大学物理量子力学习题附答案

大学物理量子力学习题附答案
大学物理量子力学习题附答案

1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是

(A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ]

2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是:

(A) 0λhc (B) 0

λhc

m eRB 2)(2+ (C) 0λhc m eRB

+

(D) 0λhc eRB 2+

[ ]

3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:

(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ]

4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为

(A) 2 (B) 3 (C) 4 (D) 5 [ ]

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是

(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ]

6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:

(A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ]

7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为

(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ]

8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是

(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ]

9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是

(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ]

10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的

(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:

a x a

x 23cos

1)(π?=

ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为

(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1

[ ]

12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定

粒子动量的精确度最高的波函数是哪个图?

13.5619:波长λ =5000 ?的光沿x 轴正向传播,若光的波长的不确定量?λ =10-

3 ?,则

利用不确定关系式h x p x ≥??可得光子的x 坐标的不确定量至少为:

(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm [ ]

14.8020:将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将

(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变 [ ]

15.4965:下列各组量子数中,哪一组可以描述原子中电子的状态?

(A) n = 2,l = 2,m l = 0,

21=

s m (B) n = 3,l = 1,m l =-1,21

-

=s m (C) n = 1,l = 2,m l = 1,21=

s m (D) n = 1,l = 0,m l = 1,21

-=s m [ ]

16.8022:氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )

可能取的值为

(A) (3,0,1,21-

) (B) (1,1,1,21

-

)

(C) (2,1,2,21) (D) (3,2,0,21

) [ ]

17.4785:在氢原子的K 壳层中,电子可能具有的量子数(n ,l ,m l ,m s )是

(A) (1,0,0,21) (B) (1,0,-1,21)

(C) (1,1,0,21-) (D) (2,1,0,21-

) [ ]

18.4222:与绝缘体相比较,半导体能带结构的特点是

(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子

(D) 禁带宽度较窄 [ ]

19.4789:p 型半导体中杂质原子所形成的局部能级(也称受主能级),在能带结构中应处于

(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶 (D) 禁带中,但接近导带底 [ ]

20.8032:按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:

(A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的 (B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的

x

(A)

x

(C)

x

(B)

x

(D)

(C) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是不相干的

(D) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是相干的

21.9900:x

?与x P ?的互易关系[x P x ?

,?]等于 (A) i (B) i - (C)ih (D)ih - [ ]

22.9901:厄米算符A

?满足以下哪一等式(u 、v 是任意的态函数) (A)

()

dx v u A dx v A u ?

?=**?? (B)

()

dx u A v dx u A v ?

?=**??

(C)()

dx u v A dx u A v ?

?=**?? (D)()

dx v u A dx v A u ?

?=**?? [ ]

二、填空题

1.4179:光子波长为λ,则其能量=_____;动量的大小 =______;质量=_______。 2.4180:当波长为3000 ?的光照射在某金属表面时,光电子的能量范围从0到4.0×10-19

J 。在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属的红限频率ν0 =_________Hz 。

3.4388:以波长为λ= 0.207 μm 的紫外光照射金属钯表面产生光电效应,已知钯的红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V 。

4.4546:若一无线电接收机接收到频率为108 Hz 的电磁波的功率为1微瓦,则每秒接收到的光子数为___________。

5.4608:钨的红限波长是230 nm ,用波长为180 nm 的紫外光照射时,从表面逸出的电子的最大动能为_________eV 。

6.4611:某一波长的X 光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射。

7.4191:在氢原子发射光谱的巴耳末线系中有一频率为6.15×1014 Hz 的谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出的。

8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线系)的最短波长的谱线所对应的光子能量为_______________eV ;巴耳末系的最短波长的谱线所对应的光子的能量为___________________eV 。

9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线系)的最短波长的谱线所对应的光子能量为_______________eV ;巴耳末系的最短波长的谱线所对应的光子的能量为___________________eV 。

10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射的谱线构成)中波长为1216 ?的谱线,应传给基态氢原子的最小能量是_________________eV 。

