matlab答题卡识别程序

matlab答题卡识别程序
matlab答题卡识别程序

clear all

close all

warning offall

filecounter=input(‘请输入开始的文件序号:’);

students=(‘请输入文件数或学生数:’);

classscore=[];

path='C:\Users\MBENBEN\Desktop\2016年6月月考答题卡检测\195\IMG_20160618_';

filetype=input(‘请输入文件类型:’,’s’);

questiontotal=30;

answer=[2,4,3,2,1,2,2,4,1,3,3,4,3,3,1,4,1,2,3,4,4 ,2,4,1,3,1,4,2,2,2];

while filecounter<=students

score=0;

filename=num2str(filecounter);

file=strcat(path,filename,'.',filetype); answercounter=1;

p=imread(file);

f=rgb2gray(p);

f1=im2bw(f,0.8);

fvertical=~imrotate(f1,-90,'bicubic ');

fvertical=fvertical(:,1:end-25);

[biglong,bigwide]=size(fvertical);

fdownprojection=sum(fvertical); fdownprojectionsmooth=smooth(fdownprojection,30); verticalfz=max(fdownprojectionsmooth)*9/10; fdownprojectionsmooth(fdownprojectionsmooth<=vert icalfz+1)=0;

fdownprojectionsmooth(fdownprojectionsmooth>=vert icalfz-1)=100;plot(fdownprojectionsmooth) verticalruler=[];

verticalrulercounter=1;

while verticalrulercounter

if

fdownprojectionsmooth(verticalrulercounter)~=fdow nprojectionsmooth(verticalrulercounter+1) verticalruler=[verticalrulercounter,verticalruler ];

end

verticalrulercounter=verticalrulercounter +1;

end

verticalrulerarray=fvertical(:,verticalruler(2):v erticalruler(1));

verticalprojection=sum(verticalrulerarray,2); verticalrulerfz=(max(verticalprojection)+min(vert icalprojection))/2;

verticalprojection

(verticalprojection<=verticalrulerfz+1)=0; verticalprojection

(verticalprojection>=verticalrulerfz-1)=100; verticalcounter=1;

verticalruler2=[];

while verticalcounter

if verticalprojection(verticalcounter)~= verticalprojection(verticalcounter+1)

verticalruler2=[verticalruler2,verticalcounter]; end

verticalcounter=verticalcounter+1;

end

rulerarray4=fvertical(verticalruler2(1):verticalr uler2(22),1:verticalruler(2)-40);

rulerarray4level=sum(rulerarray4);

rulerarray4smooth=smooth(rulerarray4level,30);plo t(rulerarray4smooth)

rulerarray4fz=max(rulerarray4smooth)*2/3; rulerarray4smooth(rulerarray4smooth<=rulerarray4f z+1)=0;

rulerarray4smooth(rulerarray4smooth>=rulerarray4f z-1)=100;

ruler4=[];

ruler4counter=1;

[ruler4x,ruler4y]=size(rulerarray4);

while ruler4counter

if

rulerarray4smooth(ruler4counter)~=rulerarray4smoo th(ruler4counter+1)

ruler4=[ruler4,ruler4counter];

else

ruler4=ruler4;

end

ruler4counter=ruler4counter+1;

end

rulerarray4wide=ruler4(end)-ruler4(1);

ruler5=ruler4-rulerarray4wide;

ruler6=[ruler5,ruler4];

verticalruler3= [verticalruler2(29:98)];

ruler3counter=1;

r3=0;

socre=[];

while ruler3counter<70

smalllineoption=fvertical(verticalruler3(ruler3co unter):verticalruler3(ruler3counter+1),:);r3=r3+1 ;

if rem(r3,5)==0

ruler3counter=ruler3counter+4;

ruler3counter=ruler3counter+2;

end

optioncounter6=1;

smalloptionarray=[];

while optioncounter6<5

optionarray=smalllineoption(:,ruler6(optioncounte r6):ruler6(optioncounter6+1));

optionvalue=mean2(optionarray);

smalloptionarray=[smalloptionarray,optionvalue]; optioncounter6=optioncounter6+1;

end

rightoption=max(smalloptionarray);

[optionm,goal,optionl]=find(smalloptionarray==rig htoption);

if goal==answer(answercounter)

score=score+1;

else

score=score;

answercounter= answercounter+1;

end

studentscore=filecounter*100+score;

classscore=[classscore, studentscore];

jdtleft1=ones(50,1000);

jdtleft(:,:,1)=jdtleft1*255;

jdtleft(:,:,2)=jdtleft1*0;

jdtleft(:,:,3)=jdtleft1*0;

jdtright(:,:,1)=jdtleft1*255;

jdtright(:,:,2)=jdtleft1*255;

jdtright(:,:,3)=jdtleft1*255;

jdtred=jdtleft(:,1:1000*filecounter/students,:); jdtwhite=jdtright(:,1000*filecounter/students:100 0,:);

jdt=[jdtred,jdtwhite];imshow(uint8(jdt)) filecounter=filecounter+1;

end

classscore2=classscore';

xlswrite('C:\Users\MBENBEN\Desktop\195.xlsx',clas sscore2,1,'a2');

load gong

sound(y,Fs)

