第5章-风力发电机组机械传动系统-答案

第5章-风力发电机组机械传动系统-答案
第5章-风力发电机组机械传动系统-答案

风力发电技术与风电场工程

第五章练习题

习题答案

一、填空题

1、风力发电机组机械传动系统是指将风轮获得的空气动力以机械方式传递到发电机的整个轴系及其组成部分,由主轴、齿轮箱、联轴器、制动器和过载安全保护装置等组成。

2、传统的采用齿轮箱增速的风力发电机组传动系统形式按照主轴轴承的支撑方式,以及主轴与齿轮箱的相对位置来区分,主要有两点式、三点式、一点式和内置式四种。

3、直驱型风力发电机组的发电机分为外转子和内转子两种形式。

4、半直驱指采用比传统机组齿轮增速比较小的齿轮增速装置,使发电机的技术减少,从而缩小发电机的尺寸,便于运输和吊装。

5、主轴支撑风轮并将风轮的扭矩传递给齿轮箱,将轴向推力、气动弯矩传递给底座。

6、作用在主轴的载荷除了与风轮传来的外载荷有关外,还与风轮(主轴)的支撑形式的相对位置有关。

7、联轴器用于连接两传动轴,一般由两个半联轴节及连接件组成。

8、联轴器除了能传递所需的转矩外,还应具有补偿两轴线的相对位移或位置偏差,从而减小振动与噪声以及保护机器等性能。

9、常用的联轴器有刚性联轴器和弹性联轴器两种。

10、主轴与齿轮箱输入轴(低速轴)连接处应用刚性联轴器,在发电机与齿轮箱输出轴(高速轴)连接处应采用弹性联轴器。

11、机组制动包括机械制动、气动制动和发电机制动。

12、在风力发电机组中,最常用的机械制动器为液压盘式制动器。

13、常见的轮齿失效形式有轮齿折断、齿面点蚀、齿面胶合、齿面磨损、齿面塑性变形等。

14、在标准条件下齿轮箱的机械效率应达到大于97%。

15、齿轮箱的润滑方式有飞溅式、压力强制润滑式或混合式。

16、为了提高承载能力,齿轮一般都采用优质合金钢制造。

17、齿轮箱第一次换油应在首次投入运行500小时后进行,齿轮箱应每半年检修一次。

18、齿轮箱常见的故障有齿轮损伤、轴承损坏、断轴和油温高等。

19、齿轮箱油温最高不应超过80℃,不同轴承间的温差不得超过15℃。

20、偏航系统有被动偏航系统和主动偏航系统两种。

21、机舱可以两个方向旋转,旋转方向由接近开关进行检测。

22、偏航系统一般由偏航轴承、偏航驱动装置、偏航制动器、偏航计数器、纽缆保护装置、偏航液压装置等部件组成。

23、目前变桨系统执行机构主要有液压变桨距和电动变桨距两种,按其控制方式可分为统一变桨和独立变桨两种。

24、目前变桨距机组大多采用三个桨叶统一控制的方式,即三个桨叶变换是一致

的。

25、位移传感器和接近开关是安装在轴承内齿轮部位的检测装置,要求可靠、精准度高。

二、问答题

1、齿轮传动具有的特点?齿轮传动的优点?P109

2、行星齿轮传动的主要特点?P123

3、齿轮箱润滑油的作用?P135

4、偏航系统的主要作用?P138

5、偏航异常噪声的原因有哪些?P146

6、偏航定位不准确的原因有哪些?P146

7、变桨系统的主要功能是?P146

8、变桨距传动常用的驱动方式有哪几种?P148

风电专业考试题库(带答案)

风电专业考试题库 以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方)E=1/2(ρtsυ3)式中:ρ!———空气密度(千克/米2);υ———风速(米/ 秒);t———时间(秒);S———截面面积(米2)。 ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速)★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超

过。(4欧) ★★13、在风力发电机电源线上,并联电容器的目的是为了。(提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度)★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。 (最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。 (桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。 (风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序)