11.4754:氢原子的部分能级跃迁示意如图。在这些能级跃迁

中,(1) 从n =______的能级跃迁到n =_____的能级时所发射的光子

的波长最短;(2) 从n =______的能级跃迁到n =______的能级时所 发射的光子的频率最小。

12.4755:被激发到n =3的状态的氢原子气体发出的辐射中,

有______条可见光谱线和_________条非可见光谱线。 13.4760:当一个质子俘获一个动能E K =13.6 eV 的自由电子组成一个基态氢原子时,

所发出的单色光频率是______________。

14.4207:令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量)。当电子的动能等于它的静止能量时,它的德布罗意波长是λ =______λc 。

15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出的电子束经U = 500 V 的电势差加速后投射到晶 体上。这电子束的德布罗意波长λ =???????????nm 。

n = 1

n = 2 n = 3 n = 4 4754图

U

4429图

16.4629:氢原子的运动速率等于它在300 K 时的方均根 速率时,它的德布罗意波长是______。质量为M =1 g ,以速度 =v 1 cm ·s -1运动的小球的德布罗意波长是________。

17.4630:在B =1.25×10-2 T 的匀强磁场中沿半径为R =1.66 cm 的圆轨道运动的α粒子的德布罗意波长是___________。

18.4203:设描述微观粒子运动的波函数为),(t r

ψ,则*

ψψ表示

_______________________;

),(t r ψ须满足的条件是_____________________;其归一化条件是___________________。

19.4632:如果电子被限制在边界x 与x +?x 之间,?x =0.5 ?,则电子动量x 分量的不确定量近似地为________________kg ·m /s 。

20.4221:原子内电子的量子态由n 、l 、m l 及m s 四个量子数表征。当n 、l 、m l 一定时,不同的量子态数目为_____________;当n 、l 一定时,不同的量子态数目为_________________;当n 一定时,不同的量子态数目为_______。

21.4782:电子的自旋磁量子数m s 只能取______和______两个值。 22.4784:根据量子力学理论,氢原子中电子的动量矩为 )1(+=l l L ,当主量子数n =3

时,电子动量矩的可能取值为_____________________________。

23.4963: 原子中电子的主量子数n =2,它可能具有的状态数最多为______个。 24.4219:多电子原子中,电子的排列遵循_____________原理和_______________原理。 25.4635:泡利不相容原理的内容是________________________________________。 26.4787:在主量子数n =2,自旋磁量子数21

=

s m 的量子态中,能够填充的最大电子

数是_____________。

27.4967:锂(Z =3)原子中含有3个电子,电子的量子态可用(n ,l ,m l ,m s )四个量子数

来描述,若已知基态锂原子中一个电子的量子态为(1,0,0,21

),则其余两个电子的量子

态分别为(_____________________)和(________________________)。

28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4的电子,则在3d 态的电子可有____________个。

29.8025:根据量子力学理论,原子内电子的量子态由(n ,l ,m l ,m s )四个量子数表征。那么,处于基态的氦原子内两个电子的量子态可由______________和______________两组量子数表征。

30.4637:右方两图(a)与(b)中,(a)图是____型半导体的能带结构图,(b)图是____型半

导体的能带结构图。 31.4792:若在四价元素半导体中掺入五价 元素原子,则可构成______型半导体,参与导电

的多数载流子是_______。

32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电

的多数载流子是______。

33.4971:在下列给出的各种条件中,哪些是 产生激光的条件,将其标号列下:___________。(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔。

34.5244:激光器中光学谐振腔的作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________。

35.8034:按照原子的量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生的。

4637图

E

v e 36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同的特性,这些特性是指_______________________________________________。

37.8036:激光器的基本结构包括三部分,即_____________、___________和_____________。

38.写出以下算符表达式:=x p

?________;=H ?________;=y L ?

