光谱仪选型标准版

光谱仪选型标准版
光谱仪选型标准版

选购光谱仪遵循性能价格比最高、故障率最低、适应性最强、售后服务最好的原则。1,分辨率带宽:分辨频率间隔很窄的两个相邻光信号的能力。

2,动态范围:测量强信号附近的弱信号的能力。

3,波长精度:测量波长相对于实际波长的差。

4,分辨率:分辨率是测量精度的表现形式。

5,信噪比:抗噪声干扰的能力。

6,波长:确定光谱仪分析光谱波长范围。

7,焦距:高端光谱仪(实验室级别)的光栅焦距通常在500mm以上。

8,激发频率:激发光源的激发频率通常可调,仪器对基体的适应性越广,根据基体里面的元素设定最佳的放电条件。

9,激发电压:在常规样品的分析过程中,对激发电压没有特殊的要求。但对于某

些特殊样品,如较薄的金属材料而言,由于样品厚度较薄,使用平常的激发电压会将样品烧穿,所以降低激发电压是必要的。

10,激发条件:金属材料中所含有的元素是十分复杂的,不同元素对激发条件的要求也大不相同。

11,电极的清洗方式:目前各光谱仪厂家激发光源均采用单向放电技术,但每次

激发后样品蒸发物会覆盖在对电极表面,一方面影响电极的放电效果,另一方面会引进非测定物质的信号进入检测器,从而影响分析数值。以前的直读光谱仪每测一个样品要用铁刷子刷洗电极一次,影响分析速度,对钨电机表面也会造成损伤。

12,谱线级次:金属材料中的每一个元素在激发条件下,都会产生一系列的谱线,其中最少的元素有16 条谱线。这些谱线的级次是有差别的,其中以一级谱线的波长

最短、能量最强、灵敏度最高、定量精度最好。但光谱仪能否使用一级谱线进行工作,主要由仪器的分辨率来决定。

13,仪器的焦距与分辨率的关系:光谱分析仪器的焦距是影响仪器分辨率的重要

因素之一,但不是唯一的因素。对于直读光谱仪而言,光栅色散率倒数和出射狭缝乘积就是该仪器分辨率的具体数值。在其它条件相同的情况下,增大焦距虽然可以提高仪器的分辨率,但由于光程的增加,能量会大幅度降低,最终结果是损失了仪器的灵敏度。

14,光栅:光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。

光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。相比较而言,全息光栅刻线条数比较高,刻线条数越高,光栅分光性能越好。另一方面,全息光栅在制作的过程中可以有效减少每一条刻线上缺口,从而大大降低光栅的杂散光。第三,全息光栅不存在机刻光栅中常有的鬼线,从而有效降低分析误差的产生。

15,真空型与充气型光室:真空型与充气型光室的技术金属材料中很多需要测定的元素的分析波长均处于200nm 以下,在这一波长区间内,空气中的氧及有机化合物

会对这些谱线产生强烈的吸收,所以需要将光室中的空气除去。将光室抽成真空,可有效避免吸收造成的光强下降,从而保证仪器的灵敏度。而且,真空型光室还省去了充气型(充氮气)光室仪器在日常使用中对高纯氩气的消耗和定期更换氩气净化器所需要的费用。对于真空型光谱仪,随着闪速快门及高性能分子筛的应用,真空室受到油污染的问题已得到根本性解决,实际调研情况也证明了这一点。

16,光学室恒温:光学室恒温直读光谱仪采用的光学系统是在纳米级波长下进行

测量,光学系统微小的变化就可导致测量波长的漂移,影响仪器的精度和长期稳定性,情况严重时,甚至会产生错误的结果。所以使用带有恒温光学室的仪器会得到更好地分析结果。

17,PDA技术与全积分技术: PDA技术与全积分技术目前市场上存在的直读光谱仪所使用的积分方法一共有两种:一种是传统的全积分方法;另一种是脉冲分布积分( PDA)方法。 PDA技术是将激发时的每一个脉冲记录下来,并按时间顺序排列,将脉冲按高低频数制作分布图,依据数学统计的原则,选择正常激发信号来进行积分。这种技术的优点在于:1)可以有效提高元素的分析精度和分析下限;2)可以将样品中固溶元素和非固溶元素区分开; 3)大大降低由于样品缺陷而导致的分析误差。

