二元函数极值存在的判别方法

二元函数极值存在的判别方法
二元函数极值存在的判别方法

大庆师范学院

本科生毕业论文

二元函数极值存在的判别方法

院(系)数学科学学院

专业数学与应用数学

研究方向数学教育

学生姓名韩明

学号200801052602

指导教师姓名夏晶

指导教师职称副教授

2012年6月1日

摘要

在生活、生产、经济管理和各种资金核算中,常常要解决在一定的条件下怎么使投入最小、产量最大、效益最高等等问题.因此解决这些问题具有现实意义.这些经济和生活的问题常常都可以转化为数学中的函数问题来探讨,将问题数字化,简单、精确,进而转化为求函数中最大(小)问题,即函数的极值问题.因此,对函数极值问题的探讨具有十分重要的意义.本文主要探讨了二元函数极值存在的充分条件、必要条件的判定方法,以及如何求解,并对结果进行了简要的证明.

关键词:二元函数;极值;驻点;条件极值

Abstract

In industrial and agricultural production,management of the economy and the economic accounting,we often solve the problems such as how to make input smallest,output most efficient in given conditions.In the life we often encounter how to achieve maximum profit,use the minimum materials and get maximum efficiency,to deal with the similar problems that have its realistic significance.Above problems can be transformed with function and its function of maximum and minimum value.The concept of extreme value originate from function of maximum and minimum value of mathematics,therefore approaching the extreme value have significance meanning.

Keywords:function;extreme value;stagnation;conditional extremum

目录

第一章前言 .......................................... 错误!未定义书签。

1.1简述极值问题................................... 错误!未定义书签。

1.2二元函数的概念................................. 错误!未定义书签。

1.3二元函数的极值 (2)

1.3.1极值存在的必要条件 (2)

1.3.2极值存在的充分条件 (2)

第二章二元函数求极值的方法 (4)

2.1无条件极值问题 (4)

2.2条件极值问题 (5)

第三章二元函数极值的意义 (8)

参考文献 (9)

第一章 前 言

1.1 简述极值问题

函数极值问题是一个非常普通的数学问题,但在实际生活中却是非常重要的应用.本文主要参照一元函数的研究方法研究了二元函数的极值,得出了二元函数极值存在的判定方法.

极值的概念来自数学应用中的最值问题.定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题的关键在于要确定它在哪点处达到最大值或最小值.如果不是边界点就一定是内点,因而是极值点.

1.2 二元函数的概念

二元函数是含有两个自变量的函数,它是函数的一种类型,可视为一元函数概念的一种推广.

定义1]1[ 在某个变化过程中,存在三个变量x ,y ,z ,若对x ,y 的每一对数值),(00y x 总有唯一的数值0z 与其对应,则z 就叫做x 与y 的函数,x 与y 的取值范围叫定义域(亦称可微域).

例如:路程s 就是其速度v 与时间t 的二元函数.三角形面积s 就是其底a 与高b 的二元函数.

二元函数的定义很好理解,二元函数极值的判别与求法是二元函数的重点以及难点.例如,22),(b a ab b a f ++=在全平面内可微,则2)0,(a a f =在0=x 处有极大值,2),0(b b f =在0=y 处有极大值.此二元函数22),(b a ab b a f ++=虽然在点)0,0(处从x 轴方向和y 轴方向来看都有极大值,但),(b a f 在)0,0(处不是极大值.

我们可知一元函数极值的确定只需考虑在0x 左右侧的导数情况即可以得出相关结论.但在二元函数中情况就较为复杂.

1.3 二元函数的极值

定义2]1[设函数),(y x f z =在点),(000y x P 的某邻域内有定义,且在该邻域内恒有),(),(00y x f y x f ≤,)),(),((00y x f y x f ≥,则称),(00y x f 为函数),(y x f 的极大值(小)值。这里极大值与极小值我们统称为极值,函数取得极值的点),(00y x 称为极值点.

由以上定义可以得知,函数的极大值与极小值问题是一个“局部性”的问题,或者说,函数在极值点处取到极大值,此时的“极大”只在这一点周围很小的范围内,也只有在这个范围内,取得的函数值才是最大的.