定距桨变距桨与风力发电机组

桨距 螺旋桨的桨叶都与旋转平面有一个倾角。 假设螺旋桨在一种不能流动的介质中旋转,那么螺旋桨每转一圈,就会向前进一个距离,连续旋转就形成一段螺旋。 同一片桨叶旋转一圈所形成的螺旋的距离,就称为浆距。显然,桨叶的角度越大,浆距也越大,角度与旋转平面角度为0,浆距也为0。 这个“距”,就是桨叶旋转形成的螺旋的螺距。 桨距指的是直升机的旋翼或固定翼的螺旋桨旋转一周360 度,向上或向前行走的距离(理论上的)。就好比一个螺丝钉,您拧一圈后,能够拧入的长度。桨距越大前进的距离就越大,反之越小!然而要测量实际桨距的大小是比较困难的,所以一般固定翼飞机使用桨距不变的螺旋桨上都会标明其直径和桨距的大小(单位以英寸居多),以便于和合适的发动机配套使用。绝大多数的固定桨距的直升机桨一般是专为某一级别的飞机定制的,所以只标明直径。可变桨距直升机可以非常容易的通过测量桨叶的攻角(迎风角度)大小来体现桨距的大小,和变化幅度。 l 定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69 ,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/ 小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。 失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。 2 变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“, 直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。 随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用 OptitiP 技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组

风力机设计原理

第二章风力机设计理论 2.1 翼型基本知识 翼型几何参数: 如图所示在风轮半径:处取一宽度为dr的叶素,翼型的气动性能直接与翼型外形有关。通常,翼型外形由下列几何参数确定: (l)翼的前缘: 翼的前头A为一圆头; (2)翼的后缘: 翼的尾部B为尖型; (3)翼弦:翼的前缘左与后缘B的连线称翼的弦,左B的长是翼的弦长 (4)翼的上表面: 翼弦上面的弧面; (5)翼的下表面: 翼弦下面的弧面; (6)翼的最大厚度h: 翼上表面与下表面相对应的最大距离; (7)叶片安装角e: 风轮旋转平面与翼弦所成的角; (8)迎角(攻角)a: 翼弦与相对风速所成的角度; (9)入流角功: 旋转平面与相对风速所成的角。

2.2叶片设计的空气动力学理论 2.2.1贝茨理论 世界上第一个关于风力发电机叶轮叶片接受风能的完整理论是1919年由德国的贝茨(Bee)建立的。贝茨理论的建立,是假定叶轮是“理想”的:全部接受风能(没有轮毂),叶片无限多;对空气流没有阻力;空气流是连续的、不可压缩的;叶片扫掠面上的气流是均匀的;气流速度的方向不论在叶片前或叶片后都是垂直叶片扫掠面的(或称平行叶轮轴线的),这时的叶轮称“理想叶轮”。其计算简图如图。

V1——距离风力机一定距离的上游风速; V ——通过风轮时的实际风速; V2——离风轮远处的下游风速。 风力贝茨理论计算模型: 风作用在风轮上的力可由Euler 理论(欧拉定理) )(12V V SV F -=ρ 风轮所接受的功率为: )(122V V SV FV P -==ρ 经过风轮叶片的风的动能转化: )(2 12221V V SV T -=?ρ 由2和3式得到 221V V V += 因此风作用在风轮叶片上的力F 和风轮输出的功率P 分别为 )(2 1 2221V V S F -=ρ