18,酸不溶铝的测定:酸不溶铝的测定对于冶金企业来讲,金属夹杂物是无法避免的, 对于钢铁企业来讲,影响最大的金属夹杂物是 Al2O3。Al2O 在钢材中通常以两种形式存在;即酸溶铝(sol Al)和酸不溶铝(in sol Al),其中酸不溶铝在钢材中的含量将直接影响钢材的延展性,所以对酸不溶铝含量的测定是十分必要的。传统的全积分方式无法直接测定样品中的酸不溶铝,只能使用软件计算的方法(2B-A 方法)来得出结果。

19,光电倍增管:光电倍增管目前全世界所有光学仪器制造公司使用的光电倍增

管都是日本滨淞公司所生产的,但滨淞公司与日本本国光学仪器制造厂商的合作是最紧密的,提供给所有日本制造商的产品都是单独设计制造的,而且不对其它公司销售。

20,CCD:CCD最早主要应用于数码相机和手提摄录机等产品。采用 CCD 会降低光电直读光谱仪的生产成本及减小仪器体积。没有涂层(有机萤光膜)的检测范围为400nm—700nm,镀了有机萤光膜以后,才能检测C,P,S等非金属元素,有机荧光膜的劣势:一是引起光的损失,二是有机萤光膜使用寿命大约为3年,使用寿命短,更换价格昂贵。其次 CCD 最大的优点是全谱,可以很方便地增加检测元素的种类。体积小、便宜,但是感光能力、检测精度、稳定性差,且不适合分析高含量合金元素。

21,现场曲线与工厂曲线:现场曲线与工厂曲线目前市场上有两种标准曲线方式,

一种是现场工作曲线,即在现场使用相应的标准样品来制作工作曲线,另一种是工厂工作曲线,即在工厂将多种工作曲线与操作软件捆绑好,仪器安装调试后固化在计算机内。不同的用户样品区别非常大,对于我们而言,如果将来上品种钢项目,样品之间的差别会更大,特别是产品开发阶段。所以需要的工作曲线也会是多种多样的。使用现场工作曲线可以根据我们的样品来确定所使用的标准样品,数据准确性和工作灵活性会更好。

22,激发光源:从源头上提高直读光谱仪的性能。目前大多数光电直读光谱仪器都

采用了“数字化光源”,“这里的‘数字’并不是真正意义上的‘将模拟信号转换为表示同样信息的数字信号’,它只是相对于模拟电路光源激发能量不可控制而言。数字化光源,其触发电压、关断时间都是可控的,因此激发能量稳定,并且呈周期性的变化,因而从源头上提高了光电直读光谱仪的精度。数字化光源是光谱仪的性能一个发展趋势,其最大的优势是免维护,另外信号输出的稳定性和之前的模拟光源相比有了很大的提高。对数字化光源的应用,目前光电直读光谱仪中耗时最长、最不稳定的是激发光源,虽然现在采用数字化光源,但并未实现完全可控。已有一些厂商在尝试利用激光光源做激发源,虽然稳定性可控,但要求激光的能量非常高,满足条件的激光器存在着体积大、造价高的问题,需要进一步的研发。

23,光学系统:保证分辨率和灵敏度的同时,实现光学系统设计越来越小型化。传统的光谱仪光学系统采用帕型-龙格结构,体积比较大,随着光学技术不断发展,

光电直读光谱仪体积减小,环境适应性的增强,将会促进光电直读光谱仪在线控制生产过程以及进行现场作业,实现光学系统设计越来越小型化,但灵敏度和分辨率依然

很好。光学系统:1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。

2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级

的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。

24,自动化系统:实现全分析过程的标准化,缩短分析周期。随着钢铁冶金企业管理现代化、装备大型化、生产高速化的不断发展,全自动分析设备逐渐成为冶炼过程品质管理和控制的主要手段。自动化系统在国外发展比较早,一是人工成本高;二

是人员管理困难。在我国随着国家钢铁行业的发展,劳动力成本的提升,自动化系统也逐渐被大家接受。这个市场很大而且发展很快,自动化技术可以实现全分析过程的标准化,确保快速、可靠、稳定的分析结果。此外,光电直读光谱仪使用中面临的一个问题是操作人员流动性比较大,自动化系统化将可以很好地解决这个问题。利用自动化技术,可进行送样、制样以及样品分析时间的优化组合,缩短分析周期。

直线电机运用

直线电机主要应用于三个方面: 一是应用于自动控制系统,这类应用场合比较多; 二是作为长期连续运行的驱动电机; 三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。 本期讨论直线电机的运用 Linear motor: 直线伺服电机应用 昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me 工业之美