例如:1),(22++=y x y x f ,对任意)0,0(),(≠y x 有),(y x f >1)0,0(f =,所以函数2),(x y x f z ==12++y 在)0,0(处取得极小值1)0,0(=f . 又如:221),(y x y x f --=对任意),(y x 不等于)0,0(有f ),(y x <)0,0(1f =,所以函数=z 221),(y x y x f --=在)0,0(处取得极大值1)0,0(=f .

那么在一般条件下怎样判断二元函数极值是否存在呢?参考一元函数的极值的讨论方式,对二元函数极值有如下讨论结果.

1.3.1 极值存在的必要条件

定理1]2[(极值存在的必要条件)若函数),(y x f 在),(00y x f 处有极值,且函数在该点的一阶偏导数都存在,则有),(00y x f x =),(00y x f y 0=.

证:因为点),(00y x 是函数),(y x f 的极值点,若固定),(y x f 中的变量0y y =,则),(0y x f z =是一元函数且在0x x =处取得极值,由一元函数极值的必要条件知道0),(00=y x f x ,同理有0),(00=y x f y .

我们把凡是满足方程组???==0),(0),(y x f y x f y

x 的点),(00y x 都称为函数),(y x f z =的驻点. 定理说明,只要函数),(y x f z =的两个偏导数存在,那么它的极值点一定是驻点.反过来,驻点是不是一定为极值点呢?例如:函数22y x z -=,在点)0,0(处的两个偏导数为0,即)0,0(是驻点,但在)0,0(的任一邻域内函数既有正值也有负值,所以)0,0(不是极值点,由此我们可知驻点不一定是极值点.此外,极值点也可能是偏导数不存在的点。例如,上半锥面在点)0,0(的偏导数不存在,但)0,0(是函数的极小值点,函数极小值为0.

1.3.2 极值存在的充分条件

定理2]2[(极值存在的充分条件)设函数),(y x f z =在点),(000y x P 的某邻域内具有二阶连续偏导数,且点),(000y x P 是函数的驻点,即),(00y x f x =),(00y x f y =0,记:),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,AC B -=?2,则:

(1)当?<0时,函数),(y x f z =在点),(000y x P 处有极值,且当0

值,当0>A 时,有极小值;

(2)当?>0时,函数),(y x f z =在点),(000y x P 处没有极值;

(3)当?=0时,函数),(y x f z =在点),(000y x P 处可能有极值,也可能没有极值.

我们根据定理1和定理2可知,若函数),(y x f z =的二阶偏导数连续,则可按照下列步骤求函数的极值]3[:

(1)求偏导数x f ,y f ,解方程组求出所有驻点.

(2)对于每一个驻点),(00y x 求出二阶偏导数的值A ,B ,C .

(3)确定AC B -=?2的符号,确定极值的情况.

由此可知:函数的驻点不一定是极值点,偏导数不存在的极值点也不是驻点,但偏导数存在的极值点一定是驻点。

我们由例题来加以理解和讨论:

例1 求函数22y xy x z +-=的极值.

解 (1)求驻点:

由方程组???=+-==-=0202y x z y x z y

x 解得驻点)0,0(. (2)求二阶偏导数:

2=xx z ,1-=xy z ,2=yy z .

故在点)(0,0处,2=A ,1-=B ,2=C 从而032<-=-AC B ,02>=A ,所以

函数在点)(0,1处取得极小值0.

例2 求xy y x y x f 3),(33-+=的极值.

解 (1) 求驻点:

由y x f x 332-=,x y f y 332-=,

当00

3303300422=-??????=-=-????==y y x y y x f f y x , 解得01=y ,12=y ,即可得驻点)0,0()1,1(.

(2)求二阶偏导数:

x f xx 6=,3-=xy f ,y f yy 6=.

在点)0,0(处,090)3(2)0,0(2>=--=-AC

B ,所以)0,0(f 不是极值; 在点)(1,1处,036)3(2)1,1(2<--=-A

C B , 所以)1,1(f 是极值点,且06)1,1(>=A ,

所以1)1,1(-=f 为极小值.

第二章 二元函数求极值的方法

2.1 无条件极值的问题

无条件极值即对自变量只有定义域限制.

