较小,不能满足一些高分子材料制品的需要。因此,在不同的制品中应用应选择不同的煅烧温度,例如填充电缆胶料时就需要低温煅烧高岭土,其表面活性较大;当用作涂料的填料时,煅烧温度可以偏高,因为它主要是替代部分颜料,但也不能过高,以免产生莫来石化。

1. 2偶联剂改性

偶联剂改性是通过化学方法使高岭土微细颗粒表面包覆一层有机偶联剂,从而使高岭土表面性质由亲水疏油变成亲油疏水,增强高岭土与有机物基体之间的相容性。其作用机理是偶联剂经水解变成一种同时具有亲水基团(通常为Si—OH)和疏水基团的两性物质,亲水基团可与高岭土颗粒表面基团产生化学反应,形成共价键,而疏水基团则可与聚合物相容结合,或同时进行反应生成更稳固的化学键,从而达到改性目的。

常用的偶联剂有硅烷偶联剂和钛酸酯偶联剂,此外还有铝酸酯偶联剂、磷酸酯偶联剂、叠氮偶联剂、有机铬类偶联剂、锆类偶联剂及高级脂肪酸、醇、酯等。(1)硅烷偶联剂

硅烷偶联剂是一种水解后同时含有疏水基团和亲水基团的两性化合物,通式为RSiX3,其中X为可水解基团,如烷氧基(三甲氧基、三乙氧基等),R为有机官能团(巯基、氨基、乙烯基、甲基丙烯酰氧基等)。水解后的硅烷偶联剂的通式为RSi—(OH)3,其中的羟基与高岭土表面活性基团反应形成氢键,进而缩合成共价键,使得硅烷偶联剂与高岭土稳固结合,氢键的相继产生并包覆在高岭土表面,使得处于偶联剂另一端外露的具有反应性的疏水基团R 在硫化过程中很容易与有机母体材料中的活性基团反应,形成很强的化学键,使硅烷偶联剂与母体材料稳定结合。

硅烷偶联剂是具有酸性的高岭土填料最常用和有效的表面改性剂。其处理工业比较简单,一般是将高岭土和配置好的硅烷偶联剂一起加入表面改性机中进行表面包覆(改性)处理。工业可以是连续的(采用连续式粉体表面改性机),也可以是批量的(采用间歇式粉体表面改性机,如高速加热混合机)。

使用硅烷偶联剂对高岭土进行表面改性要受到以下因素的影响:高岭土的粘度大小和表面特性(表面官能团及活性);硅烷偶联剂的种类、用量和用法;表面处理的时间、温度。高岭土的粒度越细,比表面积越大,表面暴露的羧基基团越多,达到同样包覆率所需要的表面改性剂的用量比粒度粗的高岭土要大,其综合应用性能越好;颗粒表面官能团及活性点的数量也影响硅烷偶联剂分子与高岭土表面的作用;硅烷偶联剂的用量一定要适当,过大的用量可能导致多层包覆,不仅没有必要,而且使处理成本上升,一般用量范围为0.3%~2.0%。最佳的用量要依据处理物料的粒度、比表面积及表面特性等通过实验来确定。一般来说,预处理法(即先将高岭土包覆处理,干燥后再与树脂等混合)使用硅烷偶联剂效果好。

(2)钛酸酯偶联剂

钛酸酯偶联剂的结构通式为:(R′O)4-n—Ti—(OX—R″—Y)n钛酸酯偶联剂的作用机理与硅烷偶联剂类似,不同的是钛酸酯偶联剂在填料表面上形成均匀的单分子层,而硅烷偶联剂则是形成多层分子膜。此外,钛酸酯偶联剂比硅烷偶联剂含有更多的可变官能团。

与硅烷偶联剂相比,钛酸酯偶联剂对用于补强聚烯烃塑料的无机填料改性作用更明显,且价格低廉。一般来说,在煅烧高岭土的表面改性中钛酸酯偶联剂不单独使用,主要与硅烷偶联剂配合使用,改性效果较好。因此,钛酸酯偶联剂可作为高岭土的辅助偶联剂。

煅烧改性和偶联剂改性是高岭土表面改性的常用方法,通常采用两种方法配合改性效果较好。例如先将高岭土煅烧脱羟活化,然后研磨细化,最后再用偶联剂改性。

1. 3插层改性

高岭土单元层间存在-OH键和Si-O键,层间容易形成氢键,再加上层间距很小,只允许部分极性小分子进入其层间。这些极性小分子能破坏高岭土层间的氢键,插层到高岭土层间,撑大其层间距,并使层间亲水性转变为亲油性,层间的表面能降低,有利于其它有机大分子通过置换过程进入高岭土层间。

选取插层剂原则:(1)在满足插层改性需要的前提下尽量不要增加新的官能团或杂质元素;(2)插层剂在制备过程中要容易除去;(3)利用插层剂的相关特性增加复合材料新的功能。根据高岭土的不同需要,选择合适的插层剂对高岭土插层改性的研究起到关键的作用。

1. 4有机硅油改性

用作电线电缆(如聚氯乙烯等)填料的高岭土常用硅油进行表面改性。这种用硅油进行表面改性的高岭土是经过煅烧和超细粉碎后的高岭土。一般改性工艺流程是将高岭土置于高速加热混合机中,边搅拌,边加热,使温度升至150℃以脱除煅烧高岭土表面的吸附水,然后加入硅油搅拌混合均匀。

研究表明,随着硅油用量和处理时间的增加,煅烧高岭土的疏水性越好。过量使用硅油虽对提高煅烧高岭土填料表面疏水性有好坏,但不经济。一般硅油的用量为煅烧高岭土质量的1%~3%。