什么是直线电机特点 1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及 其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子 加速器、制造武器等。2.直线电机是如何工作的 下面简单介绍直线电机类型 和他们与旋转电机的不同,最 常用的直线电机类型是平板式, U型槽式和管式。线圈的典型组 成是三相,有霍尔元件实现无刷 换相,直线电机用HALL换相的 相序和相电流。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固 定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度) 和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙 (airgap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋 转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直 线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 3.直线电机分类 管状直线电机 圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以 增加行程。典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。推力 线圈是圆柱形的,沿磁棒上下运动。 U型直线电机 U型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统 支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。 非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空 气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通 泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害 平板直线电机 有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选 择时需要根据对应用要求的理解。无槽无铁芯平板电机是一系列coils安装在一个铝板上。由 于FOCER没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有 助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度 平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨 具有高的磁通泄露。 无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片 结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸 力和电机产生的推力成正比,迭片结构导致接头力产生。 无槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。 铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可 以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。 加工产品对比

电机减速器的选型计算实例

电机减速器的选型计算 实例 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机减速机的选型计算1参数要求 配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm,链轮齿数为27,(详见misimi手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 其中: 所以: 合力产生的力矩: 其中:r为链轮的半径 链轮的转速为: 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 初选电机为松下,3000r/min,额定扭矩为:9.55Nm,功率3kw转子转动惯量为 7.85X10-4kgm2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

转换到电机轴的转动惯量为: 惯量比为: 电机选型手册要求惯量比小于15,故所选电机减速器满足要求 减速机扭矩计算方法: 速比=电机输出转数÷减速机输出 ("速比"也称"传动比")知道电机功率和速比及,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

电机选型计算-个人总结版(新、选)

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) BP:丝杠螺距(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) D:小齿轮直径(mm) 链轮直径(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) J1:转盘的转动惯量(kg·m2) W:转盘上物体的重量(kg) L:物体与旋转轴的距离(mm) GL:减速比(≥1,无单位) 4 电机选型总结 电机选型中需引入安全系数,一般应用场合选取安全系数S=2。则电机额定扭矩应≥S·T b;电机最大扭矩应≥S·T。同时满足负载惯量与电机惯量之间的比值≤推荐值。 最新文件仅供参考已改成word文本。方便更改

近红外光谱仪主要性能指标及研究进展

综 述 近红外光谱仪主要性能指标及研究进展 张 琳1 周金池2 (11北京林业大学林学院森林保护系,北京,100083;21北京林业大学分析测试实验中心,北京,100083) 摘 要 介绍了近红外光谱仪的主要性能指标;对国内外在仪器硬件、测样附件、软件开发及新型仪器研制等方面的进展作了评述。总结了我国近红外光谱仪发展的成就与不足。讨论了近红外光谱仪的发展趋势,特别是我国近红外光谱仪发展中的关键问题。 关键词 近红外光谱仪 性能指标 国内外进展 资助项目:北京林业大学/211工程0三期研究生创新人才培养建设计划子项目。 作者简介:张琳,女,北京林业大学森林保护系在读硕士生。E -mail:Zhanglin20051986@https://www.360docs.net/doc/5c4328225.html, 通讯联系人:周金池,男,汉族,1971年出生,山东省德州市人,副教授,专业方向:仪器分析与造林新技术的应用。E -m ail:zjc@https://www.360docs.net/doc/5c4328225.html, 1 引 言 近红外(NIR)光谱仪是近年来发展较为迅速的一种高新分析测试技术,是光谱测量技术、计算机技术、化学计量学技术与基础测量技术的有机结合。与传统分析技术相比,近红外光谱仪具有无损检测、分析效率高、分析速度快、分析成本低、重现性好、样品测量一般勿需预处理、光谱测量方便、适合于现场检测(如大批量抽检)和在线分析等独特优势[1] 。 NIR 光谱仪的类型较多,主要有滤光片型、发光二极管(LED)型、光栅色散型、傅里叶变换干涉仪型、声光可调滤光片型(AOTF)、多通道检测型(二极管阵列PDA 、电荷耦合器件CCD)等[2]。光栅色散型仪器又可分为扫描-单通道检测器和固定光路-阵列检测器两种类型。除了采用单色器分光以外,也有仪器采用多种不同波长的发光二极管(LED)作光源,即LED 型近红外光谱仪。尽管我国NIR 光谱仪硬件研制相对较晚,但以上提到的6种类型NIR 光谱仪,在我国都有相关单位进行研发[3]。 2 近红外光谱仪器的主要性能指标 211 分辨率 近红外光谱仪的分辨率是指仪器对于紧密相邻 的峰可以分辨的最小波长间隔,表示仪器实际分开相邻峰的能力,即M /$M 或(K /$K ),M 为两峰中任一峰的波数,$M 为两峰波数之差。它是仪器的最主要指标之一,也是仪器质量的综合反映。仪器的分辨率主要取决于仪器分光系统的性能。对于色散型仪器而言,其分辨率取决于分光后狭缝截取的波段精度,狭缝越小截取的波段越窄,分辨率越高。但随之而来的是能量急剧下降,灵敏度不断降低,为了兼顾检出灵敏度,就不能以无限制地缩小狭缝来提高分辨率,因此,要想让色散型仪器既能分辨率达到0.1cm -1,又能得到一张质量良好的谱图是一件很困难的事。而对于傅里叶变换型的近红外光谱仪,由于有多路通过的特点,无狭缝的限制,因此仪器的分辨率仅取决于干涉采样数据点的多少,即取决于动镜移动的距离,由于动镜的移动由激光控制,因此可以很轻松地得到一张高质量、高分辨率的谱图。212 波长准确性 光谱仪波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差(傅里叶变换型红外光谱仪习惯用波数cm -1来表示)。波长准确度一般用波长误差,即上述两值之差来表示。由于近红外分析是用已知样品所建立的模型来分析未知样品的,如果仪器的波长准确度不能保证,则不同测定光谱就会因仪器波长的移动(即x 轴发生了平

