超临界锅炉试题

超临界锅炉试题
超临界锅炉试题

一、填空:(1×30=30分)

1. 我厂锅炉型式为:超超临界参数、变压直流炉、单炉膛、一次再热、平衡通风、露天岛式布置、固态排渣、全钢构架、全悬吊结构、切圆燃烧方式,Π型锅炉

2. 直流炉启动流量指启动时的最低给水流量,一般为25-35%MCR给水流量

3. 锅炉的启动分冷态启动、温态启动、热态启动和极热态启动

4. 锅炉停运有滑参数停运、定参数停运和事故停运三种

5. 直流炉本质特点有:没有汽包、工质一次通过,强制循环、受热面无固定界限

6. 超超临界直流炉启动旁路包括过热器旁路和汽轮机旁路两大部分组成

7. 启动旁路的功能:辅助锅炉启动、协调机炉工况、热量与工质回收、安全保护

8. 内置式启动分离器大致分:扩容器式、启动疏水热交换器式、再循环泵式

9. 发热量指单位质量的煤完全燃烧时所放出的热量

10. 煤的其它性能包括灰的性质、粘结性、煤的耐热性、反应性和可燃性

11. 燃烧分四个阶段:预热干燥、挥发分析出着火、燃烧和燃尽阶段

12. 燃料由缓慢的氧化状态转变为高速燃烧状态的瞬间过程称为着火

13. 燃烧完全的条件充足而又合适的空气量、适当高的炉温、空气和煤粉的良好混合、煤粉在炉内足够的停留时间

14. 灰的熔融性常用灰的变形温度DT,软化温度ST,熔化温度FT

15. 可用软化温度作为煤灰是否结渣的判别界限,当软化温度小于1260℃时为严重结渣煤

16. 水冷壁壁温的影响因素有质量流速、热负荷、含汽率、压力

17. 汽液两相流的四种基本形式:泡状流、弹状流、柱状流和液雾状流

18. 直流炉脉动有:管间脉动、屏间脉动和全炉整体脉动,其中管间脉动是必须避免的一种不正常现象

19. 对第二类沸腾传热恶化起决定影响作用的参数是质量含汽率

20. 过热器和再热器的高温腐蚀有硫酸型腐蚀和钒腐蚀两种

21. 锅炉的辅助设备包括:电袋除尘器、吹灰系统、除灰系统、除渣系统、压缩空气系统、脱硫系统

22. 低NOx燃烧具体方法有:分级燃烧、再燃烧法、浓淡偏差燃烧、低氧燃烧和烟气再循环燃烧

23. 锅炉常用的停炉保养方法有:湿式防腐法、干式防腐法和气体防腐法

24.

二、名词解释(2×5=10分)

1. 直流炉:依靠给水泵的压头将锅炉给水一次通过预热、蒸发、过热而变成过热蒸汽的强制循环锅炉叫直流炉

2. 脉动:是直流锅炉蒸发受热面中的一种不稳定流动现象,是一种不稳定的水动力特性

3. 汽温特性:即汽温随锅炉负荷变化的规律,汽温调节主要是在锅炉变化负荷时进行。对流式过热器与辐射式过热器的汽温特性是相反的

4. 热偏差:并列管组中各管,因各管子的结构尺寸,内部阻力系数和热负荷可能各不相同,因此每根管子中蒸汽的焓增也就不同,这种现象称为热偏差。

5. 水动力特性:是在一定的热负荷条件下,直流炉蒸发受热面中,工质流量G

与流动阻力δP之间的关系

三、简答(4×5=20分)

1. 我厂降低NOX的措施有哪些?

答:1)紧凑燃尽风(CCOFA);2)可水平摆动的分离燃尽风(SOFA);3)预置水平偏角的辅助风喷嘴(CFS)4)水平浓淡宽调节比(WR)煤粉喷嘴。

2. 回转式空预器漏风的原因有哪些?

答:漏风的原因主要有:携带漏风和密封漏风

前者是由于受热面的转动将留存在受热元件流通截面的空气带入烟气中,或将留存的烟气带入空气中

后者是由于空气侧压力大于烟气侧压力,使空气从转动部分和固定部分之空隙漏入烟气侧

3. 直流锅炉的特点有哪些?

答:1)直流锅炉无汽包,工质一次通过各受热面,且各受热面之间无固定界限;2)适用于压力等级较高的锅炉;3)可采用小直径蒸发受热面管,降低锅炉金属耗量且蒸发受热面布置自由;4)蓄热能力低,流动阻力大,给水泵电耗增大,5)给水品质要求高;6)对自动控制系统要求高;7)启停和变负荷速度快,须设旁路系统

4. 热偏差的原因及预防措施有哪些?

影响热偏差因素:工作压力,管组焓增、管圈布置方式以及炉膛中热负荷的分布热偏差与工质进口焓。

减少热偏差的措施:1)设计时尽可能考虑,各、并联管的长度、管径、相同;2)燃烧器的配置以及燃烧调整要尽量使炉内热负荷分布均匀;3)利用节流圈(阀)来减少水力、热力或者结构原因引起的热偏差;4)采取把管屏宽度减小,增加中间混合联箱等。

5. 简述电子称重式皮带给煤机工作原理

答:煤从原煤斗通过煤闸门落入给煤机皮带,由皮带驱动机构转动,将煤输送至给煤机出口管;当煤通过皮带时,由称重辊来测量煤的重量,及给煤机皮带主动轮转一圈时,规定给煤量为一定值,当锅炉负荷变化时,可调整给煤机的转速来增减给煤量。

四、问答(5×8=40分)

1. 我厂锅炉特点有哪些?

1)采用下部螺旋管圈和上部垂直管圈布置的水冷壁结构型式;2)采用较大的炉膛断面和容积,较低的炉膛断面热负荷和炉膛出口烟气温度;3)采用单炉膛四角切圆的燃烧方式;4)采用低NOx同轴燃烧系;5)启动系统采用简单疏水扩容式启动系统;6)过热器采用煤水比加三级四点喷水,再热器采用燃烧器摆动、低负荷过量空气系数调节和在进口装设事故紧急喷水;7)过热器、再热器受热面材料选取留有大的裕度

2. 双进双出磨煤机具有哪些优点?