经硅油处理后的煅烧高岭土粉体,用作电线电缆的填料,不仅可以提高电线电缆的机械物理性能,而且还可以改善或提高电线电缆的电绝缘性能,尤其是在潮湿环境下的电绝缘性能。

1. 5有机胺改性

阳离子表面活性剂,如十八烷基胺也可以用于高岭土的表面改性,其极性基团通过化学吸附和物理吸附与高岭土颗粒表面作用,饱和吸附量为高岭土填料重量

的2%。因此,用量不宜过大。经胺改性后的高岭土增强了表面的疏水性。

1.6无机表面改性

采用沉淀包膜工艺,以钛盐(如四氯化钛和硫酸氧钛)为表面改性剂,可以在高岭土颗粒表面实现二氧化钛的包膜改性。其改性工艺过程是:在反应器内加入一定量的超细煅烧高岭土和水,使其充分分散,在一定的温度下,加入钛盐溶液,调节pH值,进行沉淀包膜反应。反应结束后,将产品过滤、洗涤、干燥、焙烧既得到二氧化钛包膜改性的煅烧高岭土产品。这是一种以煅烧高岭土为核、二氧化钛为壳的无机复合粉体材料。这种粉体材料可以在某些情况下代替钛白粉用作涂料、塑料等的颜料或填料。

用二氧化钛对精选(未煅烧)的高岭土微粉进行表面包覆改性,可以显著提高其白度,改性后的高岭土结构没有变化,但对红外光的遮挡能力明显增强,对紫外光的吸收能力也显著提高。

2 改性效果表征

高岭土改性效果的表征方法如下。

(1)沉浮法与活化指数法

沉浮法是对高岭土表面改性效果的一种简单评价方法,其机理是未改性的高岭土密度比水大,表面为极性,在水中会自然下沉,经表面改性的高岭土由亲水疏油变为亲油疏水,在水中因水强大的表面张力迫使其上浮,因此可以观察其在水中的沉浮情况而对改性效果进行评价。具体方法为把改性高岭土粉末静置于水面观察,迅速下沉的改性效果最差,静置于水面的效果居中,任意搅拌也不沉的改性效果最好。

活化指数法也是基于这一原理,它是用漂浮在水面的改性高岭土的质量分数H 来表示。H =漂浮部分的质量/样品总质量,H值为0~1,H值越大改性效果越好。(2)表面润湿法

表面润湿法的机理是利用高岭土改性前后表面性质的变化而导致的表面润湿性的变化(主要是接触角的变化)来对改性效果进行表征。通常,接触角变化越大(由小变大),改性效果越好。

(3)材料性能测定法

高岭土表面改性可以通过测定材料性能的方法来鉴定最终的应用效果,测试样品的拉伸强度、撕裂强度、耐磨性等物理性能都是对应用效果最准确、直接的表征。

此外,还可以通过红外光谱、核磁共振、差热分析等现代手段来对高岭土的改性效果进行评价和表征,其机理都是根据高岭土改性前后表面基团的组成及键能的不同而引起的特征曲线的变化来确定改性效果。

3 改性高岭土的应用

经改性后的高岭土,与有机高分子材料的交联性有了改善,分散性得到了提高,承受外界负荷的有效截面得到增加,使有机高分子材料制品的力学性能等得到增强,功能性大大提高.改性高岭土的应用十分广泛,特别是在涂料、塑料、橡胶等行业占有一定的地位。

3.1 改性高岭土在涂料中的应用

在涂料工业中,经常使用的高岭土有两大类:一是水洗超细高岭土,一是煅烧超细高岭土。煅烧高岭土是近年来发展起来的一种新型功能型填料,它作为涂料的填料不仅具有较高的白度和不透明性,能在高聚物中提供较好的稳定性和色泽,而且有较好的遮盖力,软而耐磨,并有抗磨蚀、不收缩等特性。高岭土作为白色填料,其本身并不具备遮盖力。但若以一定比例加入到白色涂料(油漆)中,则可起增亮剂的作用,使涂料的遮盖力有所提高。

3.2 改性高岭土在塑料中的应用

在塑料工业中,高岭土可代替重质CaCO3作PVC、PP、聚酯、尼龙、酚醛树脂等塑料的填充料,用来制造塑料地板、塑料水管等。以高岭土作塑料的填充料能使塑料表面光滑,提高尺寸精度和耐化学腐蚀性等。尤其是它在高绝缘电缆塑料方面作填充料可提高其电阻率,这是其它无机矿物填料所无法比拟的。改性煅烧高岭土在其它塑料制品中应用,可使其产品尺寸稳定性、冲击强度和变形温度等均有较大的提高,并可增加填加量降低成本。

3.3 改性高岭土在橡胶中的应用

在橡胶制品生产中,提高各种配合剂在胶料中的分散和交联程度,是确保制品胶料质地均一和制品性能优异的关键。对橡胶制品力学性能的影响主要是填料的结构、粒度、粒度分布、物理化学性质。用高岭土作为填料和补强剂,可提高橡胶制品的档次。在橡胶中掺入粉状高岭土后,形成有机高聚物(橡胶)—无机物(高岭土)复合材料,它不仅能改善橡胶制品的物理化学性能。还可降低橡胶制品的成本,提高经济效益。但是作为橡胶补强剂的高岭土,其Mn的含量必须小于0.007%~0.0045%,否则会加速橡胶的老化。

此外,改性高岭土填充在电线电缆护套中,能改善耐磨性及抗切口延伸性;填入管料中,能改善耐溶剂性和耐磨性;填充在绝缘橡胶中,可获得稳定的受潮电性能,并提供模量和抗拉性能;填充在皮带中,能改进皮带耐磨性和抗撕裂强度;填充在鞋底中,能增加鞋底的挠曲寿命,提高耐磨性;填充在垫圈中,能减少压缩变形率。

随着高岭土表面改性剂的不断研发、改性方法的不断更新、加工设备的不断改良,高岭土将会更大量、广泛地应用于涂料、造纸、橡胶、塑料等行业,不仅可以作为填料以降低成本,还可以提高材料的刚性、拉伸强度、冲击强度等性能,并赋予材料耐腐蚀、阻燃、绝缘等特殊的物化性能。