电机、减速器的选型计算实例

电机减速机的选型计算 1参数要求 配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s 。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 惯惯2121F F G G F h ++-= 其中: 115009.84900G m g N ==?= 223009.82940G m g N ==?= 110.55002501F m a N ==? =惯 120.53001501 F m a N ==?=惯 所以: 49002940250150 2360h F =-++=

合力产生的力矩: 0.16409 23602 193.6262h M F r Nm =?=? = 其中:r 为链轮的半径 链轮的转速为: 0.5 6.1/0.082 v w rad s r === 6.1 (1/60)58.3/min 22w n r ππ === 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 300051.558.3 d n i n === 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 44193.62 5.9500.9 d M T Nm i η===? 初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

FTIR(傅里叶红外光谱简介)

1、简介: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 2、基本原理 光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 3、主要特点 ①信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 ②重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 ③扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 4、技术参数 光谱范围:4000--400cm-1 7800--350cm-1(中红外) 125000--350cm-1(近、中红外) 最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1 信噪比:15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)

减速机的选型与使用

减速机的选型与使用 一、选型指南 为了选到合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,就必须确定一个使用系数Fb,使用系数Fb. 减速电机的选用首先应确定一下技术参数:每天工作小时数;每小时启停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件; 减速机通常是根据恒转矩、启停不频繁及常温的情况设计的,其许用输出转矩T由下式确定: T=T出X FB使用系数 T出----------减速电机输出扭矩,FB-------减速电机使用系数 传动比i i=n 入/ n出电机功率P(KW) P=T出*n出/9550*η输出转矩T出(N.m)T出=9550*P*η/n 出式中:n入—输入转速η—减速机的传动效率 在选用减速电机时,根据不同的工况,必须同时满足以下条件:1、T出≥T工作机 2、T=FB总*T工作机式中:FB总—总的使用系数,FB总=FB*FB1*KR*KW FB—载荷特性系数,KR—可靠度系数 FB1—环境问的系数; 二、减速机安装注意事项 安装减速机时,应重视传动中心轴线对中,其误差不得大于所用联轴器的使用补偿量。对中良好能延长使用寿命,并获得理想的传动效率。在输出轴上安装传动件时,不允许用锤子敲击,通常利用装配夹具和轴端的内螺纹,用螺栓将传动件压入,否则有可能造成减速机内部零件的损坏。最好不采用钢性固定式联轴器,因该类联轴器安装不当,会引起不必要的外加载荷,以致造成轴承的早期损坏,严重是甚至造成输出轴的断裂。 减速机应牢固地安装在稳定水平的基础或底座上,排油槽的油应能排除,且冷却空气循环流畅,基础不可靠,运转时会引起振动及噪音,并促使轴承及齿轮受损,当传动联件有凸出物或采用齿轮、链条传动时,应考虑加装防护装置,输出轴上承受较大的径向载荷时,应选用加强型。 按规定的安装装置保证工作人员能方便地靠近油标,通气塞、排油塞。安装就位后,应按次序全面检查安装位置的准确性,各紧固件压紧的可靠性,安装后应能灵活转动。减速机采用油池飞溅润滑,在运行前用户需将通气孔的螺栓取下,换上通气塞。按不同安装位置,并打开油位塞螺钉检查有为线的高度,从油位塞处加油至润滑油从油位塞螺孔溢出为止,拧上油位塞确定无误后,方可进行空载试运转,时间不得少于2小时。运转应平稳,无冲击、振动、杂音及渗油漏油现象,发现异常应及时排除。 经过一定时期应再检查油位,以防止机壳可能造成的泄漏,如环境温度过高或过低时,可改变润滑油的牌号。 三、轴装式减速机的安装 1、减速机与工作机的联接 减速机直接套装在工作机主轴上,当减速机运转时,作用在减速机箱体上的反力矩,又安装在减速机箱体上的反力矩支架或由其他方法来平衡,机直接相配,另一端与固定支架联接 2、反力矩支架的安装 反力矩支架安装在减速机朝向工作机的那一侧,以减小附加在工作机轴上的弯矩。 反力矩支架与固定支撑联接端的轴套使用橡胶等弹性体,以防止发生挠曲并吸收所产生的转矩波动 3、减速机与工作机的安装关系 为了避免工作机主轴挠曲及在减速机轴承上产生附加力,减速机与工作机之间的距离,在不影响正