变速变桨距风力发电机组控制策略改进与仿真

变速变桨距风力发电机组控制策略改进与仿真 刘 军,何玉林,李 俊,黄 文 (重庆大学机械传动国家重点实验室,重庆市400030) 摘要:在分析变速变桨距风力发电机组基本控制策略的基础上,提出一种扩大过渡区的改进控制策略,用来消除额定功率运行点附近切换造成的功率波动及突变载荷等不利影响。依据改进的控制策略设计了3个控制器平滑过渡方案,实现对该策略的最佳跟踪。运用MAT LAB 仿真平台模拟了改进控制策略下的风力发电机组运行特性,结果表明了改进控制策略的正确性及控制器设计的有效性。 关键词:风力发电机组;变速变桨距;控制策略;扩大过渡区;平滑控制 收稿日期:2010 06 23;修回日期:2010 10 09。重庆市科技攻关重点项目(CST C2007A A3027)。 0 引言 风力发电机组的控制技术由原来单一的定桨距失速控制转向变桨距变速控制,目的是为了防止风能转换系统承受的载荷过重,从风场中最大限度地捕获能量以及为电网提供质量较好的电能。然而,风力发电机组作为一种复杂的、多变量、强耦合、非线性的系统,要想减小风力机载荷以延长其使用寿命,抑制功率波动以降低对电网的不利影响,控制策略的选取及控制器的设计至关重要[1 6]。 本文通过对变速变桨距风力发电机组基本控制策略的分析,针对过渡区运行过程中出现的功率波动大及突变载荷强等情况,提出一种改进的控制策略来减缓此种影响。为最佳跟踪改进的控制策略,设计了3个控制器以实现3个运行区间的平滑过渡。同时应用M ATLAB 仿真平台对变速变桨距风力发电机组运行特性进行了仿真,结果表明了所提出方案的合理性和可行性。 1 基本的变速变桨距控制策略 如图1所示,在转速 转矩平面图中,曲线A BC 描述了变速变桨距风力发电机组的基本控制策略。在低风速区,风电机组从切入风速为V in 的A 点到风速为V N 的B 点,沿着C pmax 曲线轨迹运行,此区间称为恒C p 运行区。由于在B 点发电机转速达到了其上限值 N ,当风速从V N 上升到V N 时,转速将恒定在 N ,提升发电机转矩使风电机组达到其额定功率,在图1中为BC 段,也称为恒转速区或过渡区。当风速超过额定风速V N 时,变桨距系统将开 始工作,通过改变桨距角保持功率的恒定,风电机组将持续运行在C 点,直到风速超过切出风速V out ,此区间称为恒功率区,而此区间内桨距角控制方式采用统一桨距控制,它是指风力机所有桨距角均同时 改变相同的角度[7 8] 。在此需要注意的是:若最大功率P N 曲线与C pmax 曲线的相交点在额定转速极限值左侧,就会造成风电机组在未达到额定转速时,已进入失速状态,相应的A B 区间将被缩小,这时就需 对整个风电机组额定点进行重新选取。 图1 变速变桨距风力发电机组控制策略Fig.1 C ontrol strategy of the variable speed pitch controlled wind turbine driven generator system 从图1可以看出,3个区间工作点的划分非常明显,而控制器的设计与工作点的选取有着必然的联系,因此,基本的变速变桨距风电机组通常会设计2个独立的控制器,一个用来跟踪参考速度,另一个用来跟踪额定功率。由于2个控制器都有各自的控制目标,在运行过程中相互独立,然而在工作点附近,2个控制器又相互制约,这种制约就会导致风电机组在C 点控制系统的调节能力下降,在突遇阵风 82 第35卷 第5期2011年3月10日Vo l.35 N o.5M ar.10,2011

风力发电机组传动系统设计实习报告

目录 引言 (2) 一、风力发电机组简介 (2) 风力发电机原理 (2) 风力发电机组结构 (3) 二、风力发电机组传动系统 (5) 风力发电机组齿轮箱的概况 (5) 风力发电机组中的联轴器 (10) 三、风力发电机组的分类特点 (11) 垂直轴风力发电机组 (11) 水平轴风力发电机组 (12) 直驱型风力发电机 (12) 双馈式风力发电机 (12) 四、风力发电控制系统简述 (13) 风电控制系统基本功能 (13) 五、参考文献 (13)

风力发电机组传动系统设计 引言 随着科技的不断进步,社会的不断发展,能源问题将会成为未来人类必须解决的问题之一,同时可再生能源结构会成为未来能源的倾向之一。现如今风能作为一种无污染的可再生能源备受人们的关注,在一定程度上,风力发电将会成为未来最具潜力的新能源之一。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。风力发电在芬兰、丹麦等国家很流行;我国也在大力提倡。 一、风力发电机组简介 风力发电机原理 风力发电机是将风能转换为机械功的动力机械。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态 从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。 变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。 为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。 2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。 3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