________; 39.微观低速的(非相对论性)体系的波函数ψ满足薛定谔方程,其数学表达式为________。

40.自旋量子数为______________的粒子称为费米子,自旋量子数为_______________的粒子称为玻色子;________________体系遵循泡利不相容原理。

41.[]x p x ??,=___________;[]=z y

??,___________;[]

=z x p p ??,___________; []=z

L L ?,?2

___________;[]=y

x

p L ?,?___________。

42.线性谐振子的能量可取为________________;若

32010352103u u u ++=

ψ,n

u 是谐振子的第n 个能量本征函数,则体系的能量平均值为________________。 三、计算题

1.4502:功率为P 的点光源,发出波长为λ的单色光,在距光源为d 处,每秒钟落在垂直于光线的单位面积上的光子数为多少?若λ =6630 ?,则光子的质量为多少?

2.4431:α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运动。(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速

率运动。则其波长为多少?(α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,

基本电荷e =1.60×10-19

C)

3.4506:当电子的德布罗意波长与可见光波长( λ =5500 ?)相同时,求它的动能是多少

电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19 J)

4.4535:若不考虑相对论效应,则波长为 5500 ?的电子的动能是多少eV ?(普朗克常

量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)

5.4631:假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的2倍

时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)

6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 的均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电 子的德布罗意波长达到λ = 1 ?。(飞行过程中,电子的质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34

J ·s)。

7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x

≤a ),求发现粒子的概率为最大的位置。

8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:

)/sin(/2)(a x n a x n π=ψ (0

提示: C x x x x +-=

?2sin )4/1(21

d sin 2

9.氢原子波函数为()

310

211210*********ψψψψψ+++=,其中nlm ψ是氢原子的

能量本征态,求E 的可能值、相应的概率及平均值。

10.体系在无限深方势阱中的波函数为

sin

0()00

n A x x a x a

x x a πψ?

<

一化常数A 。

11.质量为m 的粒子沿x 轴运动,其势能函数可表示为:

()000,x a

U x x x a <

∞≤≥?,求解粒子的归一化波函数和粒子的能量。

12.设质量为粒子处在(0,a )内的无限方势阱中,

()??? ????? ??=

x a x a a x ππψ2cos sin 4

对它的能量进行测量,可能得到的值有哪几个?概率各多少?平均能量是多少?

13.谐振子的归一化的波函数:

()()()()x cu x u x u x 32021

31++=

ψ。其中,()x u n 是

归一化的谐振子的定态波函数。求:c 和能量的可能取值,以及平均能量E 。

一、选择题

1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778: 13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D

19.4789:C 20.8032:B 21.9900:A 22.9901:C 二、填空题

1.4179: λ/hc ----------------1分; λ/h ----------------2分; )/(λc h --------------2分

2.4180: 2.5---------------------2分; 4.0×1014-----------2分 3.4388: 0.99--------------------3分 4.4546: 1.5×1019 ------------3分 5.4608: 1.5 --------------------3分

6.4611: 不变-----------------1分; 变长----------------1分; 波长变长--------------1分

7.4191: -0.85---------------2分; -3.4----------------2分 8.4192: 13.6----------------- 2分; 3.4---------------- 2分 9.4200: 6----------------------2分; 973----------------2分 10.4424: 10.2-------------------3分

11.4754: 4 1------------2分; 4 3----------------2分 12.4755: 1-----------------------2分; 2----------------2分 13.4760: 6.56×1015 Hz-------3分

14.4207: 3/1----------------3分 15.4429: 0.0549----------------3分

16.4629: 1.45 ?-----------------2分;6.63×10-19 ?-------------------2分 17.4630: 0.1 ?-------------------3分

18.4203: 粒子在t 时刻在(x ,y ,z )处出现的概率密度-------------2分

单值、有限、连续---------------------------------------------1分 1

d d d 2

=???z y x ψ----------------------------------------2分

19.4632: 1.33×10-23

-----------------------3分

20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分

21.4782: 21-------------------2分; 21

-

-----------------------------2分

22.4784: 0, 2, 6-----------------------------各1分 23.4963: 8------------------------------------------------ 3分

24.4219: 泡利不相容---------------2分; 能量最小-----------------2分

25.4635: 一个原子内部不能有两个或两个以上的电子有完全相同的四个量子数

(n 、l 、m l 、m s )--------------------------3分

26.4787: 4---------------------3分

27.4967: 1,0,0,21

-

--------------2分;