如何进行直线电机选型

如何进行直线电机选型

————————————————————————————————作者:————————————————————————————————日期:

直线电机选型 ——最大推力和持续推力计算

目录 直线电机选型 (3) ——最大推力和持续推力计算 (3) 概述 (5) 三角模式 (5) 梯形模式 (5) 持续推力 (6) 计算公式 (6) 例子 (7)

概述 直线电机的选型包括最大推力和持续推力需求的计算。 最大推力由移动负载质量和最大加速度大小决定。 推力= 总质量x 加速度+ 摩擦力+ 外界应力 例子:当移动负载是2.5千克(包含动子),所需加速度为30m/s2时,那么,电机将产生75N 的力(假设,摩擦力和外界应力忽略不计)。 通常,我们不知道实际加速度需求,但是,我们有电机运行实际要求。给定的运行行程距离和所需要的行程时间,由此可以计算出所需要的加速度。一般来说,对于短行程,推荐使用三角形速度模式,即无匀速运动,长行程的话,梯形速度模式更有效率。在三角形速度模式中,电机的运动是没有匀速段的。 三角模式 加速度为Acceleration = 4 x Distance / Travel_Time2 梯形模式 需要提前设置匀速的速度值,由此可以推算出加速度。 加速度= 匀速/ (运动时间–位移/ 匀速)

同理,减速度的计算与加速度的计算是类似的,特殊情况是存在一个不平衡的力(例如重力)作用在电机上。 通常情况下,为了维持匀速过程和停滞阶段,摩擦力和外界应力也要考虑进来,为了维持匀速,电机会对抗摩擦力和外界应力,电机停止时则会对抗外界应力。 持续推力 计算公式 持续推力的计算公式如下: RMSForce = 持续推力 Fa = 加速度力 Fc = 匀速段力 Fd = 减速度力 Fw = 停滞力 Ta = 加速时间 Tc = 匀速时间 Td = 减速时间 Tw = 停滞时间 又最大推力和持续推力进行电机的选择。一般情况下,应该将安全系数设置为20~30%,从而抵消外界应力和摩擦力。

减速电机选型指南

选型指南 为了选到最合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,就必须确定一个使用系数fB。 使用系数fB。 减速电机的选用首先应确定以下技术参数:每天工作小时数;每小时起停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件;减速机通常是根据恒转矩、起停不频繁及常温的情况设计的。其许用输出转矩T由下式确定:T=T出 X fB 使用系数 T 出————减速电机输出转矩 fB————减速电机使用系数 传动比i i=n入 / n出电机功率P(kw) P=T出 * n出 / 9550 * η输出转矩T出(N.m) T出=9550* P*η/n出式中:n入——输入转速η——减速机的传动效率 在选用减速电机时,根据不同的工况,必须同时满足以下条件: 1、T出≥T 工作机 2、T=fB总 *T工作机式中:fB总——总的使用系数,fB总 =fB*fB1*KR*KW fB——载荷特性系数,KR——可靠度系数 fB1——环境温度系数; KW——运转周期系数 首先确定要进口减速机还是国产减速机,, 现在不管进口还是国产的大部分厂家都有自己的命名标准, 所以最好找个减速机样本,根据样本来选型。 但是,一定要提供以下数据 1.减速机用在什么设备上,以便确定安全系数SF(SF=减速机额定功率处以电机功率),安装形式(直交轴,平行轴,输出空心轴键,输出空心轴锁紧盘等)等 2.提供电机功率,级数(是4P、6P还是8P电机) 3.减速机周围的环境温度(决定减速机的热功率的校核) 4.减速机输出轴的径向力和轴向力的校核。需提供轴向力和径向力 减速机扭矩计算公式: 速比=电机输出转数÷减速机输出转数("速比"也称"传动比") 1.知道电机功率和速比及使用系数,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数