参考文献

[1] 吴自强等.高岭土晶体结构、性质及在涂料工业中的应用[J].中国涂料,1995(6):45-16

[2] Zhang Yong.Effect of silicone oil on mechanicalproperties of highly filled HDPE composites[J].Polymerand polymer composits,8 7 2000:45-46

[3] Carpentier Fabien(ENSCL),ect.Rheological investigationin fire retar –dancy:Application to ethylene-vinyl -acetate copolymer -magne -sium hydroxide/zinc borate formulation[J].Polymer Internation-al,9 10 2000:55-56

[4] 郑水林,粉体表面改性[M].北京:建材工业出版社,1995(6):35-36

高岭土生产工艺标准技术

1.1.1.产品规模 一级高岭土:12万吨/年;二级高岭土:8万吨/年 建筑用砂:5万吨/年;黄铁矿:1万吨/年。 工艺技术方案目前国内高岭土湿法深加工技术比起传统技术有所提高,但在关键技术和关键工艺方面仍然落后国外,特别在自动化程度、成套技术、生产效率和工艺稳定性等方面与欧美、日本还有较大差距。随着石化、造纸、陶瓷、耐火材料等行业的发展,这些行业对高档高岭土的需求在不断地上升,市场不断扩大。高档高岭土行业的发展瓶颈已经显现,需要更加先进的技术、工艺、装备,更加稳定的产品性能、高产能、高效率。 本项目采用自主研发的新技术、新工艺、新装备,淘汰落后的技术、工艺、装备和产能。本项目开发的新型捣浆机用于原料制浆过程中矿物的分散,比原来的制浆时间短,矿物与杂质分离的更完全,有助于后道工序的分选作业。新的分选装备小口径高压旋流器的开发,提高了更细粒级矿物的分级。高档高岭土生产线将采用新的干燥技术比原干燥节约用地70%,干燥效率提高了50%。整条生产线自动化程度提高了,降低了生产和管理成本,同时提高了生产流程的稳定性。项目使用自主开发专利技术 依据流程先后矿浆自流原则,依次布置。原料预处理车间布置在最高处,然后依次为制浆车间、分选车间、超细磨车间、超导磁选车间、压滤车间、干燥车间、轧粒包装车间、中尾矿处理车间。具体详见总平面布置图。

1.1. 2.主流程工艺流程主流程工艺详见附图2“主流程数质量流程图”,进料总量24.22万吨,生产 一级高岭土系列产品10.4万吨,二级高岭土系列产品8万吨,一级品三氧化二铝含量大于35%,铁含量小于0.5%,-2um以下88%,二级品三氧化二铝含量大于30%,铁含量小于0.8%,-2um以下75%。 1.1. 2.1.原料预处理系统运送至原料仓库的原料需要进行破碎至5cm以下。破碎后的原料再通过振动 筛给到皮带输送机,由皮带输送机输送至原料储存料仓。 1.1. 2.2.高浓度制浆系统原料储存料仓中的原料通过板式给料机按一定的给料量加入至捣浆池中,同时 加入水和能使矿浆分散的分散药剂,配制矿浆浓度30%左右,进行高速搅拌打散。 超细磨剥系统浓缩后的精矿矿浆加入混合分散剂,使矿浆完全分散,具有良好的流动性,控制矿浆浓度在45%左右,由变频螺杆泵输送至超细磨剥机进行研磨剥片。 1.1. 2. 3.分选、分级系统高速分散后的矿浆首先进入粗选作业,经过水力旋流器?200、?150,粗选后的 溢流矿浆再进入精选作业,分别经过?75、?25,最后经过超细分级高压旋流器?10。 1.1. 2.4.压滤系统经过分选后的精矿矿浆由柱塞泵输送至大型自动压滤机进行压滤脱水,把浓度为8% 的矿浆压滤成含水30%的半成品。 1.1. 2.5.干燥系统 经过压滤脱水后的半成品送至干燥架进行自然干燥,干燥后成品含水为15%左右。 1.1. 2.6.轧粒、包装系统干燥后的成品运送至轧粒、包装车间,经过破碎机把干燥后的高岭土泥饼破碎 机至3cm~5cm粒径大小的粒状,再经过提升机提升至成品缓冲料仓,然后通过自动卸料方式进入自动包装机进行包装。 1.1. 2.7.中尾矿处理系统经分选系统中粗选作业处理后得到的尾矿以及由?25水利旋流器分选后的尾 矿再经过堆放、风化、解离后加水、分散剂进行二次三次选别,浓缩、压滤、干燥、轧粒包装。 最终产生的粗尾矿再次经过摇床等粗选设备进行粗尾矿的选别作业,分选出石英砂、黄铁矿、高岭土。 1.1. 2.8.选矿废水净化系统主流程和中尾矿系统中压滤机排出的含酸性比较强的废水、浓缩过程中排出 的废水、清洗压滤布产生的废水均排到废水处理系统,通过加入混合药剂,中和掉多余的硫酸根离子等,净化水质,净化后的水进入到循环水池再利用。在制浆过程中需要加入碱性分散剂,而处理后的水偏碱性,这样可以节约大量的药剂。 1.1. 2.9.超细改性系统为开拓占领高端市场,项目设计充分利用公司取得的超细改性工艺技术,建设一 条利用本项目生产的一级高岭土为原料,通过超细改性工艺的2000吨/年的改性高岭土生产线。 1.1. 2.10.破碎系统、原料储存系统原料从公司厂矿或车站码头用自卸车、集装箱货车或农用货车等 运至原料仓库储存。原料棚建在主流程原料棚的北侧山坡上,面积约350m2。根据需要对原料进行