2,0,0,21 2,0,0,21

-

---------------------2分

28.4969: 7----------------------------3分

29.8025: (1,0,0,21)----------2分; (1,0,0,21

-

)-----------------2分

30.4637: n-----------------------2分; p-------------2分 31.4792: n-----------------------2分; 电子--------2分 32.4793: p-----------------------2分; 空穴--------2分

33.4971: (2)、(3)、(4)、(5)-------3分 答对2个1分

34.5244: 产生与维持光的振荡,使光得到加强---------------------------2分

使激光有极好的方向性---------------------------------------------1分 使激光的单色性好---------------------------------------------------2分

35.8034: 自发辐射和受激辐射-----------2分; 受激辐射------------2分 36.8035: 相位、频率、偏振态、传播方向---------------------------------3分 37.8036: 工作物质、激励能源、光学谐振腔---------------------------各1分

38.x i p x ??-= ?;U H +?-=222?μ ;

)(?z x x z i L y ??-??-= 39.t i U ?ψ

?=ψ???? ??+?- 222μ

或 t i U x ?ψ

?=ψ???

? ??+??- 2222μ 40.半奇数; 整数; 费米子

41. i ;0;0;0;z p

i ? 42.ω )21(+=n E n ,n =0,1,2,3……;ω

511

三、计算题

1.4502:解:设光源每秒钟发射的光子数为n ,每个光子的能量为h ν,则由:

λν/nhc nh P ==得: )/(hc P n λ=

令每秒钟落在垂直于光线的单位面积的光子数为n 0,则:

)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分

光子的质量:)/()/(/2

2λλνc h c hc c h m ====3.33×10-36 kg--------------------2分

2.4431:解:(1) 德布罗意公式:)/(v m h =λ

由题可知α 粒子受磁场力作用作圆周运动:

R m B q /2

v v α=,qRB m =v α 又 e q 2= 则: e R B m 2=v α----------------4分

故: nm 1000.1m 1000.1)2/(2

11--?=?==eRB h αλ-------------3分

(2) 由上一问可得 αm eRB /2=v 对于质量为m 的小球:

α

ααλλ?=?==

m m m m e R B h

m h 2v =6.64×10-34 m-----------3分

3.4506:解:

)2/()/()2/(2

2e e K m h m p E λ==---------------3分 =5.0×10-

6 eV--------------------------------------2分

4.4535:解:非相对论动能:

221

v e K m E =

v e m p =, 故有: e K m p E 22

=

-----------------------------2分 又根据德布罗意关系有 λ/h p = 代入上式--------------------1分

则: ==

)/(2122

λe K m h E 4.98×10-6 eV----------------------2分

5.4631:解:若电子的动能是它的静止能量的两倍,则:2

222c m c m mc e e =----------1

故: e m m 3=--------------------------1分

由相对论公式: 2

2/1/c m m e v -= 有: 22/1/3c m m e e v -=

解得: 3/8c =v ---------------------------------------------1分

德布罗意波长为:)8/()v /(c m h m h e ==λ13

1058.8-?≈m-----------------2分

光电子的德布罗意波长为:

=

==

v e m h p h λ 1.04×10-9 m =10.4 ?------------------3分 6.5248:解: )/(v e m h =λ ①---------------------2分

ad 22

02=-v v ②

a m eE e = ③----------------------2分

由①式: ==)/(λe m h v 7.28×106 m/s

由③式: ==e m eE a /8.78×1013 m/s 2

由②式:

)2/()(2

02a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子的位置概率密度:

)/(sin )/2()(22

a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分

当: 1)/2c o s

(-=πa x 时, 2

)(x ψ有最大值.在0≤x ≤a 范围内可得 π=πa x /2 ∴ a x 21

=

--------------------------------3分

8.4526:解: x

a x a x P d s i n 2d d 22

π==ψ-----------------3分

粒子位于0 – a /4内的概率为:

x a

x a P a d sin 24

/0

2?

π=

)d(sin 24

/0

2a x

a x a a a πππ=?