近红外光谱仪器比较

近红外光谱仪器比较  一 基本构成   近红外光谱仪的光学部分由:光源、分光系统、测样附件和检测器等部分构成。  (1)光源 近红外光谱仪器最常用的光源是卤钨灯,性能稳定,价格也相对较低。发光二 极管LED是一种新型光源,波长范围可以设定,线性度好,适于在线或便携式 仪器。  (2)测样附件:液体多使用透射式测量池,也可采用透射式光纤探头。  (3)检测器:可分为 单点检测器和阵列检测器 金陵石化汽油调和的是单点检测器。 在短波区域多采用Si检测器或CCD阵列检测器。  在长波区 多采用PbS 或 InGaAs 或其阵列检测器。InGaAs 检测器的响应速 度快,信噪比和灵敏度高,但响应范围相对较窄,价格也较贵。PbS 检测器的 响应范围较宽,价格约为InGaAs检测器的1/5,但其响应呈较高的非线性。为 了提高检测器的灵敏度,扩展响应范围,在使用时往往采用半导体或液氮制冷, 以保持较低的恒定温度。  二 光谱仪的类型   色散型光谱仪由于固有的缺点:扫描速度慢、分辨率低、信噪比低、重复性差。   检测器的作用:检测光通过样品后的能量。选用检测器要满足下面三点要求:  (1)具有较高的检测灵敏度(2)快的响应速度(3)较宽的测量范围   按单色器分类,市场上存在的NIR光谱仪可分为:滤光片型、光栅色散型、傅里叶变换型(FT)、声光可调滤光器型(AOTF)四类。   除采用 单色器 分光外,也有仪器采用多个不同波长的发光二极管作为光源,即 LED型近红外光谱仪。  1.滤光片型  滤光片型仪器采用干涉滤光片进行分光。光学滤光片是建立在光学薄膜干涉原理上的精密光学滤光器件,利用入射和反射之间相位差产生的干涉现象,得到带宽相当窄的单色光,其半波宽可在10nm以下,基本能达到单色器的分光质量。  优点:采样速度快、比较坚固、可制造现场分析的手提式仪器。  缺点:只能在单一或少数几个波长下测定,波长数目有限,若样品的基体发生变化,往往会引起较大的测量误差。  2.光栅扫描型  原理:光源发出的复色光束,经准直后通过入射狭缝,照射到单色器(光栅)上,将复色光色散为单色光,从单色器出射的不同波长单色光的出射角度不同,通过转动光栅按照波长顺序依次通过出射狭缝,与待测样品发生作用后,到达检测器被检测。  优点:结构不复杂、容易制造。与中红外相比,由于近红外光谱仪区可采用高能量的光源和高灵敏度的检测器,其信噪比较高。  缺点:仪器的分辨率较傅里叶变换型仪器稍差,波长的准确性也有所下降。因光栅转动,不利于仪器的稳定性。  光栅型的新进展:基于MEMS(微电子机械系统)开发出来的新型的近红外光谱仪 3.阵列检测器  固定光路阵列检测器型仪器是20世纪90年代发展起来的一种新型的仪器。  原理:此类仪器多采用后分光方式,即光源发出的光首先经过样品,再由光栅分光,光栅不需要转动,经过色散后的光聚焦在阵列检测器的焦面上同时被检测。

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC (American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

XZ 轴直线电机型号

原机XZ轴直线电机型号分别为: X轴:E43H4Q-05-193 厂家海顿科技 Z轴:43F4J-05-072 厂家海顿科技 规格: X轴:外部驱动式电机43000系列 1.8°固定轴式双极性(4 线) 每步移动0.00096英寸 5 VDC 出轴长度:290mm(256mm)。配丝母。 Z轴:43000系列 1.8°贯通轴式双极性(4 线) 每步移动0.00048英寸 5 VDC 出轴长度:88mm。带轴台。 电机安装孔位:31.04*31.04mm M3 台阶轴为Φ22 混合式直线步进电机编号规则 E 前缀 (只有用到时) E = 外部驱动式电机 P = 加近零传感器 S = 加原点位置 T = 高温电机 43 指定的系列数字 21 = 21000 28 = 28000 35 = 35000 43 = 43000 57 = 57000 87 = 87000 H 步距角代码 F = 1.8°贯通轴式 H = 1.8°固定轴式 H = 1.8°固定轴式(用"E" 表示"外部驱动式") J = 0.9°贯通轴式 K = 0.9°固定轴式 K = 0.9°固定轴式(用"E" 表示"外部驱动式") L = 1.8°双叠厚,贯通轴式 M = 1.8°双叠厚,固定轴式 M = 1.8°双叠厚(用"E" 表示"外部驱动式") 4 极性 4 = 双极性(4 线) 6 = 极性(6 线) N 步长编码 例如: N = 每步移动0.00012英寸 Q = 每步移动0.00096英寸 J = 每步移动0.00048英寸 05 电压例如: 05 = 5 VDC 12 = 12 VDC 客户可定制电压