(1)煤种适应性广、可用率高。特别适用于磨制高灰分、强磨损的煤种,以及挥发分低,要求煤粉细的无烟煤。

(2)备用容量小、维护费用低。其设计坚固、结构简单、故障少。其衬板通常十年以上才需更换,日常运行维护的主要工作就是补充钢球

(3)风煤比低。通常在1.4~1.65之间,一次风的煤粉浓度高,适合于低挥发分劣质煤的燃烧

(4)煤粉细度稳定,不受负荷变化影响,低负荷时煤粉细度更高。

(5)负荷响应迅速。磨煤机出力通过高速进入磨煤机的一次风量控制,几乎可以立即对锅炉的负荷变化做出响应,其对锅炉负荷变化的响应时间几乎与燃油和燃气一样快

(6)短时的给煤中断不影响磨煤机出力。即使两台给煤机同时不能给煤,磨内的存煤量也能维持10分钟的满负荷出力

(7)整个制粉系统加配套风系统在基本出力时运行电耗低,但低负荷时,制粉单位电耗较高

3. 本厂制粉系统有哪些优点?

(1) 可靠性高、可用率高:制粉系统的年事故率不超过1%

(2) 维护简便,维护费用低:只需更换大齿轮油脂和补充钢球

(3) 出力稳定:能长期保持恒定的容量和要求的煤粉细度

(4) 对煤种的适应能力优于其它形式的制粉系统:能有效地磨制坚硬、腐蚀性强的煤。

(5) 储粉能力强

(6) 在较宽的负荷范围内有快速的反应能力

(7) 能保持一定的出口风煤比:在双进双出磨煤机中,通过磨煤机的风量与带出的煤粉量呈线性关系。

(8) 低负荷时依然能保证合适的煤粉细度:在低负荷运行时,由于一次风量减少,相应的风速也减小,带走的只能是更细的煤粉。

(9) 显著的灵活性:对双进双出磨煤机而言,当低负荷运行或启动时,即可全磨也可半磨运行。

4. 影响汽温的因素有哪些?简述本厂过、再热汽温调节方法。

影响过热汽温的因素:1)燃水比:锅炉燃水比增大,过热汽温升高;2)给水温度:给水温度降低,蒸发段后移,过热段减少,过热汽温下降;3)过量空气系数:过量空气系数增大,排烟热损失增大,工质吸热量减少,过热汽温下降;4)火焰中心位置:火焰中心位置升高,炉内辐射吸热份额下降,布置在炉膛上部和水平烟道内的过热器和再热器会因为传热温压增加而多吸热,使其出口汽温升高;5)受热面积灰或结渣:使受热面吸热量减少,过热汽温下降

本厂过热汽温、再热汽温的调节方法:1)过热器的蒸汽温度是由调节煤水比和三级喷水减温来控制,且左右能分别调节;2)再热器蒸汽温度采用烟气挡板调温、燃烧器摆动和过量空气系数调节,两级再热器连接管道上设置微量喷水;再热器采用烟气挡板调温,喷水减温仅用作事故减温,当烟气侧无法调整再热汽温时,可通过喷水进行汽温调节。

5. 高温腐蚀产生的原因是什么?有何危害?如何防止?

原因:受热面上的高温积灰中含有较多的碱性金属,它们与烟气中的氧化硫以及飞灰中的铁、铝等进行较长时间的化学作用,生成碱金属硫酸盐,处于熔化或半熔化状态的碱金属硫酸盐复合物会对过热器和再热器的合金钢产生强烈的腐蚀;当燃料中含有钒化合物(如V2O3)时,燃烧过程中钒化合物(如V2O3 )会进一步氧化成V2O5,当V2O5与Na2O形成共熔体时,熔点降至600ºC左右,易于粘结在受热面上,并反应生成腐蚀性的SO3和原子氧,对过热器和再热器管壁进行高温腐蚀。

危害:高温腐蚀会使管壁变薄,应力增大,加速管子的损坏,严重时引起爆管。防止:1)严格控制受热面管壁温度;2)采用低氧燃烧技术来降低烟气中的SO3

和V2O5含量;3)选择合理的炉膛出口温度;4)受热面采用抗腐蚀、耐高温材料;5)定时对过热器、再热器进行吹灰;6)合理组织燃烧;7)采用烟气再循环;8)使用添加剂;9)高温管壁喷涂防护层。

超超临界机组锅炉高温材料的选择和应用

超超临界机组锅炉高温材料的选择和应用 根据现今全球超超临界机组中百万千瓦级的动态发展情况,分析已有的机组参数。超超临界锅炉用耐高温材料与其参数是紧密联系在一起的,研究并开发应用超超临界锅炉的高效性能、方便加工和经济性新型材料,是未来发展的主要方向。 标签:超超临界锅炉;高温材料;选择及应用 在国民经济稳定持续增长的大背景中,人们不断的增加电力需求和国家实施节能减排的政策,建设容量大、效率快、参数高及节能好的机组是我国电力的发展趋势。提高锅炉的蒸汽压力、温度以及其他参数都能有效提高发电厂的发电效率,其中温度的影响效果最明显。现今国际上超超临界机组的参数为初压力24.1-31MPa,其主蒸汽/再热蒸汽的温度是580℃-600℃/580℃-610℃,用USC作表示。而其使用金属材料的耐高压、耐高温与焊接问题是如何提高蒸汽参数这个问题中所存在的首要技术难题。 1 高温材料的选择 开发具有更好耐高温性的耐热钢是发展高效超超临界火力发电机组的关键技术,让他们适用在更高的温度范围。现今全球在管道及锅炉的用钢发展可大致分为两方向: (1)发展铁素体耐热钢,马氏体、贝氏体及珠光体耐热钢都被统称作铁素体耐热钢; (2)发展奥氏体耐热钢。全球先进国家所研制推广以及普通采用新的耐热钢种有三大类:a.新型细晶强韧化铁素体耐热钢;b.新型细晶奥氏体耐热钢;c.高铬镍奥氏体钢。 2 高温材料的应用 在过热器以及再热器的用钢方面,不仅需要满足蠕变的强度,还必须满足蒸汽侧抗氧化的性能以及向火侧抗腐蚀与冲刷的性能。所有的铁素体钢几乎不能用在蒸汽温度高于565℃的过热器或者再热器中,这里使用奥氏体钢在需要耐高温的部件上。这里对几种高温材料进行详细描述。 2.1 T91/P91 T91具有良好的力学性能,其结构及性能具有较好的稳定性,焊接与工艺性能优良,具备较高的持久与抗氧化性。和TP304H作对比,T91的导热系数相对较高、热膨胀系数相对更低、持久强度中的等强温度相对较好以及等应力温度相对更高,并分别到达625℃及607℃。T91和T9钢作对比,T91的持久强度是