4

/0

2

1]2sin 41[

2

a a x

a x

πππ-=

)]

42sin(414[221a a a a π-ππ= =0.091----------2分

9.解:根据给出的氢原子波函数的表达式,可知能量E 的可能值为:1E 、2E 、3E ,

其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分

由于:1

10

310

210

110

2

2

2

2

2

=+

+

+

-----------------------1分

所以,能量为1E 的概率为

52

1022

1=

=P ---------------------1分 能量为2E 的概率为

10

31021012

2

2=

+

=

P ---------------------1分

能量为3E 的概率为

10

310

32

3=

=

P ---------------------1分

能量的平均值为:332211E P E P E P

E ++=-----------------------2分 eV 913.6-=--------------------1分

10.解:由归一化条件,应有1sin 022=?xdx a n A a

π-----------------------3分

得:

a A 2

=

-----------------------2分

11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能的,所以粒子在该区域出现纪律为零,即:()0=x ψ

当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:02

22=+ψψk dx d

通解为:()kx B kx A x cos sin +=ψ

由波函数的连续性可知,在0x =、x a =处()0=x ψ,即:

()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π

=

,n =1、2、3……

所以有:

()sin n n x A a πψ??

= ?

??,n =1、2、3……

归一化条件:

()()1sin 0

220

2

2

=???

??==???

+∞

-a

a

dx a n A dx x dx x πψψ

所以:

a A 2

=

,即:(

)n n x a πψ??= ?

??,n =1、2、3…… 粒子能量为:222

2

2n E E n a πμ==,n =1、2、3……

12.解:

()????????? ????? ??+??? ??=??? ????? ??=

a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22 ???

??+??? ??=

a x a a x a ππ3sin 22

1sin 22

1 即()x ψ是第一和第三个能量本征态的叠加,所以测得能量值可为:

(1)2

2

22a μπ ,相应概率为:212

12

=

(2)2

2

2

29a μπ

,相应概率为:

212

12

=

所以,能量平均值为:

21=E 2

2

22a μπ +2122229a μπ

=22225a μπ 13.解:由归一化条件得:

1

2

13

1

2

2

2

=++c 解得:

61=

c

根据谐振子波函数的表达式,可知能量E 的可能值为:0E 、2E 、3E

因为:

ν

h n E n ??? ??

+=21 所以: νh E 210=; ν

h E 252=; νh E 27

3=

则: =E =

++332200E P E P E P ννννh h h h 22

7

612

5

212

1

312

2

2

=?+?+?

喀兴林高等量子力学习题6、7、8

练习 6.1 在ψ按A 的本征矢量{}i a 展开的(6.1)式中,证明若ψ 是归一化的,则 1=∑*i i i c c ,即A 取各值的概率也是归一化的。(杜花伟) 证明:若ψ是归一化的,则1=ψψ。根据(6.1)式 ∑=i i i c a ψ, ψi i a c = 可得 1===∑∑* ψψψψ i i i i i i a a c c 即A 取各值的概率是归一化的。 # 练习6.2 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变. (2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美) (1)证明:在定态中i E i H i = , Λ3,2,1=i 则 ()t E i i i i t η -=ψ 所以 i A i e i A e A t E i t E i i i ==-η η ψψ. 即所有物理量的平均值不随时间变化. (2)两个定态的叠加不一定是定态.例如 ()()()t E i t E i e x v e x u t x 21,η η --+=ψ 当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. # 6.3证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立: ) (]),([)()](,[X f X i P X f P f P i P f X ?? =?? =ηη (解答:玉辉 核对:项朋) 证明:(1)

) ()()()()()()()()](,[P f P i P i P f P i P f P f P i P i P f P f P i X P f P Xf P f X ??=??-??+??=??-??=-=ηηηηηηψψ ψψψ ψψ ψψ 所以 )()](,[P f P i P f X ?? =η (2) ) () ()())(())(()()())(()()(]),([X f X i X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ??=?? --??--??-=?? --??-=-=ηηηηηηψψψψψ ψψ ψψ 所以 )(]),([X f X i P X f ?? =η # 练习6.4 下面公式是否正确?(解答:玉辉 核对:项朋) ),()],(,[P X f P i P X f X ?? =η 解:不正确。 因为),(P X f 是X 的函数,所以)],(,[P X f X =0 # 练习6.5 试利用Civita Levi -符号,证明:(孟祥海) (1)00=?=?L X ,L P (2)[]0=?P X L, (3)()()P X X P P X P X L ?-??-=ηi 22 2 2 证明: (1)∑∑∑∑=== ?ijk k j i ijk k j jk ijk i i i i i P X P P X P L P εε L P