无条件极值的求法]4[:

(1) 利用函数极值的定义求极值;

(2) 利用函数极值存在的充分必要条件求极值,求),(y x f z =的极值的一般

步骤为:

○1 解方程组???==0),(0),(y x f y x f y

x ,求得一切实数解,即可求得一切驻点),(00y x ; ○

2 利用二阶偏导的判别式AC B -=?2判定是否为极值点,是极大值点还是极小值点;

3 根据极值点确定极值. 例 求函数xy y x z 223-+=的极值.

【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值。

解 求驻点:?????=-==-=0

220232x y z y x z y x 解得驻点为)32,32(),0,0(. 求二阶偏导:

x z xx 6=,2-=xy z ,2=yy z .

(1)对于驻点)0,0(,0=A ,2-=B ,2=C ,042>=-AC B ,故)0,0(不是函数),(y x f z =的极值点.

(2)对于驻点)3

2,32(,4=A ,2-=B ,2=C ,042<-=-AC B ,且0>A ,则27

4)32,32(-=f 为函数的极小值. 例 设),(y x f z =是由0182106222=+--+-z yz y xy x 确定的函数.求),(y x f z =的极值点和极值.

解 因为0182106222=+--+-z yz y xy x ,所以

关于x 求偏导得 ,02262=??-??--x

z z x z y y x 关于y 求偏导得 0222206=??-??--+-y z z y z y

z y x .

令???????=??=??00y

z x z 得???=-+-=-010303z y x y x 故???==y z y x 3 将上式代入0182106222=+--+-z yz y xy x ,可得

?????===339z y x 或

??

???-=-=-=339z y x 由于02)(22222222=??-??-??-x

z z x z x z y , 02222622=???-????-???-??--y

x z z x z y z y x z y x z ,02)(22222022222=??-??-??-??-??-y

z z y z y z y y z y z . 故61)3,3,9(22=??=x z A ,21)3,3,9(2-=???=y x z B ,35

)3,3,9(22=??=y z C ,故

036

12<-=-AC B ,又061>=A ,从而点)3,9(是),(y x z =的极小值点,极小值为3)3,9(==z .

类似地,由

61)3,3,9(22-=??=---x

z A ,21)3,3,9(2-=???=---y x z B ,35)3,3,9(22-=??=---y z C ,故03612<-=-AC B ,又06

1<-=A ,从而)3,9(--是),(y x z 的极大值点,极大值为3)3,9(-=--z .

2.2 条件极值的问题

在大量对二元函数取极值的问题中,有一类问题是经常碰到的,即所谓求函数“条件极值”的问题。条件极值即对自变量除定义域限制外,还有其他条件限制。 例如,要设计一个容量为V 的长方形开口水箱,试问水箱的长、宽、高各等于多少时,其表面积最小?为此设水箱的长、宽、高分别为a ,b ,c 则表面积为: ab bc ac c b a S ++=)(2),,(

依据题意表面积函数的自变量不仅要符合定义域的要求)0,0,0(>>>c b a ,而且还须满足条件v abc =.这个有约束条件的极值问题称为条件极值问题.

条件极值的求法]5[:

a )构造拉格朗日函数),(),(),,(y x F y x f y x G λλ+=;

b )解方程组?????='='='0

00z y x G G G 求出稳定点;

c )针对),(y x f 判断),(00y x f 是否为极值点,是极大值还是极小值点;或根据实际问题或几何意义直接判断;

d )求出极值),(00y x f .

例 经过点)1,1,1(的所有平面中,哪个平面与坐标面的第一卦限所围的立体的体积最小,并求此最小体积.

【分析】该类题型是条件极值经常考的应用题,先构造出函数,问题就迎刃而解。

解 设所求平面方程为

1=++c

z b y a x ,)0,0,0(>>>c b a . 因为平面经过)1,1,1(,所以该点坐标满足此平面方程,即有

1111=++c

b a . )1( 设所求平面与三个坐标平面所围立体的体积为V ,则

a b c V 61=. )2( 原问题化为求目标函数)2(在约束条件)1(下的最小值.构造拉格朗日函数

)1111(61),,(-+++=c

b a ab

c c b a L λ. 求函数L 的各个偏导数,并令它们为0,得方程组:

????

?????=-=-=-.061,06

1,061222c ab b ac a bc λλλ 由以上解得3===c b a .

由于最小体积一定存在,又函数有唯一的驻点.故3===c b a 为所求,即平面

3=++z y x .

与坐标面在第一卦限所围物体的体积最小.最小体积为 2

933361min =???=V .