超临界锅炉用钢

超临界、超超临界锅炉用钢 杨富1,李为民2,任永宁2 (1. 中国电力企业联合会,北京100761;2. 北京电力建设公司北京 100024) 摘要:提高火力发电厂效率的主要途径是提高蒸汽的参数即提高蒸汽的压力和温度,而提高蒸汽参数的关键有赖于金属材料的发展。从发展超临界、超超临界机组与发展新钢种的关系以及超临界、超超临界锅炉对钢材的要求,概述了火电锅炉用钢的发展历程以及部分新钢种的性能。 关键词:临界、超超临界;锅炉;材料 2020年全国装机容量将达到9.5亿kW,其中火电装机仍然占70%,即今后17年将投产4.0亿kW左右的火电机组。火电建设将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组。从目前世界火力发电技术水平看,提高火力发电厂效率的主要途径是提高蒸汽的参数,即提高蒸汽的压力和温度。发展超临界和超超临界火电机组,提高蒸汽的参数对于提高火力发电厂效率的作用是十分明显的。表1给出了蒸汽参数与火电厂效率、供电煤耗关系[1]。 表1 蒸汽参数与火电厂效率、供电煤耗关系 机组类型蒸汽压力/Mpa 蒸汽温度/℃电厂效率/%供电煤耗*/kW·h 中压机组 3.5 435 27 460 高压机组9.0 510 33 390 超高压机组13.0 535/535 35 360 亚临界机组17.0 540/540 38 324 超临界机组25.5 567/567 41 300 高温超临界机组25.0 600/600 44 278 超超临界机组30.0 600/600/600 48 256 高温超超临界机组30.0 700 57 215 超700℃机组超700 60 205

超临界锅炉运行技术

超临界锅炉运行技术 4. 超临界机组协调控制模式 (1)CCBF,机炉自动,机调负荷,炉调压力; 能充分利用锅炉蓄热,负荷响应快;主汽压力控制存在较大延迟,降低了主汽压稳定性。 (2)CCTF,机炉自动,炉调负荷,机调压力; 主汽压稳定性好,负荷响应慢。 (3)机炉协调; 机炉同时接受负荷和主汽压力指令,同步响应负荷和主汽压力的变化。 其中:(1)应用最广,(3)的调节器若匹配不当,机炉间容易引起震荡。 3.2.3 600MW超临界机组协调控制策略 1. 被控参数 (1)给水流量/蒸汽流量 因为给水系统和蒸汽系统是直接连通的,且由于超临界锅炉直流蓄热能力较小,给水流量和蒸汽流量比率的偏差过大将导致较大的汽压波动。 (2)煤水比 稳定运行工况时,煤水比必须维持不变,以保证过热器出口汽温为设计值。而在变动工况下,煤水比必须按一定规律改变,以便既充分利用锅炉蓄热能力,又按要求增减燃料,把锅炉热负荷调到与机组

新的负荷相适应的水平. (3)喷水流量/给水流量 超临界锅炉喷水仅能瞬时快速改变汽温.但不能始终维持汽温,因为过热受热面的长度和热焓都是不定的。为了保持通过改变喷水流量来校正汽温的能力,控制系统必须不断地把喷水流量和总给水流量之比恢复到设计值。 (4)送风量/给煤量(风煤比) 为了抑制NOx的产生,以及锅炉的经济、安全运行,需对各燃烧器的进风量进行控制,具体是通过各层燃烧器的二次风门和燃尽风门控制风量,每层风量根据负荷对应的风煤比来控制。 2 协调控制回路 超临界机组蓄热能力相对较小.锅炉跟随系统的局限性较大,对于锅炉和汽机的控制指令既考虑稳态偏差又要考虑动态偏差。为了在机组负荷变化时机炉同时响应,机组负荷指令作为前馈信号分别送到锅炉和汽机的主控系统,以便将过程控制变量维持在可接受的限度内。 汽轮机调节汽门直接控制功率,锅炉控制主汽压力(CCBF),给水流量由锅炉给水泵改变。功率指令直接发送到汽轮机调节汽门,使得功率响应较快。由于锅炉惯性大,负荷应变较慢.为防止汽机调门动作过大锅炉燃烧跟不上,设计了压力偏差拉回逻辑,当压力偏差过大时限制调门进一步动作,直到燃烧满足负荷需求。 在协调控制模式下,主汽压力偏差一直作为限制主汽调门响应负荷需

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

超超临界机组的金属材料介绍

超超临界机组的金属材料介绍 1.1概述 以亚临界火电机组的电厂净效率为基值,蒸汽参数为25MPa/540℃/560℃的超临界火电机组电厂净效率比亚临界火电机组的电厂净效率高 1.6%;27MPa/580℃/600℃超临界火电机组电厂净效率比25MPa/540℃/560℃的电厂净效率高 1.3%;30MPa/620℃/640℃超临界火电机组电厂净效率比27MPa/580℃/600℃超临界火电机组电厂净效率高1.3%;30MPa/700℃/720℃超临界火电机组电厂净效率比30MPa/620℃/640℃超临界火电机组电厂净效率高1.6%。这符合热力学所指出的:热机的初参数越高,效率就越好。因此,随着科技进步,人们不断地在开发更高参数的超临界火电机组。 然而,机组参数的提高,受制于耐高温材料的开发与制造,随着蒸汽参数的提高就要应用更能耐高温的材料。早在50年代末,美国就投运了参数为31MPa/621℃/566℃/566℃的Philo6号和参数为34.5MPa/ 649℃/566℃/566℃的Eddystonel号超超临界机组。这二台机组采用的参数由于超越了当时的材料制造水平,投运后多次出现爆管事故和严重的高温腐蚀等材料问题,不得不降参数运行。原苏联首台超临界机组参数为23.5MPa/580℃/565℃,运行后也多次出现材料方面的问题,不得不把参数降到23.5MPa,540℃/540℃运行。日本发展超临界机组,很注重材料的研究与开发,机组参数稳步推进,超临界、超超临界机组得以顺利发展。上世纪80年代以来,欧洲、美国、日本在超超临界发展计划中,首先实施材料开发的计划。由此可见材料是发展超超临界机组的关键。 20世纪50年代初,日本从欧美引进锅炉用碳钢、钼钢、铬铝钢、18-8型不锈钢和转子用CrMoV钢,从1981年开始分两个阶段实施超超临界发电计划。第一阶段把蒸汽温度从566℃提高到593℃,第二阶段目标是650℃。在材料的开发上,主要是利用过去对9~12%Cr系钢和奥氏体系钢的开发研究成果,进一步开发高强度9~12%Cr系钢代替部分奥氏体钢,开发比原来奥氏体高温强度更高、耐蚀性更好的新奥氏体钢,以及兼顾高温强度和耐蚀性的渗铬管、喷焊管和双层管。全面回顾和进一步研究合金元素Cr、Mo、W、V、Nb、Cu、Co、Cr、Si、C、N、B、Re单独添加和V-Nb、C-N、Mo-W等复合添加的影响,开发了TB9,TB12,NF616,HCM12A,NF12, TP347HFG,Super304H,HR3C,NF709,SAVE25等锅炉用钢;TR1100,TRl50,TR1200,HR1200,TAF65等转子、叶片、螺栓用钢。日本对耐热钢的开发研制是花大力气的,并取得了举世目瞩目的成功。根据近期的研究成果,含钴的铁素体耐热钢(NF12,SAVE12,HRI200,TF650)最高使用温度有望达到650℃.但还需进一步试验。我国发展不同参数的超超临界机组的候选材料示于下表6-1中。 超超临界机组由于蒸汽温度的提高,对材料的耐腐蚀性要求可能会超过对蠕