《大学物理学》习题解答

大学物理学 习 题 解 答 陕西师范大学物理学与信息技术学院 基础物理教学组 2006-5-8

说明: 该习题解答与范中和主编的《大学物理学》各章习题完全对应。每题基本上只给出了一种解答,可作为教师备课时的参考。 题解完成后尚未核对,难免有错误和疏漏之处。望使用者谅解。 编者 2006-5-8

第2章 运动学 2-1 一质点作直线运动,其运动方程为2 22t t x -+= , x 以m 计,t 以s 计。试求:(1)质点从t = 0到t = 3 s 时间内的位移;(2)质点在t = 0到t = 3 s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t =3时,x 3 = -1;所以, m 3)0()3(-==-==t x t x x ? (2)本题需注意在题设时间内运动方向发生了变化。对x 求极值,并令 022d d =-=t t x 可得t = 1s ,即质点在t = 0到t = 1s 内沿x 正向运动,然后反向运动。 分段计算 m 1011=-===t t x x x ?, m 4)1()3(2-==-==t x t x x ? 路程为 m 521=+= x x s ?? 2-2 已知质点沿x 轴作直线运动,其运动方程为3 2 262t t x -+=。试求:(1)质点在最初4s 内位移;(2)质点在最初4s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t = 4时,x 4 = -30 所以,质点在最初4s 内位移的大小 m 3204-=-=?x x x (2)由 0612d d 2=-=t t t x 可求得在运动中质点改变运动方向的时刻为 t 1 = 2 s , t 2 = 0 (舍去) 则 m 0.8021=-=?x x x ,m 40242-=-=?x x x 所以,质点在最初4 s 时间间隔内的路程为 m 4821=?+?=x x s 2-3 在星际空间飞行的一枚火箭,当它以恒定速率燃烧它的燃料时,其运动方程可表示为 )1ln(1bt t b u ut x -?? ? ??-+=,其中m/s 100.33?=u 是喷出气流相对于火箭体的喷射速度, s /105.73 -?=b 是与燃烧速率成正比的一个常量。试求:(1)t = 0时刻,此火箭的速度和加速度;(2)t = 120 s 时,此火箭的速度和加速度 解 )1l n (d d bt u t x v --== ;bt ub t v a -==1d d (1)t = 0时, v = 0 ,23 3s .m 5.221 105.7103--=???= a (2)t = 120s 时, )120105.71ln(10333 ??-?-=-v 1 3 s .m 91.6-?= 23 3 3s .m 225120 105.71105.7103---=??-???=a

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

量子力学课后答案第一二章

量子力学课后习题详解 第一章 量子理论基础 1、1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b(常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义就是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的就是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的就是,还需要验证λρ对λ的二阶导数在m λ处的取值就是否小于零,如果小于零,那么前面求得的m λ就就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这就是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解就是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4、97,经过验证,此解正就是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便就是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

清华大学《大学物理》习题库试题及答案10量子力学习题解析

10、量子力学 一、选择题 1.已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? 2.在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2 + (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K 4.在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 5.要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV 6.由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 7.已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV 8.在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和1.9 eV (D) 12.1 eV ,10.2 eV 和3.4 eV 9.若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh 10.如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 11.已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 12.设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 13.波长λ =5000 ?的光沿x 轴正向传播,若光的波长的不确定量?λ =10-3 ?,则利用不 确定关系式h x p x ≥??可得光子的x 坐标的不确定量至少为: (A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm x (A) x (C) x (B) x (D)

高等量子力学习题.