第3章-风力发电机组整体结构-答案

风力发电技术与风电场工程 第三章练习题及答案 一、填空题 1、并网型风力发电机的功能是将风轮获取的空气动能转换成机械能,再将机械能转换为电能,输送到电网中。 2、并网型风力发电机组的整体结构分为叶轮、机舱、塔架、和基础等几大部分。 3、机舱内布置的传动系统,由主轴、齿轮箱、联轴器和发电机等构成。 4、机舱底座是机组主驱动链和偏航机构固定的基础,并能将载荷传递到塔架上去。 5、铸造底座一般采用球墨铸铁制造,铸件尺寸稳定,吸振性和低温型较好。 6、整流罩是置于轮毂前面的罩子,其作用是整流,减小轮毂的阻力和保护轮毂中的设备。 7、风电机组的基础通常为钢筋混凝土结构,并且根据当地地质情况设计成不同的形式。基础周围还要设置预防雷击的接地系统。 8、塔架的基本形式有桁架式塔架和圆筒式塔架两大类。桁架式塔架优点为制造简单,成本低,运输方便,缺点为通向塔顶的上下梯子不好安排,塔架过于敞开,维护人员上下不安全。塔筒式塔架优点是美观大方,塔身封闭,风电机组维护时上下塔架安全可靠。 9、塔架高度主要依据风轮直径确定。 10、风电机组的基础主要按照塔架的载荷和机组所在地的气候环境条件,结合高层建筑建设规范建造。 11、风力发电机组的机械传动系统包括轮毂、主轴、齿轮箱、制动器、联轴器以及安全装置等。 12、齿轮箱的作用是传递扭矩和提供转速,通过两到三级渐开线圆柱齿轮增速传动得以实现,一般常采用行星齿轮或行星加平行轴齿轮组合传动结构。 13、齿轮箱输出轴(高速轴)通过柔性联轴器与发电机轴连接。 14、联轴器通过绝缘构件阻止发电机磁化齿轮箱内的齿轮和轴承等钢制零件,避免这些零件发生电腐蚀现象。联轴器上还设置有扭矩限制装置用以保护传动轴系,防止过载运行。 15、偏航系统功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫掠面与风向保持垂直。 16、机舱的偏航运动是由偏航齿轮装置自动执行的,它是根据风向仪提供的风向信号,由控制系统发出指令,通过传动机构使机舱旋转,让风轮始终处于迎风位置。 17、风向标是偏航系统的传感器。 18、偏航轴承有滚动轴承和滑动轴承两种,大型机组大多采用滚动轴承。 19、变桨机构中配置蓄电池的作用是以防电网突然掉电或电信号突然中断的紧急情况下,使得风电机组能够安全平稳地实现变桨。 20、液压系统的主要功能是向制动系统或液压、伺服变桨距控制系统的工作油缸提供压力油,由电动机、油泵、油箱、过滤器、管路及各种液压阀组成。 21、制动系统主要分为空气动力制动和机械制动两部分。

发电机控制系统调试

发电机电气控制系统、调压系统、调速系统 一、调压系统 目前市场上电球主要有:英国(STAMFORD)、法国利莱森玛(LEROY-SOMER)、美国马拉松(MARATHON)、清华泰豪三波(SANBO)、英泰YTM电球。 1、电球主要工作原理(以斯坦福为例) 发电机工作时,引擎驱动发电机旋转,调压板由PMG(永磁机供给电源),A VR输出直流励磁给后机引机定子X、XX、定子产生磁场在转动的线圈(励磁机转子)中产生电流,经过桥式整流到主转子,主转子产生旋转磁场切割主定子,主定子产生三相交流电压,电压大小由AVR控制,A VR通过比较感应主电球输出电压的半压,即380V/2,控制X.XX的励磁输出,从而控制主定子输出电压。 2、电球部件及相关参数 1)永磁机定子及转子(仅限斯坦福及马拉松电球) 定子线圈阻值在2-6Ω之间,线圈对地绝缘,转子为永久磁铁固定在主轴上。永磁机产生130-180V AC 100H Z(马拉松电球永磁机电压较斯坦福低) 2)励磁机 定子绕阻一般为单线圈。直流阻值在10-30Ω之间,线圈对地绝缘转子为三相线圈,输出三相到整流二极管,二极管对于马拉松及斯坦福来说,分为三正三负。 3)主定子与主转子 主定子绝缘>5MΩ,主转子>2MΩ 电阻值主定子<0.1Ω,主转子1.0-2.0Ω 如主电球绝缘过低,需除尘、去潮等保养,如硅钢片发生击穿、烧熔现象,建议电球予以报废。 3、A VR 1)斯坦福电球使用MX321、MX341调压板(带永磁机)和SX440调压板(不带PMG) 说明:1、2为外接调压电位器,超过5米远时必须用网线连接,8、7、6(对应U、V、W)为发电机主电半压输出,K1、K2连接励磁保险,若无励磁保险则可短接使用。 并机时电压调节: 安装并机CT。HC4、HC5、HC6根据机组大小而定,接于调压S1、S2(注:若接反负荷时电压会高于空载电压),将电压降(droop)调在相同位置,调节空机电压一致,带负载调节电压降使电流输出平衡,调节电压降后,空载电压可能会改变,这时需要再调节空载电压,然后带负载调压电压,直到空载电压及电压降调到满意为止。 2)马拉松电球 马拉松电球使用DVR2000、DVR2000E、SE350、APR125-5、SE100等调压板。 注:○1SE350、DVR350、APR125-5 6、7端子为外调压接线,一般短接起来。 ○2COM与50、60短接根据电球的频率而定。 ○3APR125-5 CB-、CB+一般短接。 ○4AP125-5、AVR350、SE350可以并机,但效果不好,若需要并机可用SX440代替。 DVR的调节: ○1取出5A保险丝,连接电源输出及PMG输出线; ○2起动发电机组到额定转速,调压板将做自检测并进入关断形式。 ○3使用选择按钮(select)一步步通过每个调整,通过按“UP”(上)、“DOWN”(下),获得所 需要的发光二极管指示灯的水平。 ○4调完之后,停发电机,连接其它接线,再起动发电机就可对调压器进行最终调整。 注: ○1选择粗调时,每按一下UP/DOWN就会改变6V AC,选择细调时,每按一下UP/DOWN就会改 变±0.5V AC