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

减速电机的选择方法

减速电机介绍: 交流减速电机采用交流单项电容运转电机,配上一种合适的齿轮减速器,达到某种需要的输出,适合于在低速传动装置中作驱动元件,能起到简化机械结构和降低能耗的作用,按其功能分YY型感应电动机和YN型可逆电动机两种,每种还可以增加无极变速的速度控制功能。部分电机还可配带微型电磁制动器。YY型感应电机适用于按一个方向连续运转的工作场合,如生产流水线、自动机床、印刷机械等。YN型可逆电动机适合于频繁启动或换向运转的场合,如自动售货机、包装机、电压调整器、电动升降机、电动执行器等。 G系列小型齿轮减速电机 产品说明 全封闭全寿命机电一体化设计 硬齿面斜齿传动,低噪声、高效率。 整体结构、重量轻,适应性强。 可附加电磁制动器。 功能说明 输出转速:6.9~460r/min 输出转矩:高至1500Nm 电机功率:0.12~4Kw 安装形式:底脚安装法兰安装 ■微型直流(交流)减速电机 本系列产品是由JB系列微型齿轮减速器、电子调速器、可正反向运行的微型电动机三部分组成的机电一体化产品。整机通过对三大部分的不同组合,可获得不同使用性能的产品。整机既可利用齿轮减速箱获得任意固定转速,也可通过电子调速器达到无级调速的目的。本系列产品由于具备减速范围宽广、力能指标高、使用方便、运行可靠等特点,而被广泛应用于各类小型轻工机械、包装、食品、纺织、化妆(美容)机械、印刷设备、仪器及各种自动化设备、生产流水线上。 JB系列微型齿轮减速器采用高精度齿轮,并配油封,O型环密封式齿轮箱,采用润滑脂浴润方式,具有噪音低,使用寿命长、体积小、功率大等特点。减速范围宽广,减速比1:3~1:1500还可根据用户对转速的特殊要求,另行制作。配用的微型电动机分为:微型交流电动机(单相:220V、110V;三相:220V、380V)ZYT(SZ)系列微型直流电动机(机座号:55~110;电压:12V、24V、48V、110V、220V)。WZJ系列无刷直流电动机。 配用调速器分为:TDK系列交流电子调速器;WK、SK系列直流无级调速器。调速平稳、无爬行现象,且能保证电动机的频繁正反转。 ■YTC齿轮减速电机 本产品是为驱动低速转动机械而设计的,具有出轴转速低、力矩大、效率高、噪声小、振动小、结构紧凑牢固、可靠性强、使用方便等特点。广泛应用于矿山、冶金、制糖、造纸、化工、橡胶、粮油、水泥、陶瓷机械等工厂及基建工地。本产品可借联轴器或正齿轮与传动机构相连接。电动机采用满压直接起动。 产品特点及使用范围: YTC系列减速电动机设计优良、结构紧凑、减速方便、运行可靠、防尘防腐、节能省电、易安装维修。适用于轻工、化工、纺织、矿山、冶金、建材、医疗器械。材料加工、造纸、水泥、化肥、塑料、橡胶、纤维制糖、食品、机械等工业部门作驱动减速的机械设备、仪器之用。

电机选型及减速器选型

电机选型—牵引链电机及减速器选型 目的:掌握牵引链电机选型流程,对链条有一定的认识,掌握减速器分类及选型流程 课程内容: 题目:Z型提升机链条总重20kg,车轮箍重32.5kg,一共4工位,链轮直径160mm,提升速度最快0.2m/s,求电机和减速器参数