聚酰亚胺的填充改性研究进展

聚酰亚胺的填充改性研究进展 摘要介绍聚酰亚胺材料的主要特点及其应用领域。针对近期PI树脂的改性,包括无机填料、金属及金属氧化物、纳米材料和杂化填料对PI的改性研究进行了较为系统地概述。最后针对我国PI生产及研究现状提出了相应的建议。 关键词聚酰亚胺,无机填料,金属及金属氧化物,纳米材料,杂化填充 聚酰亚胺(PI)是一类综合性能非常优异的聚合物,由于其具有优异的耐高温、耐低温、高强高模、高抗蠕变、高尺寸稳定、低热膨胀系数、高电绝缘、低介电常数与损耗、耐辐射、耐腐蚀等优点而被广泛应用于微电子工业和航空航天材料中。聚酰亚胺的不足之处是不溶、不熔、加工成型难、成本高等,故又限制了其 使用。目前,改性聚酰亚胺主要有组成、结构改造、共聚、共混、填充等方法,其中填充改性是一种简单有效的方法,既可保持其优点又可利用复合效应改善和克 服纯PI的缺陷从而提高其综合性能。在PI中加入不同的填料,可以显著提高其机械强度、硬度及耐磨性。目前常用的填料主要有无机填料、金属及金属氧化物、纳米粒子、杂化填料等,本文对不同填料填充的PI的性能进行了阐述。 1无机填料填充PI 无机纳米材料因具有很低的热膨胀系数和较低的吸水性,故非常适合于对PI的改性[1]。目前,无机填料主要包括玻璃纤维(GF)、碳纤维、石墨、二硫化钼(MoS2)、二氧化硅(SiO2)、陶瓷颗粒等。宋艳江等[2]对玻璃纤维(GF)填充聚酰亚胺复合材料弯曲性能进行了研究,结果发现:刚性填料玻璃纤维改性热塑性聚酰亚胺能明显地提高材料的玻璃化转变温度(Tg)。此外,对聚合物分子链热运动有较强阻碍作用,能较大提高复合材料在高温下的弯曲强度和弯曲模量。在温度为225℃时,复合材料的力学强度保留率在60%以上,并且随填料含量的增加效果更加显著;在相同含量时,长玻璃纤维由于其连续性好能更好地承载应力,较短玻璃纤维增强作用则更为明显。贾均红等[3]考察了碳纤维、玻璃纤维及石英纤维增强PI复合材料在干摩擦和水环境下的摩擦磨损行为。结果表明:碳纤维增强PI复合材料在两种摩擦条件下的摩擦系数和磨损率都随碳纤维含量的增加而不断降低。而玻璃纤维和石英纤维增强P复合材料的摩擦系数和磨损率则随纤维含量的增加而增大。并且材料的磨损均以塑性变形、微观破裂及破碎为主导,由于摩擦副表面吸附或存留水 分的边界润滑作用,相同纤维种类和含量增强PI复合材料在水环境下的磨损率均较干摩擦下的低。高鑫等[4]采用浓硝酸氧化和聚酰亚胺(PI)包覆复合方法对短切碳纤维(CF)进行表面改性,并考察了经复合处理后碳纤维增强聚酰亚胺复合材料 的力学性能。结果表明:经过包覆处理后CF/TPI复合材料的拉伸强度比未处理的提高111 34%,弹性模量提高1091 2%,弯曲强度提高181 78%,冲击强度提74115%。

高岭土的高温改性

高岭土的高温改性 1.文献综述 质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。 原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统 计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。造纸工业是精 制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司 提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总 用量为约1360万吨。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和板( 主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜 料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆 盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这 种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要 的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数 是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W 液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定 泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其 成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性

超细煤系煅烧高岭土颗粒物化性质与表面改性

超细煤系煅烧高岭土颗粒物化性质与表面 改性 第22卷第6期 1999年l1月 非金属矿V0:22No.6 Non—Meta1]icMinesNov.1999 / 超细煤系煅烧高岭土颗粒物化性质与表面 _-.三童墨二一陈秀枝袁京莉 (北京科技大学资源工程学院.北京100083) 摘要在研究1超细壤未煅烧高岭土颗粒的物理化学性质后.螬旮颜料的特性分析7遛细蝶隶域境高峥土柠 酎原因结果表明,超妇蝶系艘烧寄母三的高白度,高折光拍数,鞋强适盖力抵哑油量等枷也性鲍是将其作为故白代 曾i粒表面吸附能卉的增强囊表面电位有利于其与杠面随性药剂作用 关键词爆帛搬烧高岭土兰墨兰暑苎苎 煤系高岭土通过煅烧和超细粉碎,大幅度地提 高了其白度,作为常用的工业矿物资源,如何提高其 应用价值显得尤为重要.超细粉碎为拓宽其应用领 域开辟了新的途径,而超细粉碎过程中所引发的颗 粒结构,及其物理化学性质的变化特点,则为其进一 步深加工(如表面改性)提供了理论依据. 在粉碎过程中,物料受外界机械力的作用,宏观 上表现为物料颗粒细化和比表面积的增大,而微观 上由于部分能量储聚在颗粒体系内部,从而导致颗 粒晶格畸变,晶格缺陷加深,无定形化,生成游离基, 表面自由能增大,外激电子放射或出现等离子态等.