高等量子力学习题 1、 对于一维问题,定义平移算符()a D x ,它对波函数的作用是() ()()a x x a D x -=ψψ,其中a 为实数。设()x ψ的各阶导数存在,试证明()dx d a x e i p a a D -=?? ? ??= ?exp 。 2、 当体系具有空间平移不变性时,证明动量为守恒量。 3、 若算符()x f 与平移算符()a D x 对易,试讨论()x f 的性质。 4、 给定算符B A ,,证明[][][]....,,! 21 ,++ +=-B A A B A B Be e A A ξξ。 5、 给定算符C B A 和、,存在对易关系[]C B A =,,同时[][]0,,0,==C B C A 。证明Glauber 公式C A B C B A B A e e e e e e e 2 12 1 ==-+。 6、 设U 为幺正算符,证明U 必可分解成iB A U +=,其中A 和B 为厄密算符,并满足 122=+B A 和[]0,=B A 。试找出A 和B ,并证明U 可以表示为iH e U =,H 为厄密 算符。 7、 已知二阶矩阵A 和B 满足下列关系:02 =A ,1=+++AA A A ,A A B + =。试证明 B B =2,并在B 表象中求出矩阵A 、B 。 8、 对于一维谐振子,求湮灭算符a ?的本征态,将其表示为谐振子各能量本征态n 的线性叠加。已知1?-=n n n a 。 9、 从谐振子对易关系[ ]1,=+ a a 出发,证明a e ae e a a a a λλλ--=+ +。 10、 证明谐振子相干态可以表示为 0*a a e ααα-+=。 11、 谐振子的产生和湮灭算符用a 和+ a 表示,经线性变换得+ +=va ua b 和 ++=ua va b ,其中u 和v 为实数,并满足关系122=-v u 。试证明:对于算符b 的任 何一个本征态,2 =???p x 。 12、 某量子体系的哈密顿量为,() 223 2 35++++= a a a a H ,其中对易关系[]1,=-≡++ + a a aa a a 。试求该体系的能量本征值。 13、 用+ a ?和a ?表示费米子体系的某个单粒子态的产生和湮灭算符,满足基本对易式

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

量子力学习题答案

量子力学习题答案

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论 (一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数 (二)的情形 令,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为

由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 E 0 x 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数 2.3 以势阱底为零势能参考点,如图所示 (1) ∞∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成由波函数归一化条件得 所以波函数 (2) ∞∞ 左 中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左右 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为 其中

量子力学课后习题答案

第一章 绪论 1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 0 3109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1 83 3 -= , 及λ νc = 、λλ νd c d 2 - =得 1 185 -= kT hc e hc λλλπρ, 令kT hc x λ= ,再由0=λρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得 97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010 A 7.09m 1009.72=?≈= =-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3 = ,求K T 1=时氦原子的de Broglie 波长。 解:010 A 63.12m 1063.1232=?≈== =-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,1 23K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123 T J 10 923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及 K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 1 2q p E μωμ+= 可以化为 ( ) 1222 222 2=??? ? ??+ μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为2 2,2μω μE b E a = =,相空间面积为 ,2,1,0,2=== = =?n nh E E ab pdq ν ω ππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02 =+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

量子力学期末考试试卷及答案

量子力学期末试题及答案 红色为我认为可能考的题目 一、填空题: 1、波函数的标准条件:单值、连续性、有限性。 2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。 3、一个量的本征值对应多个本征态,这样的态称为简并。 4、两个力学量对应的算符对易,它们具有共同的确定值。 二、简答题: 1、简述力学量对应的算符必须是线性厄米的。 答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。 2、一个量子态分为本征态和非本征态,这种说法确切吗? 答:不确切。针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。 3、辐射谱线的位置和谱线的强度各决定于什么因素? 答:某一单色光辐射的话可能吸收,也可能受激跃迁。谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。 三、证明题。

2、证明概率流密度J不显含时间。 四、计算题。 1、

第二题: 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球, 计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r r πε=-() )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r E d r e r U )( ???????≥≤=??=)( 4 )( ,43441 02 003003303 420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε