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机 9、机座 10、滑环 11、偏航轴承 12、偏航驱动 13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳se

机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw 机组起动风速:3m/s 机组停机风速: 25m/s 机组额定风速: m/s (2)叶轮: 叶轮直径: 叶轮扫掠面积:5316m2 叶轮速度: 叶轮倾角: 5o 叶片长度: 叶片材质:玻璃纤维增强树脂 (3)齿轮箱: 齿轮箱额定功率:1663kw 齿轮箱转速比: (4)发电机: 发电机额定功率:1550kw

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的围按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

第5章-风力发电机组机械传动系统-答案

风力发电技术与风电场工程 第五章练习题 习题答案 一、填空题 1、风力发电机组机械传动系统是指将风轮获得的空气动力以机械方式传递到发电机的整个轴系及其组成部分,由主轴、齿轮箱、联轴器、制动器和过载安全保护装置等组成。 2、传统的采用齿轮箱增速的风力发电机组传动系统形式按照主轴轴承的支撑方式,以及主轴与齿轮箱的相对位置来区分,主要有两点式、三点式、一点式和内置式四种。 3、直驱型风力发电机组的发电机分为外转子和内转子两种形式。 4、半直驱指采用比传统机组齿轮增速比较小的齿轮增速装置,使发电机的技术减少,从而缩小发电机的尺寸,便于运输和吊装。 5、主轴支撑风轮并将风轮的扭矩传递给齿轮箱,将轴向推力、气动弯矩传递给底座。 6、作用在主轴的载荷除了与风轮传来的外载荷有关外,还与风轮(主轴)的支撑形式的相对位置有关。 7、联轴器用于连接两传动轴,一般由两个半联轴节及连接件组成。 8、联轴器除了能传递所需的转矩外,还应具有补偿两轴线的相对位移或位置偏差,从而减小振动与噪声以及保护机器等性能。 9、常用的联轴器有刚性联轴器和弹性联轴器两种。 10、主轴与齿轮箱输入轴(低速轴)连接处应用刚性联轴器,在发电机与齿轮箱输出轴(高速轴)连接处应采用弹性联轴器。 11、机组制动包括机械制动、气动制动和发电机制动。 12、在风力发电机组中,最常用的机械制动器为液压盘式制动器。 13、常见的轮齿失效形式有轮齿折断、齿面点蚀、齿面胶合、齿面磨损、齿面塑性变形等。 14、在标准条件下齿轮箱的机械效率应达到大于97%。 15、齿轮箱的润滑方式有飞溅式、压力强制润滑式或混合式。 16、为了提高承载能力,齿轮一般都采用优质合金钢制造。 17、齿轮箱第一次换油应在首次投入运行500小时后进行,齿轮箱应每半年检修一次。 18、齿轮箱常见的故障有齿轮损伤、轴承损坏、断轴和油温高等。 19、齿轮箱油温最高不应超过80℃,不同轴承间的温差不得超过15℃。 20、偏航系统有被动偏航系统和主动偏航系统两种。 21、机舱可以两个方向旋转,旋转方向由接近开关进行检测。 22、偏航系统一般由偏航轴承、偏航驱动装置、偏航制动器、偏航计数器、纽缆保护装置、偏航液压装置等部件组成。 23、目前变桨系统执行机构主要有液压变桨距和电动变桨距两种,按其控制方式可分为统一变桨和独立变桨两种。 24、目前变桨距机组大多采用三个桨叶统一控制的方式,即三个桨叶变换是一致