超临界大型火电机组安全控制技术示范文本

超临界大型火电机组安全控制技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

超临界大型火电机组安全控制技术示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目前,国内装机容量已突破4亿千瓦,引进和建设低 煤耗、大容量的超临界大型火电机组可以提高我国发电厂 的经济性,同时也能满足节能、环保的要求,国内已投产 600 MW、800 MW、900 MW级超临界燃煤机组多台, 邹县电厂2×1000 MW超超临界燃煤机组立项在建。随着 超临界燃煤机组占国内装机容量的比重越来越大,其运行 情况将对电网安全产生很大影响。所以根据超临界大型火 电机组的特点,实施科学合理的安全控制监测,将对确保 电力安全生产发挥积极的作用。 1 超临界机组安全生产的特点 超临界大型火电机组蒸汽参数高(压力≥22.12 MPa、

温度≥540 ℃),和亚临界机组相比在运行过程中存在的问题有所不同。其主要问题有:①过热器进出口的部分管子过度磨损和水冷壁管、再热器管的泄漏,这些问题大多与燃料的含灰量和烟气流速有关;②汽机高压缸第一级叶片根部腐蚀,此种现象在机组投运6~8年后渐渐严重,蒸汽品质是主要的原因;③高压阀门的泄漏问题。 超临界大型火电机组的不可用率(包括强迫停炉、维修与计划停运)的影响因素是多方面的,超临界压力锅炉的不可用率约为汽轮机、发电机和电站辅机的3倍。水冷壁管泄漏是锅炉方面的主要问题,大部分是由于过热所致。管壁结垢和水冷壁中质量流量过低、管内紊流程度不够,使锅炉在高热负荷区发生核态沸腾所引起。造成上述问题的原因大多是锅炉水冷壁无法得到足够的冷却和缺少凝结水除盐设备或除盐设备不完善。水的品质对于超临界机组的可靠运行极为重要。

超超临界锅炉制造技术的研究

超超临界锅炉制造技术的研究 摘要:超超临界锅炉的材料以及结构有其自身的制造特点,要想能够使得超临 界锅炉的制造技术能够实现进一步的发展,就需要在有效掌握超临界锅炉制造工 艺特点的基础上,采取有效的方式来对超超临界锅炉制造技术进行改进,选取合 理的制造技术应用到超超临界锅炉的研制当中,从而使得超超临界锅炉的未来应 用范围更加的宽广。本文将对超超临界锅炉制造技术进行研究。 关键词:超超临界锅炉,螺旋管圈水冷壁,细晶粒不锈钢,集箱管座机械焊超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加 速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的 重要措施。 1超超临界锅炉用钢 超超临界机组蒸汽压力和温度的提高对关键部件材料带来更高的要求,尤其 是材料的高温强度性能、抗高温腐蚀和氧化性能以及高温疲劳蠕变性能。超超临 界机组广泛采用各种低合金高强钢、耐热钢。如水冷壁采用具有优异的焊接性能 的T23和T24,联箱和蒸汽管道主要采用P91、P92、P122等马氏体高强钢,过热器、再热器主要采用P91马氏体高强钢及uper304H和TP347HFG奥氏体耐热钢。 2超超临界直流锅炉制造工艺方案 2.1 集箱制造工艺 超超临界锅炉集箱本体的材料与超临界、亚临界锅炉略有不同,主要体现在 过热器和再热器集箱选用了性能更好的 T P347H、P92 作为集箱本体材料。集箱管径较大、管壁较厚,特别是超长集箱给集箱制造、翻转、吊运及运输等均带来一 定的难度,另外,尤为关键的是所有管座与集箱连接的角焊缝均要求全焊透。根 据以上特点,我们采取了如下措施: (1)针对 TP347H、P92、P91 等钢的焊接难点,避免焊接返修,保证一次合格率,我们新研制了1 台集箱环缝对接的窄间隙自动焊机。此设备能实现不点固焊 装配、全自动氩弧焊打底及细丝窄间隙埋弧焊一次性焊妥,此技术在国内外尚无 先例,系自主创新成果。 (2)对于管径大于 108mm 的管座角焊缝,我们采用机械焊,用先进的工艺装 备保证产品质量。 (3)对于全焊透结构的小管座角焊缝,我们尽量采用自动内孔氩弧焊封底+ 手 工电弧焊焊妥工艺。对有些无法采用内孔氩弧焊设备的长管接头角焊缝,在选用 合理的焊接坡口的同时,我们采用独创的外壁自动氩弧焊打底设备焊接,保证根 部全焊透,然后用手工电弧焊焊妥。 (4)对于超长集箱的翻转、吊运及运输,除了添置必需的工艺装备之外,我们 还制定了一系列的吊运、运输工艺守则及注意事项,防止集箱碰伤、碰坏。 (5)针对 TP347H 不锈钢集箱的制造难点,我们设计制作了焊缝背面气体保护 防氧化工装,选用合理的焊接规范,控制层间温度,减少在敏化温度区域内的停 留时间,并通过焊后稳定化处理解决受焊接热循环影响出现的“贫铬区”间隙。 2.2 “三器”制造工艺 对于蛇形管的制造工艺,无论是超(超)临界机组还是亚临界机组均无明显区别,只是按锅炉容量的大小在管径、壁厚和外形尺寸上有所不同。超超临界锅炉的“三器”管排均为超长、超宽管排,且末级过热器和再热器采用 Super304H、TP347HFG 等细晶粒不锈钢,针对制造中的难点,我们采取如下措施:

超临界超超临界锅炉金属材料

超临界/超超临界锅炉金属材料 1 前言 火力发电行业目前面临两方面的压力,首先市场竞争的加剧需要降低发电成本,另一方面人们对全球环境问题日益关注,要求电厂降低SO X、NOx、CO2的排放,满足严格的环保要求。发展洁净煤发电技术是解决这些问题的关键,就目前以及将来一段时间内,在众多的洁净煤发电技术中超超临界发电技术的继承性和可行性最高,同时具有较高的效率和最低的建设成本。 发展大容量高参数机组,特别是超超临界机组将是我国火力发电提高发电效率、节约一次能源、改善环境、降低发电成本的必然趋势。而这一发展与大量新型耐热合金钢材的开发与应用是分不开的。可以说,电力技术的发展在很大程度上取决于材料技术的发展。开发USC 机组的关键之一,在于开发强度高,耐高温腐蚀、耐汽侧氧化、有良好的焊接和加工性能、经济上比较合理的新型钢材。自二十世纪九十年代以来,日本和欧盟研发了新的高温钢材,并经过试验机组的使用考验,从而扫清了发展汽温达600/610℃USC机组的障碍。 2定义 对于火力发电机组,当机组作功介质蒸汽的工作压力大于水的临界状态点压力 (Pc=22.115MPa)时,我们称之为超临界机组。目前常规的超临界机组蒸汽参数一般为24.2MPa/538/566℃或24.2MPa/566/566℃。 所谓超超临界机组(Ultra Supercritical)是相对于常规超临界机组的蒸汽参数而言的,我国电力百科全书中称:通常把蒸汽压力高于27MPa或汽温高于580℃的超临界机组称为超超临界机组; 目前国外超超临界机组参数为初压力24.1~31MPa、主蒸汽/再热蒸汽温度 580~600/580~610℃。国内正在建设的超超临界机组参数为在容量上分600MW和1000MW 2个等级;在蒸汽参数上,按汽机主汽门入口处计,采用25或26.5 MPa,600℃/600℃,一次再热。目前USC机组在我国发展迅猛,在建的1000MW USC机组已有三个工程6台机组,600MW USC 机组已有二个工程4台机组。还有一些项目正在规划中。 3材料技术在超超临界发电中的作用 超超临界机组相对超临界机组蒸汽温度和压力参数的提高对电站关键部件材料带来了更高和更新的要求,尤其是材料的热强性能、抗高温腐蚀和氧化能力、冷加工和热加工性能等,因此材料和制造技术成为发展先进机组的技术核心。 国际上已经在运营或在设计建设阶段的超超临界机组温度参数大多在566-620℃,压力则分为25MPa、27MPa和30-31MPa三个级别。高的蒸汽参数对电站用钢提出了更苛刻的要求,对锅炉来说具体表现在: 高温强度对于主蒸汽管道、过热器/再热器管、联箱和水冷壁材料都必须有与高蒸汽参数相适应的高温持久强度。 高温腐蚀烟气侧的腐蚀是影响过热器、再热器、水冷壁寿命的一个重要因素,当金属温度提高,烟气腐蚀将大幅度上升,因此超超临界机组中腐蚀问题更加突出。 蒸汽侧的氧化运行温度的提高加剧了过热器、再热器甚至包括联箱和管道等蒸汽通流部件的蒸汽侧氧化,这将导致三种后果:氧化层的绝热作用引起金属超温;氧化层的剥落在弯头等处堵塞引起超温爆管以及阀门泄漏;剥落的氧化物颗粒对汽机前级叶片的冲蚀。因此在过

超(超)临界锅炉的特点

超(超)临界锅炉的特点 一、引言 随着我国火力发电事业的快速发展和节能、环保要求的日趋严格,提高燃煤机组的容量与蒸汽参数,进一步降低煤耗是大势所趋。在这个基础上,节约一次能源,加强环境保护,减少有害气体的排放,已越来越受到国内外的高度重视。超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的重要措施。尽管在同等蒸汽参数情况下,联合循环的效率比蒸汽循环的效率高10%左右,但是,由于PF-BC和IGCC尚处于试验或示范阶段,在技术上还存在许多不完善之处,而超临界技术已十分成熟,超超临界机组也已批量投运,且积累了良好的运行经验,国外已有一套完整而成熟的设计、制造技术。因此,技术成熟的大容量超临界和超超临界机组将是我国清洁煤发电技术的主要发展方向,也是解决电力短缺、能源利用率低和环境污染严重等问题的最现实和最有效的途径。 超超临界压力锅炉的关键技术是多方面的,在材料的选择、水冷壁系统及其水动力安全性、受热面布置、再热系统汽温的调控等多方面均存在设计和制造上的高难技术。 二、超(超)临界锅炉的特点 超临界机组区别与普通机组主要有以下特点: 1、蒸汽参数的选择 机组的蒸汽参数是决定机组热经济性的重要因素。一般压力为16.6~31.0MPa、温度在535~600℃的范围内,压力每提高1MPa,机组的热效率上升0.18%~0.29%:新蒸汽温度或再热蒸汽温度每提高10℃,机组的热效率就提高0.25%~0.3%;因此提高蒸汽参数是提高机组热效率的重要途径。目前超超临界与超临界的划分界限尚无国际统一的标准,下表列举了一些发达国家的典型机组的参数[1]。 现在常规的超临界机组采用的蒸汽参数为24.1MPa、538℃/566℃。一般认为蒸汽压力大于25MPa,蒸汽温度高于580℃称为超超临界。研究分析[2]指出对600/600℃这一温度等级,当主汽压力自25MPa升高到28MPa,锅炉岛和汽机岛的钢耗量将分别增加3.5%和2%。此外主汽压力28MPa时,汽机低压缸末级叶片排汽湿度将达到10.7%,已接近采用一次再热的极限值。 有文章表明[3]我国今后重点发展的超临界机组的参数将为汽机进口参数24.2MPa/566℃/566℃,锅炉的出口参数则为25.4MPa/571℃/569℃;超超临界机组的参数为汽机进口参数26.25MPa/600℃600℃,锅炉出口的参数则为27.56MPa/605℃/603℃;机组容量将主要为600MW和1000MW两种。