第三章二元函数极值的意义

二元函数极值的存在对科学发展的中国来说有极其重要的意义.在很多工程实

际中,我们经常需要做一些优化来解决资金能源等问题.比如,飞机的升力主要由机

翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题.再比如,就拿天气预报来说,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢?这其实也是一个广义上的极值问题.还有就是经济学的投资问题,我们知道现在国家建筑高铁,高速公路等都是浩大的工程.如何合理布局、考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响.如果造成污染,那么污染治理费也要考虑.只有考虑方方面面,通过将问题数字化,面对问题,解

决问题,才能让这些公共基础建设的利远大于弊.由此显现出二元函数的重要性.

参考文献

[1]数学系.数学分析[S],高等教育出版社,2001-06-01.

[2]岳明林.四川大学学报科学版二元函数极值存在的充分条件[EB/OL].

https://www.360docs.net/doc/5b10939244.html,/pub/wml.txt/9808 10-2.html,1998-08-16/1998-10-04.

[3]裴里文.数学分华东师范大学析中的典型问题与方法[M] .北京高等教育出版社,1998.

[4]王敏芝.求多元函数的极值的判别准则[J] .河西学院学报,2008,20-23.

[5] 钱吉林.数学分析[S],众邦考试教育研究所,2009-09.

多元函数的极值与最值例题极其解析

多元函数的极值与最值 1.求函数z=x3+y3?3xy的极值。 步骤: 1)先求驻点(另偏导数等于0,联立) 2)再求ABC A=f xx(x0, y0) B=f xy(x0, y0) C=f yy(x0, y0) 3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值, 且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o); (2)当B2-AC>0时,f(x o, y o )不是极值; (3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论. =3x2?3y=0 解:?z ?x ?z =3y2?3x=0 ?y 联立得驻点为(0,0),(1,1) A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导) B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导) C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导) 在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处

无极值。 在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为 A>0,故在此处为极小值点,极小值为 F (1, 1) =x3+y3?3xy=?1 2.求函数f(x, y)=x2+(y?1)2的极值。 解:f x’=2x=0 F y’=2y-2=0 联立得驻点为(0,1) A=f xx(x0, y0) =2 B=f xy(x0, y0) =0 C=f yy(x0, y0) =2 在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为 F (0, 1) = 0 3.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少? 解:另长宽高分别为x, y, z 故xyz=a, z=a xy S=xy+2(x a xy +y a xy )=xy+2(a y +a x ) S x’=y+2(?a x2 )=0 S y ’= x+2(?a y )=0

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

多元函数的极值及其求法.pdf

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x ?+?=? 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

函数的极值及其求法1

三、导数的应用 函数的极值及其求法 在学习函数的极值之前,我们先来看一例子:设有函数,容易知道点x=1及x=2是此函数单调区间的分界点,又可知在点x=1左侧附近,函数值是单调增加的,在点x=1右侧附近,函数值是单调减小的.因此存在着点x=1的一个邻域,对于这个邻域内,任何点x(x=1除外),<均成立,点x=2也有类似的情况(在此不多说),为什么这些点有这些性质呢? 事实上,这就是我们将要学习的内容——函数的极值, 函数极值的定义设函数在区间(a,b)内有定义,x 0是(a,b)内一点. 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),<均成立,则说是函数的一个极大值; 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),>均成立,则说是函数的一个极小值.函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。 我们知道了函数极值的定义了,怎样求函数的极值呢? 学习这个问题之前,我们再来学习一个概念——驻点凡是使的x 点,称为函数的驻点。 判断极值点存在的方法有两种:如下 方法一:设函数在x 0点的邻域可导,且. 情况一:若当x 取x 0左侧邻近值时, >0,当x 取x 0右侧邻近值时,<0,则函数在x 0点取极大值。 情况一:若当x 取x 0左侧邻近值时, <0,当x 取x 0右侧邻近值时,>0,则函数在x 0点取极小值。 注:此判定方法也适用于导数在x 0点不存在的情况。 用方法一求极值的一般步骤是:

a):求; b):求的全部的解——驻点; c):判断在驻点两侧的变化规律,即可判断出函数的极值。例题:求极值点 解答:先求导数 再求出驻点:当时,x=-2、1、-4/5 判定函数的极值,如下图所示