因此,物料活性提高,反应能力增强,这种在粉碎过 程中因机械力的作用而引起的颗粒物理结构和物化性质变化的现象,称为"超细效应"或"机械力化学效应". 下文就煤系煅烧高岭土湿法超细粉磨产生的物 化性质的变化,结合钛自粉颜料的性能要求,浅析了超细煤系煅烧高岭土粉体作为钛自代用品基体的原因. 1试验与测试方法 煤系煅烧高岭土试样取自陕西某地高岭土厂, 试样d17.69gin,在试验室经湿式盘式搅拌磨通过 优化工艺参数,分别获得了d0为296gin(产物A, 下同)和O,95m(产物B,下同)两种产品.并分别对 以上三种物料进行了物化性能测试.测试方法按相应国标进行. 2试验结果与讨论 2.1密度变化有人曾研究干式磨矿条件下, imm的石英磨至0imm时,其密度由265g/cⅡ 降至2.37crrl左右;而对湿法研磨过程中颗粒密 *画章自然科学基奎资助项目.蝙号59704006 — 于图1.结果表明,磨矿后产物特别是超细颗粒(产 物B)的吸水能力明显强于宋磨试样,与后者相比, 前者不仅在相同时间下的吸水率和达到饱和之后的吸水率均大于后者.而且达到饱和的时同也较短. 基体(产物B)l4天吸水达到饱和.而试样和产物A 20天仍未饱和,由此说明,颗粒细化的过程亦即吸 水能力增强的过程不排除磨矿产物固粒度细,比

高岭土指标及应用

高岭土指标及应用 高龄土的用途质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。有报道称,日本还有将高岭土用于代替钢铁制造切削刀具、车床钻头和内燃机外壳等方面应用。特别是最近几年,现代科学技术飞速发展,使得高岭土的应用领域更加广泛,一些高新技术领域开始大量运用高岭土作为新材料,甚至原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。 目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。造纸工业是精制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总用量为约1360万吨。 高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和纸板(主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。

高龄土的工艺特性 1.白度和亮度 白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800—7000 ?波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的90%)。 亮度是与白度类似的工艺性质,相当于4570 ?波长光照射下的白度。 高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐黄色;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对

矿物填料在涂料中的应用特性

矿物填料在涂料中的应用特性 1.概述 涂料是一种呈现流动状态或可液化之固体粉末状态或厚浆状态的,能均匀涂覆并且能牢固地附着在被涂物体表面,并对被涂物体起到装饰作用、保护作用及特殊作用,或几种作用兼而有之的成膜物质。 涂料产品除油漆之外,还包括了利用各种合成树脂、乳液等为主要原料生产的溶剂型涂料、乳胶型涂料、水溶性涂料、粉末状涂料等。 涂料中的无机填料又称体质颜料,有时也称颜料增量剂,可分为非功能性填料和功能性填料。前者主要起增量作用,以降低涂料的原材料成本;后者除具有增量作用外,还具有改进涂料或涂膜的某些性能的功能,如控制流变性、改进附着力、控制光泽、提高遮盖力、防止腐蚀和优化颜料积浓度等。 涂料是无机填料的主要用户之一,目前世界上涂料产量约2300万吨/年,共消费填料约600万吨/年。我国已成为世界上的涂料生产大国之一,目前生产的涂料约300万吨/年,大约消耗无机填料80万~100万吨/年。 2.填料在涂料中的功能和要求 涂料中的填料(体质颜料),通常是白色或稍带颜色的,折射率小于1.7的一类颜料。 它具有涂料用颜料的基本物理和化学性能,但由于折射率与成膜物质相近,因而在涂料中是透明的,不具有着色颜料的着色力和遮盖能力,是涂料中不可缺少的一种颜料。由于填料绝大多数来自天然矿石加工产品,其化学稳定、耐磨、耐水等特性好,且价格低廉,在涂料中起骨架作用。通过填充增加涂膜的厚度,改善涂膜力学性能,并能起耐久、防腐蚀、隔热、消光等作用。另一方面把它作为降低涂料制造成本的一种途径,利用其价廉、价格远远低于彩颜料,在满足漆膜遮盖力的前提下,适当添加体质颜料来补充彩色颜料在漆中应有的体积。 涂料中使用填料,降低成本不是唯一作用。填料所起的主要作用与功能是:①在涂料中起骨架、填充作用,增加漆膜厚度,使漆膜丰满坚实;

煤系高岭土

煤系高岭土 煤系高岭土又叫煤矸石,是煤的伴生矿物,是我国特有的宝贵资源,国外虽有,但矿层薄,不具备开采价值。煤系高岭土资源主要分布在内蒙古、陕西、山西等地,储量巨大,已探明的地质储量为28.39亿吨,预测可靠储量为151.20亿吨;我国煤矸石利用率仅达30%~40%。废弃的煤矸石,污染水质;自燃后生成H2S、SO3 等有害气体,污染空气,并造成了酸雨的危害。大量堆积的煤矸石还侵占了越来越多的耕地,构成了对生态和环境的双重破坏。煤系煅烧高岭土加工技术出现在上世纪80年代,随着资源综合利用及循环经济鼓励政策的出台及煤矸石加工技术的日益成熟,在近几年达到了大规模的推广。 与水洗土的区别 自然产出的高岭土矿石,根据其质量、可塑性和砂质(石英、长石、云母等矿物粒径>50微米)的含量,可划分为煤系高岭土、软质高岭土和砂质高岭土三种类型。我国的水洗土资源比较紧张,主要分布在广东、广西、江西一带,而且产品的品位也较巴西、美国的高岭土差;而我国的煤系高岭土储量居世界首位,原矿的品位比较高。水洗土相比,煤系煅烧土的纯度高,易于生产高白度产品,主要应用于各种用途的填料方面。煤系高岭土以其较高的纯度,煅烧白度高,广泛应用于造纸、涂料中,特别是高档铜版纸和中高档涂料,产品的附加值比较高。软质高岭土和沙质高岭土主要应用于造纸涂料和陶瓷行业方面。