1000MW超超临界燃煤火力发电机组塔式锅炉尾部垂直段烟道施工关键技术研究与应用

1000MW超超临界燃煤火力发电机组塔式锅炉尾部垂直段烟 道施工关键技术研究与应用 摘要:外高桥电厂三期工程1000MW超超临界燃煤火力发电机组为塔式锅炉, 其尾部烟道垂直段上平面安装标高为84.8m,直径12.5m整体长度约61m,重量 为350t(包括保溫及外装板)。采用液压提升装置地面组合整体吊装,使原来大 量必须在高空完成的工作转移到了地面,降低了施工的难度和危险性,提高了安装效率,节约了施工成本,并能更好地保证安装质量。 关键词:塔式锅炉尾部垂直段烟道液压提升 一.前言 根据现场情况和施工进度及质量的要求,使用公司开发的由柳州市建筑机械总厂生产的LSD3000-300型液压提升装置配合我公司自主设计制作的吊架等设施,将垂直段烟道、保溫 及外装板采用一次成型的倒装法,在地面进行逐节组装逐节保温及安装外装板,逐节提升并 最后整体提升至就位位置安装。 二.特点 液压提升装置是一种集液压、电气和控制技术为一体的新型起重设备,它能在困难作业 条件下进行特大笨重件垂直提升和安全就位,具有体积小、重量轻、起重能力大、安装简便、自动化程度高、操作简单、安全、可靠和高效等特点。 三.适用范围 大型电站中塔式锅炉尾部垂直段烟道以及大型电站及其他行业中大型组合件安装 四. 施工工艺流程及操作要点 尾部垂直段烟道安装过程中要求炉后从空气预热器到电气除尘器间的烟道支架缓装,在 尾部垂直段烟道安装结束后再进行。垂直段烟道安装前,先将炉膛出口的转折烟道临抛到位,然后安装液压提升装置及进行尾部垂直段烟道的拼装和提升。 4.1设备的布置 根据本体烟道垂直段的设计、提升要求及液压提升装置的安装条件,在锅炉大板梁炉后 的烟道吊梁上安装好液压提升装置的支承架,二台液压千斤顶布置其上,每台液压千斤顶穿 好相应数量的高强度预应力钢索,通过连接装置与烟道两永久吊杆上部相连,组成吊装承力 系统。 4.2 尾部垂直段烟道的拼装位置布置 根据设备供货条件,一节筒身分三段供货,每节筒身高为3米左右,整个垂直段共有十 多节筒体及一节头部异形节组成。尾部垂直段烟道的拼装和提升位置固定在其垂直下方,同 时在炉后设置一烟道拼装平台,进行单节烟道的拼装,即将卷制好的单片钢板拼装成单节烟道,然后拖运到尾部垂直段烟道的拼装和提升位置进行垂直段烟道的拼装。 4.3拼装 4.3.1需要折弯、卷制的零部件,在拼装前按要求进行加工。 4.3.2拼装前,各部件拼装位置,在必要时要做好靠山。 4.3.3拼装时要用专用的起吊夹具,防止起吊时零件变形。 4.3.4拼装时点焊必须由焊工进行,点焊高度不超过焊缝高度的三分之二,点焊长度不小 于50mm。 4.3.5点焊后要清理药皮和飞溅,检查点焊缝外表无裂纹等缺陷。 4.3.6拼装后要进行自检,并填写验收单,由质量员检查验收合格后方可焊接 4.4焊接 4.4.1焊条按规定进行烘培,且应存放在焊条保温筒内。 4.4.2焊工应具备相应的资质才能施焊。 4.4.3焊接前清理焊缝位置的铁锈及其他杂物。 4.4.4焊接时要采取必要的措施,以防止零件因焊接所引起的变形。

超超临界机组介绍

超超临界锅炉介绍 国家政策情况 节能调度 一、基本原则和适用范围 (一)节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。 (二)基本原则。以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。 (三)适用范围。节能发电调度适用于所有并网运行的发电机组,上网电价暂按国家现行管理办法执行。对符合国家有关规定的外商直接投资企业的发电机组,可继续执行现有购电合同,合同期满后,执行本办法。 二、机组发电序位表的编制 (四)机组发电排序的序位表(以下简称排序表)是节能发电调度的主要依据。各省(区、市)的排序表由省级人民政府责成其发展改革委(经贸委)组织编制,并根据机组投产和实际运行情况及时调整。排序表的编制应公开、公平、公正,并对电力企业和社会公开,对存在重大分歧的可进行听证。 (五)各类发电机组按以下顺序确定序位: 1.无调节能力的风能、太阳能、海洋能、水能等可再生能源发电机组; 2.有调节能力的水能、生物质能、地热能等可再生能源发电机组和满足环保要求的垃圾发电机组; 3.核能发电机组; 4.按“以热定电”方式运行的燃煤热电联产机组,余热、余气、余压、煤矸石、洗中煤、煤层气等资源综合利用发电机组; 5.天然气、煤气化发电机组; 6.其他燃煤发电机组,包括未带热负荷的热电联产机组; 7.燃油发电机组。 (六)同类型火力发电机组按照能耗水平由低到高排序,节能优先;能耗水平相同时,按照污染物排放水平由低到高排序。机组运行能耗水平近期暂依照设备制造厂商提供

我国超超临界燃煤机组现状和发展趋势

我国超超临界燃煤机组现状和发展趋势 【摘要】我国是煤炭生产与消费大国,随着社会市场经济的发展,社会的电力需求在不断增大,作为耗煤量高、能源利用率低的典型航呀,发电行业在运行的过程中,由于大量煤炭的燃烧,对环境造成非常严重的污染,积极提升燃煤发电机组的能源利用率非常的必要,本文就主要对我国超超临界燃煤机组的现状及发展趋势进行简单分析。 【关键词】超超临界燃煤机组;发展现状;发展趋势 发电行业与人们的日常生活息息相关,在社会发展过程中发挥着非常重要的作用,但是在火力发电厂运行过程中,伴随着巨大的能量消耗,这不仅会加剧我国的能源危机,还会带来严重的环境污染问题,积极提升超超临界燃煤机组的能源利用率、减少污染物的排放非常的重要,本文就主要针对此予以简单分析研究。 1超超临界燃煤机组的简单介绍 首先对超超临界的参数概念进行简单分析,通常会将水蒸气参数值超过临界状态点的参数值称作超临界参数,并且当水蒸气参数值超出水蒸气参数值,并且升高到一定数值时,就达到了超超临界参数范围中,我国的相关标准中,超超临界状态主要是指,蒸汽压力值大于27兆帕的状态,国内外的大多数发电企业及动力设备制造企业,认为机组的主蒸汽参数满足下列条件之一时,可以将其称之为超超临界机组: (1)机组的主蒸汽压力大于等于27兆帕; (2)机组的主蒸汽压力大于等于24兆帕,并且蒸汽的温度值≥580e。 超超临界机组与普通的燃煤机组相比,其水蒸气的温度、压力等明显提升,这对于机组的热效率的提升具有非常重要的作用,与亚临界机组的效率相比,超临界机组能够提升2%~3%,而超超临界机组的效率能够在超临界机组的基础上,再提升2%~4%,但是在机组使用寿命、运行灵活性、可靠性、可用率等方面与亚临界机组相比没有明显的差别,在二氧化硫、二氧化碳的排放量、能源利用率等方面,超超临界机组是明显优于普通的超临界机组及亚临界机组的。 将超超临界发电技术与其他相关的洁净煤发电技术进行对比分析,其具有这样的优势: (1)超超临界机组的单机容量能够达到1000MW及以上,这与电力工业的大容量机组需求相符; (2)超超临界发电技术具有很高的发电效率,并且其应用高效的除尘技术、低二氧化氮技术及烟气脱硫技术,能够有效降低污染物的排放量,与其他发电技