多元函数求极值(拉格朗日乘数法)

第八节 多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法 求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从

几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2243y x z +=的顶点。 例2 函数22y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: 0),(,0),(0000==y x f y x f y x 证 不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点 ),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x

二元函数极值问题

二元函数极值问题

2

3

4

5 0x >时, 1,z x ?=? 0x <时,1z x ?=-?. 因此在0x =时偏导数不存在. 由此可见,函数的极值点必为 f x ??及f y ??同时为零或至少有一个偏导数不存在的点. 3.2极值的充分条件 设函数),(y x f z =在点的某个邻域内连续且有二阶连续偏导数,又 0),(00'=y x f x 且0),(00'=y x fy ,记二阶连续偏导数为 A y x f xx =),(00', B y x f xy =),(00', C y x f yy =),(00', AC B -=?2,则函数),(y x f z =在),(00y x 点处是否取得极值的条件如下: (1) 当0A 时,函数),(y x f z =在点),(00y x 处取得极小值; (3) 当0>?时,函数),(y x f z =在点),(00y x 处不取得极值; (4) 当0=?时,函数),(y x f z =在点),(00y x 处可能取得极值,也可能不取得极值. 4. 求二元函数的极值的步骤 要求函数的极值,首先要求出所有使函数的偏导数等于零或偏导数不存在的点,然后讨论该点周围函数的变化情形,以进一步判断是否有极值,为此我们讨论f ?,若(,)f x y 的一切二阶导数连续,则由泰勒公式并注意到在极值点必须0x y f f ==,就有 222 000000200001(,)(,)((,)22(,)(,)) x xy y f f x x y y f x y f x x y y x f x x y y x y f x x y y y θθθθθθ?=+?+?-=+?+??++?+???++?+??. 由于(,)f x y 的一切二阶偏导数在00(,)x y 连续,记200(,)x A f x y =,00(,)xy B f x y =,200(,)y C f x y =,那就有

二元函数极值存在的判别方法

大庆师范学院 本科生毕业论文 二元函数极值存在的判别方法 院(系)数学科学学院 专业数学与应用数学 研究方向数学教育 学生姓名韩明 学号200801052602 指导教师姓名夏晶 指导教师职称副教授 2012年6月1日

摘要 在生活、生产、经济管理和各种资金核算中,常常要解决在一定的条件下怎么使投入最小、产量最大、效益最高等等问题.因此解决这些问题具有现实意义.这些经济和生活的问题常常都可以转化为数学中的函数问题来探讨,将问题数字化,简单、精确,进而转化为求函数中最大(小)问题,即函数的极值问题.因此,对函数极值问题的探讨具有十分重要的意义.本文主要探讨了二元函数极值存在的充分条件、必要条件的判定方法,以及如何求解,并对结果进行了简要的证明. 关键词:二元函数;极值;驻点;条件极值

Abstract In industrial and agricultural production,management of the economy and the economic accounting,we often solve the problems such as how to make input smallest,output most efficient in given conditions.In the life we often encounter how to achieve maximum profit,use the minimum materials and get maximum efficiency,to deal with the similar problems that have its realistic significance.Above problems can be transformed with function and its function of maximum and minimum value.The concept of extreme value originate from function of maximum and minimum value of mathematics,therefore approaching the extreme value have significance meanning. Keywords:function;extreme value;stagnation;conditional extremum

二元函数的极值

§10–7 二元函数的极值 基础知识导学 1. 二元函数的极值与驻点 ⑴ 极值与驻点 ①极值 设函数),(y x f z =在点),(000y x P 的某个邻域内有定义, 如果对在此邻域内除点),(000y x P 外的任意点),(y x P ,均有),(),(00y x f y x f <(或),(),(00y x f y x f >),则称点),(000y x P 为函数),(y x f z =的极大值点(或极小值点).),(00y x f 称为极大值(或极小值),极大值点和极小值点统称为极值点,极大值和极小值统称为极值. ②驻点 使0),(,0),(==y x f y x f y x 同时成立的点),(y x 称为函数),(y x f z =的驻点. ⑵ 极值存在的必要条件 设函数),(y x f z =在点),(000y x P 的某个邻域内有定义,且存在一阶偏导数,如果),(000y x P 是极值点,则必有 0),( ,0),(0000==y x f y x f y x . 注意 可导函数的极值点必定为驻点,但是函数),(y x f z =的驻点却不一定是极值点. ⑶极值存在的充分条件 设函数),(y x f z =在点),(000y x P 的某个邻域内具有二阶连续偏导数,且),(000y x P 是驻点.设),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,则 ①当02 <-AC B 时,点),(000y x P 是极值点,且当0A 时,点),(000y x P 是极小值点; ②当02 >-AC B 时,点),(000y x P 不是极值点;