风力发电机组变桨距

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。 关键词:风力发电;现状;技术发展 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 1我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。 随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。 我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。 从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2风力发电的技术发展 风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。 2.1风力发电机组机型及容量的发展 现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即

发电机组远程监控运维系统成功应用案例

发电机组远程监控运维系统成功应用案例 背景 近几年,以欧美为首的一些发达国家,制造业开始出现一些新的技术趋势,即设备产品智能化、网络化。在这种技术发展的背景下,越来越多的制造商和工业企业希望实现与合作伙伴、供应商和客户无缝地共享信息,从而有效的改善获取的信息质量,以及信息共享方式,提高决策水平、揭示生产过程中效率低下的因素、促进开展最适合的合作并能挖掘新的竞争机遇。 问题与挑战 随着国内制造业的不断崛起,一些行业领先的制造企业,比如上海某燃气发电机制造商,已经开始考虑如何与欧美的同行展开有效的竞争,如何为客户提供更多的增值服务,是这类企业面临的新挑战。该企业目前直面的问题是如何实现对售出到世界各地的设备进行联网,并为全球用户提供产品能效分析和售后服务。 让设备开始思考 国内领先的IIoT平台供应商——北京英物智联科技有限公司通过其自主研发的新一代工业物联网设备平台——ThingLinx工业云帮助该燃气发电机制造企业搭建了一套燃气发电机组远程监控运维系统,实现了设备的联网、管理和分析的功能。这套远程监控运维系统主要功能包括:设备监控、产品能效分析及管控、售后服务及备件管理、客户关系管理、设备维护管理等。

1、设备监控功能 设备监控:可以监控设备所有传感器及控制系统数据。 设备远程控制:可以对设备进行远程控制和诊断。 数据保存:保存设备的运行历史数据和报警记录等。 数据分析:对运行数据进行智能分析,用以进行故障分析、产品改进、质量控制等。 故障诊断:通过监控数据可以对设备故障做出智能诊断。 故障预警:对监测到的异常数据向客户和厂家监控中心发出预警信息。 2、能效管理功能 设备能效分析:对设备的运行能效进行分析,让客户和工厂实时掌握设备的运行能效情况。 成本管理:对项目、设备的运维成本进行统计、分析和管理。 投资回报周期管理:用设定公式对客户的投资回报周期进行动态显示,并预设风险管控提醒。 3、售后维护功能 维保周期设置:对设备的各部件维保时限进行控制,形成记录数据。 维保派工管理:生成设备维护保养工单,提供给客户的维护人员进行操作和管理,并配有审核流程等。 4、备件进销存管理功能

同济大学机械设计创新考题答案

一、摆脱习惯性思维训练题 1、某人的衬衣纽扣掉进了已经倒入咖啡的杯子里,他赶紧从杯子里拾起纽扣,不但手不湿,连纽扣也是干的,这是怎么回事?(只倒了咖啡没倒水) 2、汽车司机的哥哥叫李强,可是李强并没有弟弟,这是怎么回事?(汽车司机是女的) 3、如果你口袋里的火柴盒中只剩下一根火柴,黑夜里你走进房间,房间里有蜡烛、油灯及煤气灶,那么,你先点燃什么?(先点燃火柴) 4、广场上有一匹马,马头朝东站立着,后来又向左转270°,请问,这时它的 尾巴指向哪个方向?(指向下边) 5、一天晚上,老王正在读一本很有趣的书,他的孩子把灯关了,尽管屋里一团 漆黑,可老王仍在继续读书,这是怎么回事?(盲文书) 6、天花板下悬挂两根相距5米的长绳,在旁边的桌子上有些小纸条和一把剪刀, 你能站在两绳之间不动,伸开双臂,两手各拉住一根绳子吗? (先用一根绳子把剪刀缚住,推动剪刀使它移动,然后走过去用一只手抓住另一根绳,另一只手接过移动来的剪刀) 发散性思维——GPS的功能 1.确定移动物的确切位置; 2.追踪小偷; 3.测速; 4.为盲人指路; 5.研究地质(地质灾害预测); 6.找离家出走的人(小孩、痴呆老人,嫌疑人) 7.测量湿度; 8.监测路面施工状况,起重大件位移、速度控制; 9.绘制地图; 10.导航; 11.考古。 1.列举体温计诸缺点 1)现有的体温计必须接触人体才能测量,在医院同一支体温计先后 来测量不同人的体温,有时可能会引起疾病传染; 2)体温计不能测量人体内脏的温度;