超超临界机组技术交流2013年会

超超临界机组技术交流2013年会会议报道 一年一度的超超临界机组技术交流年会11月6-8日在天津召开。会议由中国动力工程学会主办、天津国投津能发电有限公司协办、中国电力科技网承办。34位科研院所专家、生产一线技术主管和200多位与会嘉宾交流、研讨。本着宁缺毋滥,好中选好的原则,专家对会前征集的近200篇论文进行审核,精选60篇出版论文集。 中国动力工程学会名誉理事长、原机械工业部副部长陆燕荪题词祝贺:“发挥中国动力工程学会学术优势,依托中国电力科技网站交流平台,凝聚冶金机械电力综合研发成果,推动超超临界机组健康有序发展,促进国家创新驱动战略全面落地,实现装备制造由大变强之中国梦——祝第七届超超临界机组技术交流2013年会圆满成功”。他还给会议提出了宝贵建议。 超超临界机组技术交流2013年会会场 中国动力工程学会原副理事长程钧培主持开幕式。天津国投津能发电有限公司教授级高级工程师郭启刚总经理致欢迎辞并发表“打造五位一体循环经济示范模式,创建高效节能生态环保绿色电站”主题演讲:“我谨代表天津国投津能发电有限公司向大会致以热烈地祝贺,并对出席会议的各位领导、专家和科技工作者表示热烈欢迎和衷心感谢!” 国投北疆发电厂是国家循环经济试点项目,规划建设6台1000MW超超临界发电机组和60万吨/日海水淡化装置,按照三期建设。一期工程建设

2台1000MW发电机组和20万吨/日海水淡化装置,分别于2009年9月24日和11月30日投产发电,首批10万吨/日海水淡化装置于2010年4月26日全部投产,后10万吨/日海水淡化装置已于近期投运。二期扩建工程2台1000MW发电机组和30万吨/日海水淡化装置,目前正在积极筹建。 北疆一期工程投产近4年来,各子项目运行良好,各项技术经济指标都达到了国内外先进水平。截至10月底,实现了工程开工以来2411天长周期安全生产纪录,累计完成发电量454.58亿千瓦时,各项能耗环保指标均达到或高于国家标准。国投北疆发电厂先后获得中国电力优质工程奖、国家循环经济示范项目、全国循环经济工作先进单位、全国五一劳动奖状等荣誉称号。获得2012年度全国火电一千兆瓦机组竞赛一等奖。 天津国投津能发电有限公司教授级高级工程师郭启刚总经理致欢迎辞 左:王峰;右:冯德明 天津国投津能发电有限公司工程师王峰发表“北疆电厂汽轮机优化运行

超临界、超超临界机组发展现状、

超临界、超超临界机组发展现状、趋势和存在问题的分析研究 分析报告 上海电力学院 2009年3月

超临界、超超临界机组发展现状、趋势和存在问题的分析研究 1.引言 按照国家制订的2020年电力发展规划,我国发电装机容量将从目前的约8亿千瓦增加到2020年9亿千瓦,其中燃煤机组比例约占总容量75%左右。由于电力是最大的煤炭用户,要提高煤炭的利用效率,提高燃煤电厂的效率是一个主要途径。 分析国际上燃煤发电技术的发展趋势,将采用两种技术路线来提高效率和降低排放。其一是利用煤化工中已经成熟的煤气化技术,采用整体煤气化蒸汽燃气联合循环技术(IGCC)实现高效清洁发电,其代表技术为IGCC。此技术提高能效的前景很好,但因系统相对复杂而造成投资偏高的问题需要解决。目前正在烟台电厂建设一台300或400MW等级的IGCC示范机组,为今后的发展作好技术储备。另一个发展方向是通过提高常规发电机组的蒸汽参数来提高效率,即超临界机组和超超临界机组。超超临界机组在发达国家已经实现了大容量、大批量生产。通过努力我国可以较快实现国产化能力,降低设备成本。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降 1.4%~1.6%。 亚临界机组的典型参数为16.7MPa/538℃/538℃,其发电效率约为38%。超临界机组的主蒸汽压力通常为24MPa左右,主蒸汽和再热蒸汽温度为538~560℃;超临界机组的典型参数为24.1MPa/538℃/538℃,对应的发电效率约为41%。超超临界机组的主蒸汽压力为25~31MPa,主蒸汽和再热蒸汽温度为580~610℃。超临界机组的热效率比亚临界机组的高2%~3%左右,而超超临界机组的热效率比超临界机组的高4%左右。并且超超临界机组技术具有继承性好,

660MW超超临界锅炉技术特点及分析

2010年第2期(总第59期) 2010年4月 收稿日期:2010 02 01 第一作者简介:李亚峰,1974年生,男,山西长治人,1996年毕业于太原电力高等专科学校热能与动力工程专业,工程师。 工作研究 660M W 超超临界锅炉技术特点及分析 李亚峰, 薛青鸿 (国华陈家港发电有限公司,江苏 盐城 224631) 摘 要: 介绍了国华陈家港电厂660M W 超超临界锅炉水冷系统、启动系统、低NO x 燃烧器等的主要技术特点。指出,该型号锅炉在节能减排、环境保护等方面有显著的技术优越性。关键词: 超超临界锅炉;技术特点;系统 中图分类号: T K 229 文献标识码: A 文章编号: 1674 3997 (2010)02 0018 03 Analysis on Technical C haracteristics of 660MW Ultra Supercritical Boiler LI Ya feng,XU E Qing hong (GuoHua Chenjiagang Power Generation C O.,LTD.,YanC heng 224631,Jiangsu,Chi na) Abstract:T his paper analyzed 660M W ultr a supercritical boiler technical characteristics of Guohua Chengjiag ang pow er plant.T he unit showed a more significant technical super iority on energ y saving emission r eduction,and enviro nment friendly among ul tra supercritical units throug h analyzed t he technical characteristics of water cooling system,boot,low N ox Burner etc.Key words:ultra supercr itical boiler;technical character istics;system 0 引言 中国以火电为主的电力结构,决定了节能减排的重点是煤炭的清洁利用。大力发展大容量、高参数超超临界机组是中国可持续发展、节约能源、保护环境的重要措施之一。 国华陈家港电厂一期2台660MW 超超临界锅炉是上海锅炉厂有限公司在消化吸收ALST OM 公司超超临界锅炉设计制造技术的基础上,结合超超临界机组参数、锅炉燃煤的特点及用户的特殊要求自行设计的660MW 超超临界机组锅炉。笔者在介绍该型号锅炉承压部件、燃烧系统、启动调节等方面独特技术特点基础上,指出其在节能减排、提高能效方面的优越性和发展前景。 1 总体介绍 陈家港电厂2台660M W 超超临界锅炉采用的是超超临界参数变压运行螺旋管圈与垂直管屏直流炉结合、单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、 型露天布置,固态排渣,全钢架悬吊结构。额定工况及BM CR 工况主要参数见表1。 炉膛上部布置有分隔屏过热器和后屏过热器,炉膛折焰角上方布置了高温过热器,水平烟道布置了高温再热器,尾部烟道为并联双烟道,后烟井前烟道布置 有低温再热器、后烟道布置有低温过热器,在低温再热器和低温过热器管组下方布置有省煤器,省煤器的型式与常规机组一样。 表1 额定工况及BM CR 工况主要参数 名称单位额定工况 BM CR 工况 过热蒸汽流量t/h 1940 2037 过热蒸汽出口压力M Pa 26.0326.15过热蒸汽出口温度 605605再热蒸汽流量t/h 16291716再热蒸汽进口压力M Pa 5.84 6.16再热蒸汽进口温度 377386再热蒸汽出口压力M Pa 5.66 5.97再热蒸汽出口温度 603603给水温度 294 298 锅炉燃烧系统,按中速磨冷一次风直吹式制粉系统设计。24只直流式燃烧器分6层布置于炉膛下部四角,煤粉和空气从四角送入,在炉膛中呈切圆方式燃烧。 过热器汽温通过煤水比调节和三级喷水来控制。再热器汽温采用烟气挡板调温、燃烧器摆动和过量空气系数的变化调节,两级再热器之间连接管道上设置微量喷水。 2 技术特点及分析 2.1 省煤器及水冷系统 超超临界锅炉采用一级省煤器,并联布置在后烟井中,分别在低温再热器和低温过热器的下部。给水由锅炉左侧单路经过电动闸阀和止回阀后进入省煤器 18