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。 作业:习题8-8(71P )3,5,8,9,10 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题. 一.多元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均 有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立. 特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

二元函数的极值与最值

2. 二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点, 现对二元函数的极值与 最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在 驻点 和不可导点 取得。对于不可导点,难以判断 是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的 必要条件 : 设 z f (x,y) 在点(x 0,y 0) 处可微分且在 点(x 0, y 0 )处有极值,则 f 'x (x 0,y 0) 0, f 'y (x 0, y 0) 0,即 (x 0,y 0) 是驻点。 (3) 二元函数取得极值的 充分条件 :设 z f (x,y) 在(x 0,y 0) 的某个领域内有 连续上 二阶偏导数,且 f 'x (x 0,y 0) f 'y (x 0, y 0) 0 ,令 f'xx (x 0,y 0) A , f'xy (x 0,y 0) B , f 'yy (x 0,y 0) C ,则 当B 2 AC 0且 A<0 时, f ( x 0 , y 0 )为极大值; 当B 2 AC 0且 A>0, f ( x 0 , y 0 )为极小值; B 2 AC 0 时,(x 0, y 0) 不是极值点。 注意: 当 B 2-AC = 0时,函数 z = f (x, y)在点( x 0 , y 0 )可能有极值,也可能没有 极值,需另行讨论 例 1 求函数 z = x 3 + y 2 - 2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点, 先求出一阶偏导, 再令其为零 确定极值点即可, 然后用二阶偏导确定是极大值还是极小值, 【解】先求函数的一、二阶偏导数: 并求出相应的极值 . 2 z 2 z z 3x 2y , 2y 2x . 2 6x , x y x 2 z xy 2 z 2 y 2 再求函数的驻点.令 z = 0, x 得方程组 2 3x 2y 0, 2y 2x 0.

第八节 二元函数的极值

第八节二元函数的极值 教学目的与要求:理解多元函数极值和条件极值的概念,会求二元函数的极值,了解求条 件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用 问题 教学重难点:二元函数的极值的充分条件,拉格朗日乘数法 教法:讲授 课时:2 课时 一、引例 伴随着社会进步和生产力的不断发展,在工程技术,科学研究,经济活动分析诸多领域都提出了大量最优化问题。这些问题的本质特征是:在一定的投入水平下,如何寻求最大的效益或与之等价的含义,在设定的效益水平下,如何降低投入。刻划这类问题的数学语言是:对于变量之间的函数,当自变量取何值时,函数变量的值能达到相对的最大或最小。这就是构成多元函数极值问题的实际背景。 实例:某商店卖两种牌子的果汁,本地牌子每瓶进价 1 元,外地牌子每瓶进价 1.2 元,店 主估计,如果本地牌子的每瓶卖元,外地牌子的每瓶卖元,则每天可卖出 瓶本地牌子的果汁,瓶外地牌子的果汁问:店主每天以什么价格卖两种牌子的果汁可取得最大收益? 每天的收益为 求最大收益即为求二元函数的最大值. 注:对于多元函数的极值问题,我们将重点研究二元函数。 二、二元函数极值的一般概念 1 、二元函数极值定义设函数z= f( x, y) 在点( x0 , y0 ) 的某个邻域内有定义, 如果对于该邻域内任何异于( x0 , y0 ) 的点( x, y) , 都有f( x, y)< f( x0 , y0 ) ( 或f( x, y)> f( x0 , y0 )) , 则称函数在点( x0 , y0 ) 有极大值( 或极小值) f( x0 , y0 ) .