3)体温计不便于儿童测量体温; 4)体温计不便于测量人的额头温度; 5)体温计不便随身携带,随时测量; 6)体温计不能弯曲。 2.分析、鉴别缺点,确定创新主题,进行创新设计。 1)防传染,研制非接触体温计(红外辐射式); 2)为测内脏温度,设计微型肠道温度计; 3)为便于儿童测量温度,设计汤匙型体温计; 4)针对不能弯曲和测额头温度,开发出额头薄片温度计; 5)为便于随身携带,研制戒指式温度计。 2 希望点列举法 缺点列举与希望点列举区别 原理:提出希望,经过归纳,实现创造。 步骤: 1)了解人们的需求心理(生理、安全、社交、自尊、自我实现、生产和科研需 求)【求新、求美、求异、求实、求全、求奇、求快、求廉、求健、求胜、求稳】“方便”(面、粥、净菜);“肥胖”(减肥茶、健身,医疗);“省电” 2)列举、收集希望点 a多观察、多联想,紧扣人们的需求b广泛征求意见或进行抽样调查c采用智力激励法实施列举 3)希望点的分析与鉴别 运用希望点列举法改进手机 1)希望手机与GPS联接,迷路时充当向导。2)希望手机高度智能化、情感 化,它是人的工具又是朋友,烦闷时谈心,孤寂时聊天。3)希望手机配医学专家系统,病时获诊断、处方。4)希望可以利用手机记帐和个人理财。5)希望手机在夜行时充当手电筒。6)希望手机上网像计算机上网一样方便。7)希望手机能接受电台、电视台的节目。8)希望生产出适合各种性格和年龄的人们使用的具有不同色彩的手机。9)希望手机的形状和体积像手表,可以轻松地戴在手上。10)希望手机的体积大幅度减少,从而将之设计为各种的服饰(如项链、领带夹、耳坠),悬挂、镶嵌或佩带在身上或服装上。11)希望手机同时也是一支精致的钢笔。12)希望手机没有电辐射的危害。13)希望手机具防窃、遗失提醒功能。14)希望手机可视通讯,采集、交换数据。15)希望手机具遥控器功能,甚至通讯控制家用电器。16)希望手机家庭、社会治安网连通。 IBM公司2000年8月在一次高科技展览会展示:耳环(耳机),项链(话筒),戒指(呼叫时灯闪烁),手表(拨入拨出号码显示,接入呼出按钮) 用属性列举法提出改进电风扇的新设想 1.对现有的电风扇进行分析,并列举属性 组成:电动机、扇叶、立柱、开关等;驱动:电力;功能:送风。 1)名词属性 整体:台式、落地式、吊式、壁式;部件:电动机、扇叶、网罩、立柱、底柱、控制器;材料:钢、铝合金、铸铁、塑料;制造方法:铸造、机加

发电机远程监控方案

发电机远程监控方案 作者:LIXISE 1.应用背景 改革开放以来,工厂、交通、电信、船舶、金融等领域迅猛发展。随着这些领域的快速发展,各种基础设施和自动化电子设备也迅速增多,同时对这些设备不间断供电的需求也随之增加。柴油发电机作为一种常规备用电源被广泛运用到各行各业,可以预见,在没有可替代大功率的备用电源出现的将来,发电机的运用会越来越多。因为传统的发电机管理与维护方式是靠专业人员定期检查,并且当发电机发电时,需要值守在现场密切注意发电机的运行状态。这就带来了一个问题,需要管理的柴油发电机数量的增多、地理位置分散与日益增高的人力成本之间的矛盾。各行各业,尤其是发电机租赁行业,迫切存在一种需求,就是对分散的发电机进行统一的,有针对性的管理。 针对上述情况,我们的方案提供一种对发电机进行无线远程监控的解决方法,可以不受地域限制的,有针对性的,对众多发电机进行管理和维护,能极大地提高管理人员的工作效率。 2.系统实现 2.1工作原理 一般情况下,管理人员一般通过发电机控制器监视发电机的各种状态,并通过控制器面板发出指令。控制器是我们操作管理发电机的中介部件,所以对众多的柴油发电机进行远程监控管理,需要解决3个问题,一是控制器必须有数据接口,二是如何远程,三是如何集中管理。 首先,在计算机上,用软件模拟控制器面板,管理人员与软件的交互数据,通过控制器数据接口传递到控制器。此方案中,本 公司的LXC7220控制器及其配置软件实现此功能。 无线数据传输模块(Wireless Data Transfer Unit,DTU),是一种基于GPRS网络(手机数据网络)的模块。它有两个接口,一 个天线,通过天线,可以接入互联网;另一个RS232数据接口,可以连接发电机控制器数据接口。由此,发电机控制器间接接入了