煤系煅烧高岭土以其高白度和高遮盖力受到造纸和涂料市场的好评,并在市场上占据了重要的位置。同时随着国内水洗土资源的萎缩,煤系煅烧土日渐受到客户的青睐。 应用领域 公司生产的产品是一种中高档颜、填料,以其独特的性能广泛应用于造纸、涂料、塑料、橡胶等各个领域。 在造纸应用方面,作为填料或颜料使用,可替代价格昂贵的二氧化钛颜料使用。由于煅烧高岭土的多孔膨体结构和高白度的特性,可增加涂料纸涂层空隙体积和松厚度,减少压光时的亮度和不透明度的损失,从而提高其纤维覆盖、不透明度、弹性以及轮转凹印的印刷适应性、抗起泡性;改善油墨吸收性、透印性和减少印刷斑点倾向,提高胶印中的保真度。 在涂料应用中,用作功能性填料或白色颜料,适用于各种涂料的使用,从底漆到面漆,任何固含量、任何厚度和任何光泽的涂层。用高岭土作涂料工业的添加剂,其作用不断体现,优质煅烧高岭土可以大大提高涂料产品的耐候性,耐化学药品腐蚀性。可以降低涂料的粘稠度,提高流平性,减慢沉降速度,提高附着力。可改善涂料储存稳定性、涂刷性、涂层的抗浮色和发花性等。还可以提高涂膜的遮盖力,替代部分价格昂贵的钛白粉,降低涂料成本。

高岭土和膨胀土特性

高岭土与膨胀土特性 一、高岭土: 质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。 1. 化学式 Al2O3-2SiO2-2H2O 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 3.可塑性 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 4.结合性 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。结合能力的测定,是在高岭土中加入标准石英砂(其质量组成0.25—0.15粒级占70%,0.15—0.09mm粒级占30%)。以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这种高岭土结合能力就越强。通常凡可塑性强的高岭土结合能力也强。 5.粘性和触变性 粘性是指流体内部由于内摩擦作用而阻碍其相对流动的一种特征,以粘度来表示其大小(作用于1单位面积的内摩擦力),单位是Pa·s。粘度的测定,一般采用旋转粘度计,以在含70%固含量的高岭土泥浆中的转速来衡量。在生产工艺中,粘度具有重要意义,它不仅是陶瓷工业的重要参数,对造纸工业影响也很大。据资料表明,国外用高岭土作涂料,在低速涂布时要求粘度约0.5Pa·s,高速涂布时要求小于1.5Pa·s。

高岭土

高岭土 1.白度和亮度 白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800—7000Å(即埃,1埃=0.1纳米)波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的90%)。 亮度是与白度类似的工艺性质,相当于4570Å(埃)波长光照射下的白度。 高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐黄色;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 3.可塑性 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 4. 化学式 Al2O3-2SiO2-2H2O

高岭土的表面改性

高岭土表面改性 (化学与环境工程学院学硕2014 140920020 田敏) 摘要:高岭土是一种重要的工业矿物,在造纸、陶瓷、橡胶、油漆、塑料、涂料、耐火材料等领域得到广泛的应用,但在用作填料和涂料等时需要进行表面改性处理。本文主要介绍高岭土表面改性方法、改性效果的表征和应用。常用的高岭土表面改性方法有煅烧改性和偶联剂改性;高岭土表面改性效果表征方法主要有沉浮法、活化指数法、材料性能测定法。 关键词:高岭土、表面改性、偶联剂 正文: ―高岭土(Kaolin)‖一词来源于中国江西景德镇高岭村产的一种可以制瓷的白色粘土而得名。高岭土是一种非金属矿产,是一种以高岭石族粘土矿物为主的粘土和粘土岩。质纯的高岭土呈洁白细腻、松软土状,具有良好的可塑性和耐火性等性质。将高岭土用物理、化学或机械方法进行表面改性处理,改变其表面的物理化学性质(如表面晶体结构、官能团、表面能、表面电性、表面浸润性、表面吸附性和反应特性等),从而改善其在橡胶、电缆、塑料、油漆、涂料、化工载体等方面的应用性能,得到广泛的使用。 1 高岭土表面改性方法 高岭土主要成分是含水硅酸铝,属于层状硅酸盐矿物,一般认为其化学式为Al2O3·2SiO2·2H2O[1,2] (结晶水以羟基的形式存在),是由SiO4四面体的六方网层与AlO2(OH)4八面体层按1∶1结合成层状结构。由于层间之间的氢键力和范德华力相互作用,因而晶层之间连接紧密,性能稳定。表面的结构官能团有:—Si(Al)—OH,—Si—O—Al—和—Si(Al)—O,这些活性点是对高岭土进行表面改性的基础。 常用的表面改性剂有硅烷偶联剂、有机硅(硅油)、聚合物、表面活性剂以及有机酸等。用途不同,用的表面改性剂的种类不同。 1. 1煅烧改性 煅烧改性是通过物理方法对高岭土进行热处理,使高岭土的晶体结构发生改变(主要由层间的氢键断裂及结晶水脱除引起),表面活性点的种类和数量都增多,使其反应活性增大;使高岭土粒径增大,表面能降低,使高岭土分散性提高。煅烧还会使高岭土产生如下变化:硬度增大导致耐磨性提高;酸性增强,未煅烧高岭土的pH值为6~7,煅烧后为5.6~6.1;电性能提高;白度增大。 煅烧高岭土时应注意温度的选择,在较低温度煅烧,高岭土的活性较大;在较高温度煅烧,可形成铝尖晶石,并在一定温度下有莫来石产生,此时高岭土的活