极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 讨论函数在点的状态。 因为,而当x,y 不同时为零时,恒 大于零,所以函数在(0,0 )取得的函数值是函数的一个极小值。这个结论由图一可看出其正确性。 由于的图形是顶点在(0,0,0) 的开口向上的 旋转抛物面,(0,0,0) 恰为它的顶点。 例如,函数z= 3 x2 + 4 y2 在点(0 , 0) 处有极小值。 当( x, y) = (0 , 0) 时, z= 0 , 而当( x, y) 1 (0 , 0) 时, z> 0 . 因此z= 0 是函数的极小值。 例如,函数在点(0 , 0) 处有极大值。 当( x, y) = (0 , 0) 时, z= 0 , 而当( x, y) 1 (0 , 0) 时, z< 0 . 因此z= 0 是函数的极大值。例如,函数z= xy在点(0 , 0) 处既不取得极大值也不取得极小值。 因为在点(0 , 0) 处的函数值为零, 而在点(0 , 0) 的任一邻域内, 总有使函数值为正的点, 也有使函数值为负的点。 以上关于二元函数的极值概念, 可推广到n元函数。 注:关于多元函数极值的概念应注意理解好两个要点: 一是极值点指的是某个区域的内点而不能是边界点。

二元函数极值问题

浅谈二元函数的极值问题 摘 要:本文首先给出二元函数极值的定义,实例分析了二元函数极值存在的必要条件和充分条件,并通过实例解析了求二元函数极值的步骤. 关键词:二元函数; 极值;必要条件;充分条件 To discuss the extreme-value problem of the binary function shallowly Abstract : In this paper, the definition and conditions of the extreme of binary function are firstly given, on the basis, steps of finding the extreme value are discussed, and specific examples of relevant to this are given to expound them. Key words: binary function; extreme; necessary condition; sufficient condition 前言 函数极值在数学、工程、金融风险管理等多领域都有广泛应用,本文以二元函数为例,讨论函数极值的若干方面问题. 1. 预备知识 定义 设函数f 在点00(,)x y 0p 的某领域0()U p 内有定义,若对于任意点 0(,)()p x y U p ∈,成立不等式 0()()f p f p ≤ (或0()()f p f p ≥) , 则称函数f 在点0p 取得极大(或极小)值,点0p 称为f 的极大(或极小)值点,极大值、极小值统称极值,极大值点、极小值点统称极值点. 注意:这里所讨论的极值点仅限于定义域的内点.

推荐-多元函数极值的判定

目录 摘要.................................................................... .. (1) 关键词.................................................................... .. (1) Abstract............................................................. .. (1) Keywords............................................................. .. (1) 引言.................................................................... . (1) 1定理中用到的定义................................................................ .. (2) 2函数极值的判定定理.............................................................. . . (5) 3多元函数极值判定定理的应用..................................................................

.7

参考文献.................................................................... (8) 多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极 值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极 值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、多元函数的极值及最大值、最小值 定义设函数z f(x, y)在点(X。, y。)的某个邻域内有定义,对于该邻域内异 于(X。,yo)的点,如果都适合不等式 f (X, y) f(X o,y。) 则称函数f(X,y)在点(X0,y。)有极大值f(X0,y。)。如果都适合不等式 f (X, y) f(X。,y。), 则称函数f(X,y)在点(X0,y。)有极小值f(X0,y。).极大值、极小值统称为极值。 使函数取得极值的点称为极值点。 22 例1 函数z 3X 4y在点(。,。)处有极小值。因为对于点(。,。)的任一邻域内异于(。,。)的点,函数值都为正,而在点(。,。)处的函数值为零。从22 几何上看这是显然的,因为点(。,。,。)是开口朝上的椭圆抛物面z 3X2 4y2 的顶点。

例2函数z x y在点(0, 0)处有极大值。因为在点(0, 0)处函数值为零,而对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为负, 点(0, 0, 0)是位于xOy平面下方的锥面z: x2 y2的顶点。 例3 函数z xy在点(0, 0)处既不取得极大值也不取得极小值。因为在 点(0, 0)处的函数值为零,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1 (必要条件)设函数z f(x,y)在点(X0,y。)具有偏导数,且在点(X o, y o)处有极值,则它在该点的偏导数必然为零: f x(X o,y°)0, f y(x o,y°)0 证不妨设z f(x,y)在点(x0,y0)处有极大值。依极大值的定义,在点 (X。,y。)的某邻域内异于(X。,y。)的点都适合不等式 f (x, y) f(x°,y o) 特殊地,在该邻域内取y y0,而x X0的点,也应适合不等式 f(x, y°) f(X o,y°) 这表明一元函数f(x,y o)在X X o处取得极大值,因此必有 f x(X o,y o)0 类似地可证 f y(X o,y o) 0