新能源风力发电机组传动系统

风力发电机齿轮箱简介 摘要 随着全球经济的迅速发展和人类生活水平的日益提高,对能源的需求越来越大,环境的破坏也渐趋严重,新能源的开发及利用是当今社会发展的必然趋势。风能作为一种清洁环保的绿色能源受到世界各国的青睐,而将风能转化为电能的装置--风力发电机的研究也是现在的一大热门主题。本文主要介绍了风力发电机传动系统的主要部分--齿轮箱,对其设计要求、结构类型、零部件进行了介绍,同时结合自身专业知识进对其工作环境、存在的失效故障问题进行了简单研究。 关键词:新能源;风力发电机;齿轮箱;工作环境;失效问题 ABSTRACT With the rapid development of global economy and the increasing of human living standard, the demand for energy is more and more large, the destruction of the environment is also becoming more serious, thedevelopment of new energy and utilization is the inevitable trend of social development.Wind power as a kind of clean and environmental protection green energy is favored by countries around the world, and the device which changes wind energy into electrical energy--wind turbine, theresearch of it is now a hot topic. The paper mainly introduced the drive system of wind turbines--gearbox, the design requirements, structure types and main components of it are introduced. At the same time, according to the own professional knowledge,the work environment and the existing questionabout fault has been simply studied by according to the own professional knowledge. Keywords:new energy sources;wind turbine;gear box;the work environment;the failure problems

发电机远程监控系统的优势

发电机远程监控系统的优势 跟踪一系列发电机有时不切实际,原因在于很难找到合适的措施,就是因为没有每个发电机组的燃油油位、机油压力或电瓶状态的足够信息。采用基于云的远程管理解决方案,您能够通过常规网络浏览器和手机APP及时在线访问发电机参数。发电机远程监控系统是如何降低运营成本和提高控制性能的。 仅在需要时启动服务 发电机通常根据预定的服务计划展开工作。通过了解发电机如何运行,则可以更为动态地规划服务。由于访问现场的成本高昂,因此,通过只向真正需要服务的发电机派遣服务团队的方式,就能优化服务成本。 挑战在于知道每个站点何时需要服务。采用远程管理解决方案,您可以检查运行时间、机油压力、电瓶状态、冷却剂温度、发电输出、燃油油位、GPS位置等。当达到临界水平时,也可以生成通知,例如,发电机运行时间已经超过预期。在

运行时间超过服务间隔时间时,我们就可发送通知。 由于能够远程分析每台发电机的运行情况,您将能够了解其健康状况并更有效地计划现场服务访问。 最大程度降低和减少盗窃燃油的影响 盗窃燃油造成的问题较为严重。在某些地区,据称发电机组燃油被盗的比率高达40%。 完全避免燃油被盗可能比较困难,因为每次被盗的数量常常不多;可在运输时,油罐注入时或在现场的发电机发生盗窃。但是,可以使用连接燃油传感器的远程监控系统,以确保加注时传输了正确数量的燃油。使用智能型油位传感器,可以跟踪油箱中的油位。可以校准燃油传感器,以感应加满的油箱,由于了解这一信息,我们可以确认油箱加注正确。性能优良的油位传感器能够检测出3-5升的燃油变化。 能能够检测到油量异常下降,表明燃油被盗。采用支持报警的远程监控系统,可在出现盗窃时立即发送通知。即使很难抓住窃贼,我们至少也可以清楚燃油被盗并计划重新加注,以确保发电机具有运行所需的燃油。

相关文档
最新文档