吉林大学高等量子力学习题答案共11页word资料

高等量子力学习题和解答 ? 量子力学中的对称性 1、 试证明:若体系在线性变换Q ?下保持不变,则必有0]?,?[=Q H 。这里H ?为 体系的哈密顿算符,变换Q ?不显含时间,且存在逆变换1?-Q 。进一步证明,若Q ?为幺正的,则体系可能有相应的守恒量存在。 解:设有线性变换Q ?,与时间无关;存在逆变换1?-Q 。在变换 若体系在此变换下不变,即变换前后波函数满足同一运动方程 ?''?t t i H i H ?ψ=ψ?ψ=ψ h h 进而有 2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R z e ρ的矩阵表示。 解: 'cos sin 'sin cos 'O xyz z d x x d y d y x d y d z z θθθθθ -=+=-+=考虑坐标系绕轴转角 用矩阵表示 '10'10'00 1x d x y d y z z θθ?????? ? ???=- ? ??? ? ?????? ??? 还可表示为 '()z e r R d r θ=r 3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n ρ 转θ d 角, 在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψρ =。试导出转动算符),(θd n U ρ 的表达式,并由此说明,若体系在转动),(θd n U ρ 下保持不变,则体系的轨道角动量为守恒量。 解:从波函数在坐标系旋转变换下的变化规律,可导出旋转变换算符

()z e U d θr 利用 (')()()z e r U d r θψ=ψ 及 (')()r Rr ψ=ψr r 可得 ()1z e z i U d d L θθ=-r h 通过连续作无穷多次无穷小转动可得到有限大小的转动算符 绕任意轴n 转θ角的转动算符为 1U U U -+=? 为幺正算符 若 (')()()z e r U d r θψ=ψr r r 则必有 1 (')()()()()[,] z z e e z H r U d H r U d i H r d H L θθθ-==+r r r r r h 若哈密顿量具有旋转对称性,就有[,]0z H L =→角动量守恒 4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋 1=S 。 解:矢量函数在旋转变换下 后式代入前式 '(')(')[](')[](')x x y y x y z z r r e d e r d e e r e θθψ=ψ++ψ-++ψr r r r r r r r r r 又 '(')'(')'(')'(')x x y y z z r r e r e r e ψ=ψ+ψ+ψr r r r r r r r 比较得 '(')(')(') ?[1]()[1]()[1]()() x x y z x z y z x y r r d r i i d L r d d L r i d L r d r θθ θθθθψ=ψ-ψ=-ψ--ψ=-ψ-ψr r r r r h h r r h 类似可得 ?'(')()[1]()?'(')[1]()y x z y z z z i r d r d L r i r d L r θθθψ=ψ+-ψψ=-ψr r r h r r h

量子力学教程课后习题答案高等教育

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λh P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

高等量子力学考试知识点

1、黑体辐射: 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。如果一个物体能吸收投射到它表面上的全部辐射,即吸收系数为1时,则称这个物体为黑体。 光子可以被物质发射和吸收。黑体向辐射场发射或吸收能量hv的过程就是发射或吸收光子的过程。 2、光电效应(条件): 当光子照射到金属的表面上时,能量为hv的光子被电子吸收。 临界频率v0满足 (1)存在临界频率v0,当入射光的频率v

7、一维无限深势阱(P31) 8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。 一维无限深势阱给出的波函数全部是束缚态波函数。 从(2.4.6)式还可证明,当n分别是奇数和偶数时,满足 即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是x的奇函数,我们称这时的波函数具有奇宇称。 9、谐振子(P35) 10、在量子力学中,常把一个能级对应多个相互独立的能量本征函数,或者说,多个相互独立的能量本征函数具有相同能量本征值的现象称为简并,而把对应的本征函数的个数称为简并度。但对一维非奇性势的薛定谔方程,可以证明一个能量本征值对应一个束缚态,无简并。 11、半壁无限高(P51例2) 12、玻尔磁子 13、算符 对易子 厄米共轭算符 厄米算符:若,则称算符为自厄米共轭算符,简称厄米算符 性质:(1)两厄米算符之和仍为厄米算符 (2)当且仅当两厄米算符和对易时,它们之积才为厄米算符,因为 只在时,,才有,即仍为厄米算符

相关文档
最新文档