1000MW超超临界机组塔式锅炉安装工艺的创新与应用

1000MW超超临界机组塔式锅炉安装工艺的创新与应用 发表时间:2018-06-21T11:12:30.620Z 来源:《防护工程》2018年第4期作者:陈坚 [导读] 海外高桥电厂三期工程为国产首座采用塔式锅炉的百万等级燃煤机组,其安装技术难度和安装工作量都是空前的,对于锅炉安装带来了新的安装理念和安装方法。 陈坚 上海电力安装第一工程有限公司 摘要:上海外高桥电厂三期工程为国产首座采用塔式锅炉的百万等级燃煤机组,其安装技术难度和安装工作量都是空前的,对于锅炉安装带来了新的安装理念和安装方法。 关键词:锅炉钢结构主钢架辅钢架受热面吊装锅炉安装液压提升装置 1 概况 上海外高桥电厂三期工程建设规模为2×1000MW超超临界凝汽式燃煤机组,为国产首座采用塔式锅炉的百万等级燃煤机组,对其安装在国内也是第一次,而且施工工期短,因此其安装技术难度和安装工作量都是空前的。我们根据工程的特点,在锅炉安装中通过自主创新,采用新工艺、新技术,确保了工程的建设进度和安装质量。 2 锅炉安装的技术难点 2.1 主钢架的件数少,重量重,高度高,同时在安装过程中,存在安装主钢架、辅钢架不同步的状况;另一方面左右辅钢架上部和炉前副钢架为悬吊结构,此种结构在以前从没有碰到过,这使得吊装的难度系数和安全风险大大增加。目前国内大型火电站锅炉主钢架的吊装都是选择在锅炉左右两侧装设两台塔式起重机,因此主横梁、大板梁等一些超大、超重构件就必须依靠两台塔式起重机进行双机抬吊完成,对两台吊机的操作协调要求很高;而且两台塔式起重机的顶升工作必须依靠两侧辅钢架进行支撑,副钢架如果不同步及时跟进,将影响主钢架的安装工作。如果主、辅钢架均完成后再进行受热面的安装,因辅钢架构件数量多,将严重影响锅炉安装的总体进度。 2.2 传统的刚性梁安装方法就是在锅炉主辅钢架安装完成后,将单根梁用起重机与卷扬机配合临抛到对应标高的主钢架上用钢丝绳临时悬吊,等炉顶管排和四周水冷壁安装完成后,再把原先临时悬吊在主钢架上的刚性梁至上而下地用手拉葫芦一根一根安装在水冷壁管排上,然后施工人员利用高空搭式的脚手架用螺栓或电焊进行最终的固定,这样的安装方法不仅费时、费材料,而且高空作业比较危险。本锅炉垂直段刚性梁总重541534kg、螺旋段刚性梁总重567868kg、底部灰斗刚性梁总重235685kg,其中最重刚性梁单根宽度达2m以上,重为25t,总计大小刚性梁800余根,用传统的临抛方法无法满足施工要求和进度。 2.3 塔式锅炉为单炉膛,炉膛内部受热面组件数量多,如果按照常规方案,由布置于锅炉两侧的塔吊实施炉膛内部受热面组件安装,则所有受热面组件需要长时间临抛,大大增加了临抛索具的数量,同时焊接和热处理等安装工作都在高空完成,既大大增加了高空作业的安全风险,又大大增加了高空作业的质量风险。 2.4 由于整个锅炉炉膛几何尺寸大,如何设置螺旋水冷壁安装作业平台及控制安装中螺旋水冷壁的偏移难度很大。 3 塔式锅炉安装工艺的创新与应用 3.1 锅炉钢结构吊装新工艺 图1锅炉安装起重机布置 1)锅炉钢结构概况 锅炉钢架全部采用钢结构,由主钢架、辅钢架、炉顶大板梁和平台扶梯四大部分组成。主钢架部分由四根断面尺寸为2.5×2.5m箱体结构的主立柱及K字型横梁斜撑构成,柱顶标高121.19m,主立柱最重件为101.5t,主横梁共五层,最重件为98.9t,斜撑均为八字布置,最重件为50.3t。锅炉大板梁安装顶标高为127.56m,每根大板梁总重为372.441t,分上下两层由9个构件组成,吊装时组件最重为104t。 2)起重机的选择和布置的创新 根据锅炉的特点和安装工期要求,我们优化了常规的钢架吊装方案, 如图1所示,在炉架中央布置了一台M1280D自升式塔式起重机,其最大 起重量达到140t,这样的吊机选择布置方案,给我们的施工带来了以下的 优点: 1)该吊机布置在炉膛内部,满足了主钢架以及大板梁各个构件的单机吊装,避免了以往双机抬吊带来的安全隐患。2)该方案使主钢架的安装完全独立,不受辅钢架的限制,主钢架安装结束后可立即进行锅炉受热面的安装工作。 3)锅炉主钢架吊装自制专用吊具的研制与应用 为了便于主钢架吊装和保证主钢架吊装的安全性,根据本次工程主钢架的特点,自制了吊装所用的吊具。采用炉膛中间单机布置M1280D塔式起重机与自制吊具配合进行垂直吊装,使主钢架的吊装更简洁和安全,保证各构件吊装的精确一次就位。

相关文档
最新文档