二元函数的极值及其应用

郑州航空工业管理学院 毕业论文(设计) 2015 届数学与应用数学专业 1111061 班级 题目二元函数的极值及其应用 姓名 XXX 学号 XXXXXXX 指导教师 XXX 职称 XXX 二О一五年四月三十日 内容摘要 二元函数理论是其他学科的基础,其中极值是函数中的重要内容,对极值也有很多研究方法,并且函数极值的理论有很多在生活中都有实际意义。无论是在科学研究,还是在物流,实际规划工程,通常要解决如何使投资量输出最大,产出最多,最高效率优化。这些实际问题都可以转化为一个数学问题来研究,进而转化为函数的极大值、极小值问题的解决。在本文中,首先给出的是二元函数的研究背景及现实意义,之后给出二元函数的非条件极值理论,二元函数条件极值理论,二元函数极值的判定,以及二元函数极值的理论应用举例。通过实例中的极值问题,说明所利用知识在求解二元函数极值问题中的重要应用。 关键词 二元函数;无条件极值;条件极值;判定;应用

the Extreme Value of Binary Function and Its Application XXXXXX By:XXXX Tutor: XXXXX Abstract Dual function theory is the foundation of other disciplines, including extreme value is an important content in function, the extreme value also has a lot of research methods, and the function extreme value theory has a lot in life has practical significance. Both in scientific research, and in the logistics, the actual planning engineering, often need to solve how to make the investment to maximum output, output the most, the highest efficiency optimization.The actual problem can be transformed into a math problem research capabilities, And then into the function of the maximum and minimum value problem to solve. Is first of all, the paper proposes the research background and practical significance of binary function, then give the unconditional extreme value of binary function theory, the conditions of binary function extreme value theory, extreme value of binary function determination, as well as the extreme value of binary function theory application, for example. Illustrated by an example of extreme value problem, using the knowledge in solving the important application of binary function extremum problems. Key words

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算 (一) 可微函数的无条件极值 如果(,)z f x y =在区域D 上存在二阶连续偏导数,我们可以用下面的方法求出极值。 首先,通过解方程''00 x y f f ?=??=?? 得到驻点。其次,对每个驻点求出二阶偏导数: '''''',,xx xy yy A f B f C f === 最后利用课本定理7.8进行判断。 20,0,AC B A ->> 函数在此点取极小值; 20,0,AC B A ->< 函数在此点取极大值; 20,AC B -< 函数在此点不取极值; 20,AC B -= 不能确定。 (二) 如何求多元函数的最值 如果函数(,)z f x y =在有界闭域D 上连续,那么函数(,)z f x y =在有界闭域D 上一定存在最大值和最小值。下面介绍如何求出(,)z f x y =在有界闭域D 上的最值。 首先, 在D 的内部求出函数(,)z f x y =的驻点 及 偏导数不存在的点。 其次,求出函数(,)z f x y =在D 的边界上的最大值点和最小值点。这里分两种情况处理: 第一种情况:D 的边界是由显函数来表示 的(包括边界是分段用显函数表示的情形),可以用消元法转化为一元函数在闭区间上的最值问题 来解决。 第二种情况:D 的边界是由 隐函数(,)0x y ?=来表示 的,而且函数(,)z f x y =,(,)x y ?在包含D 的区域上存在二阶连续偏导数,此时可以用拉格朗日乘数法求出驻点。 最后, 通过比较函数(,)z f x y =在我们得到的点上的函数值,就可得到(,)z f x y =在有界闭域D 上的最值。 (三) 如何求条件极值 下面介绍求函数(,)z f x y =在约束条件(,)0x y ?=下的条件极值。 第一种情况:如果(,)0x y ?=确定了显函数)(y g x =或者)(x h y =,可以用消元法转化为一元函数在闭区间上的极值问题 来解决。 第二种情况:如果函数(,)z f x y =,(,)0x y ?=在区域D 上存在二阶连续偏导数,而且(,)0x y ?=确定了隐函数,此时可以用拉格朗日乘数法。首先,求出拉格朗日函数),,(λy x L 在区域D 内的驻点。

相关文档
最新文档