煤系高岭土加工利用现状

中国煤系煅烧高岭土加工利用现状与发展 郑水林1,冯欲晓2,刘贵忠3 1.北京工业大学材料科学与工程学院,北京 100022: 2.内蒙古蒙西高新技术集团,内蒙古乌海 016016; 3.中国建筑材料工业地质勘查中心内蒙古总队,内蒙古呼和浩特 010070 [摘 要] 本文综述了中国煤系煅烧高岭土的生产、消费与技术现状,并展望了未来市场与 技术发展。 [关键词] 煤系高岭土;煅烧;超细粉碎 1 煅烧高岭土的生产、消费与贸易 煤系高岭土是我国的优势非金属矿资源,用煤系高岭土为原料加工的煅烧高岭土以其白度 高、晶形好、孔隙率大、容重小、化学稳定性和绝缘性好、遮盖率强等特性广泛用于油漆涂料、 造纸、橡胶、塑料、电缆、陶瓷等领域。在现代产业发展和传统产业技术进步中起重要作用。 当今世界约有60多个国家和地区生产高岭土。1998年世界高岭土总产量为3980万t,其中精 选优质高岭土约2000万t。但只有美国、英国、中国、巴西等少数几个国家生产煅烧高岭土。 中国以其独特且丰富的煤系高岭石资源而著称于世。但工业规模的以煤系高岭岩为原料的 煅烧高岭土的生产20世纪90年代才起步,而以所谓“双90”(即白度≥90%,细度-2μm含量≥90%) 产品为标志的优质煅烧高岭土的规模化生产1998年前后才开始。1998年中国煅烧高岭土的产量 约6万t,其中白度大于90,细度1250目以上的超细煅烧高岭土产品约2万t,“双90”产品约1 万t,其余为325至500目左右的产品。1999年煅烧高岭土的产量约7万t,较上年增长16.67%,其 中白度大于90,细度1250目以上的超细煅烧高岭土产品约3.0万t,“双90”产品约1.5万t,分 别较上年增长50%。2000年煅烧高岭土的产量约为9万t,其中白度大于90,细度1250目以上的超 细煅烧高岭土产品约4.5万t,较上年增长50%。“双90”产品约2万t,较上年增长33.33%。 目前,中国煅烧高岭土的生产能力已达到13万t,其中高白度和超细优质煅烧高岭土的生产 能力约5万t。煅烧高岭土生产企业主要分布在山西、内蒙、河南、陕西、山东,安徽、湖北等 省(自治区)。主要生产企业有山西金洋煅烧高岭土有限公司、内蒙古三保准格尔高岭土有限公 司、山西阳泉金锐化工有限公司、山西代县喜迪精细化工有限公司、山西琚丰高岭土有限公司、 陕西韩城矿务局高岭土厂、陕西蒲白高岭土公司、河南巩义市中龙高岭土公司、山东兖州矿务

高岭土

高岭土简介

目录 1.概述 0 2.成分及性质 0 2.1.组成成分 0 2.2.理化性质 (1) 3.矿床成因 (1) 4.分类 (2) 5.资源分布 (3) 5.1.中国分布 (3) 5.2.国外分布 (3) 6.工艺性能 (3) 6.1.白度和亮度 (4) 6.2.粒度分布 (4) 6.3.可塑性 (5) 6.4.结合性 (5) 6.5.粘性和触变性 (5) 6.6.干燥性能 (6) 6.7.烧结性 (6) 6.8.烧成收缩 (7) 6.9.耐火性 (7) 6.10.悬浮性和分散性 (8) 6.11.可选性 (8) 6.12.离子吸附性及交换性 (8) 6.13.化学稳定性 (9) 6.14.电绝缘性 (9) 7.加工方法 (9)

7.1.分离方法 (9) 7.2.湿法加工工艺 (10) 7.3.煅烧法 (10) 7.4.剥片法 (11) 7.5.无机酸处理 (11) 8.主要用途 (11)

1.概述 高岭土是一种非金属矿产,是一种以高岭石族粘土矿物为主的粘土和粘土岩。因外观呈白色而又细腻,又称白云土、观音土、陶土、阁土粉。因江西省景德镇高岭村而得名。 质纯的高岭土呈洁白细腻、松软土状,具有良好的可塑性和耐火性等理化性质。其矿物成分主要由高岭石、埃洛石、水云母、伊利石、蒙脱石以及石英、长石等矿物组成,化学式为Al2O3·2SiO2·2H2O。 高岭土用途十分广泛,主要用于造纸、陶瓷和耐火材料,其次用于涂料、橡胶填料、搪瓷釉料和白水泥原料,少量用于塑料、油漆、颜料、砂轮、铅笔、日用化妆品、肥皂、农药、医药、纺织、石油、化工、建材、国防等工业部门。 2.成分及性质 2.1. 组成成分 高岭土类矿物是由高岭石、地开石、珍珠石、埃洛石等高岭石簇矿物组成,主要矿物成分是高岭石。 高岭石的晶体化学式为Al2O3·2SiO2·2H2O,其理论化学组成为46.54%的SiO2,39.5%的Al2O3,13.96%的H2O。高岭土类矿物属于1:1型层状硅酸盐,晶体主要由硅氧四面体和绍氢氧八面体组成,其中硅氧四面体以共用顶角的方式沿着二维方向连结形成六方排列的网格层,各个硅氧四面体未公用的尖顶氧均朝向一边;由硅氧四面体层和招氧八面体层公用硅氧四面体层的尖顶氧组成了1:1型的单位层。

塑料填充改性

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。塑料填充改性综合实验 班级: 09030341、09030342 组别:第八、十八组 姓名:乔荣 学号:08 八组成员:原文冉、李闯、李维、温磊、柳超 十八组成员:乔荣、雷俊杰、武忠、李琳、傅令明

塑料填充改性综合实验 一、实验目的 1、进一步了解塑料填充改性的方法,掌握基本配方的配制,加深对偶联剂的作用机理的理解; 2、掌握填充物的含量对复合材料力学性能的影响规律; 3、掌握数据处理和分析的方法。 二、实验原理 通过物理和机械的方法在高分子聚合物中加入无机或有机物质,或将不同类的高分子聚合物进行共混,或用化学的方法实现高聚物的共聚、接枝、交联、或将上述各种方法连用、并用,以达到使材料的成本降低、成型加工性能或最终使用性能得到改善,或在电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称之为高聚物的改性。填充改性就是在塑料成型中加入无机填料或有机填料,使塑料制品的原料成本降低达到增量的目的,或使塑料的性能有明显改变,即在牺牲某些方面性能的同时,使人们所希望的另一方面的性能得到明显提高或各种性能都得到提高。本实验将不同质量分数的表面处理的碳酸钙粒子填充到聚乙烯中,在双螺杆挤出机的挤压力和剪切力作用下混合均匀,经冷却、吹干、造粒得到填充改性的粒料。将经过干燥的粒料用注射机注射成测试样条,然后测试材料的缺口悬臂梁冲击强度、拉伸强度和断裂伸长率,找出填料含量对材料力学性能的影响规律。 三、实验用原材料及仪器设备 1、实验用原料及配方 2、实验用仪器设备