方法一: 功率确定 P=KFV/效率 K—工况系数一般1.5-3 F—负载力 V—速度 效率—各级传动效率积一般0.5-0.8 M=20+32.5*4=150kg 摩擦性,啮合型 总功率P=KFV/效率 =2*1500*0.2/0.6 =1000w 负载功率=有效功率=fv=1500*0.2=300w 转速确定 N=v/l=0.2*60*1000/160π=24rpm 1M/s mm 1000*60mm/min 减速器减速比 电机转速n=60f/极对数 常用4(2极对数)级电机转速1500rpm 1500/24=62.5

方法二: 扭矩确定 T负载=FR=1500*0.08=120NM K-工况系数2 效率0.6 T必须=TK/效率=400NM 转速确定 N=v/l=0.2*60*1000/160π=24rpm 功率确定

一、电机基础知识 控制电机考虑惯量匹配,因为考虑加速状态 1、普通电机(马达)1440rpm三相异步电动机 微型马达功率40w60w90w120w(外框尺寸90*90) 200w370w750w=1HP 1.5kw=2HP 2.2kw=3HP3kw 供应商:德国SEW日本住友台邦晟邦东方马达川铭 型号列举: 扭矩大,体积和重量大,通常用于输送线体,一般与涡轮减速机搭配使用,精度不高,漏油污染,启动和停止反映迟钝 2、步进电机(STEP MOTOR):425786110130 供应商:雷赛多摩川三洋信浓 精度比私服低,一般小于200-600rpm,不能承受超负载,扭力较小,各方面性能比私服低,价格低 3、伺服电机 750w以下3000rpm 1.0kw以上2000rpm 常用功率200400750 1.0 1.5 2.0 常用品牌:台达三菱多摩川松下亿丰微妙(国产) 私服驱动器:固高华成台达

近红外光谱仪器的发展现状

电子知识 现代近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换和声光可调滤光器(AOTF)四种类型。光栅色散型仪器根据使用检测器的差异又分为扫描式和固定光路两种。在各种类型仪器中,光栅扫描式是最常用的仪器类型,采用全息光栅分光、PbS 或其他光敏元件作检测器,具有较高的信噪比。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太合适于在线分析。 傅立叶变换近红外光谱仪是目前近红外光谱仪器的主导产品,具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动部件,且需要较严格的工作环境。AOTF 是90年代初出现的一类新型分光器件,采用双折射晶体,通过改变频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快,具有较好的仪器稳定性,特别适合在线分析。但目前这类仪器的分辨率相对较低,AOTF 的价格也较高。随着多通道检测器件生产技术的日趋成熟,采用固定光路、光栅分光、多通道检测器构成的NIR 仪器,以其性能稳定、扫描速度快、分辨率高、性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的多通道检测器中,常用的有二极管阵列(Photodiode-array 简称PDA)和电荷耦合器件(Charge Coupled Devices 简称 CCD)两种类型。 国外NIR 光谱仪发展状况:国外便携式近红外光谱仪的研制工作开展的较早,技术也比较成熟。从厂家的网上材料看,NIR 仪器不断向小型化、固态化、模块化和快速实时方向发展。其中典型的有美国的ASD公司的可见/近红外便携式光谱分析仪

Labspec Pro 系列,可选择光谱测量范围1000-1800nm、1000-2500nm、350-2500nm,光纤探头,并配以用于化学计量学模型编程的Unscrambler 标准软件。澳大利亚Integrated Spectronics Pty Ltd 的PIMA (Portable Infrared Mineral Analyzer)是典型的便携式野外岩石矿物NIR 分析仪器。PIMA 系光栅扫描型,光谱范围1 300~2500 nm,仪器重2.5Kg,野外电池供电,外接笔记本电脑。 Ocean Optics Inc.研制生产的USB2000 微型光纤光谱仪(USB2000 Miniature Fiber Optic Spectrometer),有标准组件的光谱仪系统,配以不同的光栅、狭缝、不同的光纤设备等,可检测吸收、反射、发射光谱等,范围200-1100nm。USB2000 整体尺寸为89mm×64mm×34mm,重量在270克左右。 我国NIR仪器的研制起步较晚,90 年代中期,有的厂家在生产傅立叶变换红外光谱仪的基础上,开发生产了傅立叶变换近红外光谱仪器。北京北分瑞利分析仪器有限责任公司(原北京第二光学仪器厂)研制出傅立叶变换型NIR 光谱仪。在多通道近红外光谱仪器的研制方面,石油化工科学研究所研制、深圳英贤仪器公司生产的NIR-2000 型近红外光谱仪已于1998 年9 月通过中国石油化工集团公司鉴定,并进入批量生产。该仪器采用硅基2048 像素CCD 作检测器,波长范围700~1100nm,主要用于多种石油产品组成和性质的分析。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中

相关文档
最新文档