(1)、平行双螺杆混炼挤出机(SHJ-36型),螺杆直径36;螺杆长径比36:1;(2)、挤出辅机(包括冷却水槽、风干机、切粒机); (3)、高速混合机(GH-10)总容积10升,有效容积7升,主轴转速600~3000转/分;(4)、悬臂梁冲击试验机(XJU-22); (5)、万能拉伸测试仪; (6)、注射机。 四、实验工艺条件的预定 1、材料配方的确定 2.混合工艺条件的确定: 混合时间: 10min 混合机转速:1500r/min 3.挤出机工艺条件: 表格1料筒各段的温度℃ 4.注射机工艺条件 料筒温度及各部分参数 五、实验内容及操作步骤 1、塑料的填充改性实验 (1)称量及混合

由煤系高岭土原位合成NaY分子筛

收稿日期:!""!#"$#"%作者简介:刘欣梅(&’()*) ,女(汉族),山东寿光人,讲师,在读博士研究生,主要从事化学工艺和工业催化方面的教学和科研工作。文章编号:&"""#+)%"(!""!)"+#""’,#"( 由煤系高岭土原位合成-./分子筛 刘欣梅,阎子峰,王槐平 (石油大学重质油加工国家重点实验室及中国石油天然气集团公司催化重点实验室,山东东营!+%"(&)摘要:以煤系高岭土为原料,经碱熔活化、补硅,在优化的合成条件下,可以原位水热合成-./分子筛。详细考察了晶化温度、晶化时间、加水量、老化时间和合成体系中硅铝比等反应因子对合成产物的结构和热稳定性的影响。得出的最佳反应条件如下:合成体系中硅铝经为!,晶化温度$%"0、晶化时间&"1、老化时间&!1、加水量,"!("23。其中,晶化温度和加水量是影响结晶产物物理结构性能的主要因素。采用456、75、-!静态容量吸附法、689#68:等手段对结晶产物的晶态结构、比表面积及孔分布、热稳定性等进行了表征。结果表明,以高岭土为原料可以原位合成出结 晶度较高、无杂晶的-./分子筛。所得分子筛比表面积较高(,!"2!/; ),孔径分布集中(集中在"<(=2),热稳定性好。关键词:高岭土;-./分子筛; 水热合成;晶相;比表面积;孔分布中图分类号:8>,!,

高岭土用途

高岭土用途 高岭土的用途质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘粘性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。 因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料 白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800—7000Å;(即埃,1埃=0.1纳米)波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的90%)。 亮度是与白度类似的工艺性质,相当于4570Å(埃)波长光照射下的白度。 高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐黄色;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四

高岭土表面改性方法概述

高岭土表面改性方法概述 摘要:介绍高岭土表面改性方法、改性机理及改性效果的表征方法。常用的高岭土表面改性方法有煅烧改性、偶联剂改性、包膜处理及化学接枝处理。表面改性提高了高岭土与有机物基体的相容性和结合力,并改善了其在有机物基体中的分散性;高岭土表面改性效果表征方法主要有沉浮法、活化指数法、浊度法、表面润湿法、特征系数法、吸附性法。 关键词:高岭土;表面改性;改性效果表征 An Overview of Kaolin Performance Modification Method Abstract :The kaolin surface modification method, the modification mechanism and the characterization methods of modified effect are introduced. The surface modification methods commonly used in kaolin are calcining modification, coupling agent modification, capsular processing and chemical graft processing. Surface modification to improve the compatibility and binding capacity of kaolin and organic matrix,and to improve its dispersion in the organic matrix; the characterization methods of kaolin modified effect including sink and float method, activation index method, turbidity method, surface wetting method, characteristic coefficient method, adsorption method. Keywords:Kaolin ;Performance modification;Modification effect characterization 高岭土是高岭石族矿物的一种,在陶瓷、造纸、橡胶、耐火材料、塑料行业等国民经济和日常生活中有着广泛的应用,例如,在造纸工业中可以用作填料或涂料,从而改善纸张的性能;在橡胶、塑料等有机产品中可以用作填料,增加制成品的强度、耐磨性,还可以用于陶瓷原料、涂料、粘结剂等领域[1]。目前,国内外开展了许多有关高岭土应用的研究。这些研究一方面加深了对高岭土性质的认识,另一方面也促进了相关行业的发展。而不同产地的高岭土的矿物形成条件及开采加工方法互有差异,导致其表面性能有很大差别,因此研究开发不同表面改性的方法,适应高岭土在不同行业中的应用要求,是扩大高岭土的应用范围及效果的重要手段。 1 高岭土矿物表面物理化学特征及实际应用要求 1.1 高岭土矿物表面物理化学特征 高岭土又称瓷石,是多种矿物组成的含水铝硅酸盐的集合体,主要有用的成分是高岭石,其晶体化学式为2Al2Si2O5(OH)8或2SiO2·Al2O3·2H2O,显然是一种含水铝硅酸盐。高岭石中的水是以—OH的形式存在,其晶体结构的特点是由—Si—O四面体层和—Al—(O,OH)八面体层连接而成。高岭石每个结构单元层的O与相邻结构单元层八面体层的—OH通过氢键相结合,使高岭土结构单元呈层状堆积。这种层间力由于是弱的氢键和范德华力,故高岭土形态主要呈板状,易于沿与层面平行的方向裂开,而被加工成超细粉。在自然界中高岭土以鳞片状存在,它能与许多极性分子如HC—ONH2、CH3CONH2、(NH2)2CO等相互作用,产生高岭石(极性有机分子嵌合复合体)。有机分子进入层间域,并于结构层两表面与氢键相结

相关文档
最新文档