基于matlab的人脸识别源代码

function varargout = FR_Processed_histogram(varargin) %这种算法是基于直方图处理的方法 %The histogram of image is calculated and then bin formation is done on the %basis of mean of successive graylevels frequencies. The training is done on odd images of 40 subjects (200 images out of 400 images) %The results of the implemented algorithm is 99.75 (recognition fails on image number 4 of subject 17) gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @FR_Processed_histogram_OpeningFcn.,.. 'gui_OutputFcn', @FR_Processed_histogram_OutputFcn.,.. 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

基于matlab程序实现人脸识别

基于m a t l a b程序实现 人脸识别 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

基于m a t l a b程序实现人脸识别 1.人脸识别流程 基于YCbCr颜色空间的肤色模型进行肤色分割。在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显着不同。采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。 人脸识别流程图 2.人脸识别程序 (1)人脸和非人脸区域分割程序 function result = skin(Y,Cb,Cr) %SKIN Summary of this function goes here % Detailed explanation goes here a=; b=; ecx=; ecy=; sita=; cx=; cy=; xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)]; %如果亮度大于230,则将长短轴同时扩大为原来的倍 if(Y>230) a=*a; b=*b; end %根据公式进行计算 Cb=double(Cb); Cr=double(Cr);

t=[(Cb-cx);(Cr-cy)]; temp=xishu*t; value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2; %大于1则不是肤色,返回0;否则为肤色,返回1 if value>1 result=0; else result=1; end end (2)人脸的确认程序 function eye = findeye(bImage,x,y,w,h) %FINDEYE Summary of this function goes here % Detailed explanation goes here part=zeros(h,w); %二值化 for i=y:(y+h) for j=x:(x+w) if bImage(i,j)==0 part(i-y+1,j-x+1)=255; else part(i-y+1,j-x+1)=0; end end end [L,num]=bwlabel(part,8); %如果区域中有两个以上的矩形则认为有眼睛 if num<2 eye=0;

人脸识别系统设计与仿真 基于matlab的(含matlab源程序)版权不归自己 交流使用

人脸识别系统设计与仿真基于matlab的(含matlab源程序) 交流使用参考后自行那个删除后果自负 目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (5) 1.5 论文的内容及组织 (7) 第二章图像处理的Matlab实现 (8) 2.1 Matlab简介 (8) 2.2 数字图像处理及过程 (8) 2.2.1图像处理的基本操作 (8) 2.2.2图像类型的转换 (9) 2.2.3图像增强 (9) 2.2.4边缘检测 (10) 2.3图像处理功能的Matlab实现实例 (11) 2.4 本章小结 (15) 第三章人脸图像识别计算机系统 (16) 3.1 引言 (16) 3.2系统基本机构 (17)

3.3 人脸检测定位算法 (18) 3.4 人脸图像的预处理 (25) 3.4.1 仿真系统中实现的人脸图像预处理方法 (26) 第四章基于直方图的人脸识别实现 (29) 4.1识别理论 (29) 4.2 人脸识别的matlab实现 (29) 4.3 本章小结 (30) 第五章总结 (31) 致谢 (32) 参考文献 (33) 附录 (35)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己

基于MATLAB的图像处理字母识别

数字图像处理 报告名称:字母识别 学院:信息工程与自动化学院专业:物联网工程 学号:201310410149 学生姓名:廖成武 指导教师:王剑 日期:2015年12月28日 教务处制

目录 字母识别 1.---------------------测试图像预处理及连通区域提取 2.---------------------样本库的建立采集feature 3.---------------------选择算法输入测试图像进行测试 4.---------------------总结

字母识别 1.imgPreProcess(联通区域提取)目录下 conn.m:连通区域提取分割(在原图的基础上进行了膨胀、腐蚀、膨胀的操作使截取的图像更加接近字母) %%提取数字的边界,生成新的图 clear; clc; f=imread('5.jpg'); f=imadjust(f,[0 1],[1 0]); SE=strel('square',5); %%膨胀、腐蚀、膨胀 A2=imdilate(f,SE); SE=strel('disk',3) f=imerode(A2,SE) SE=strel('square',3); f=imdilate(f,SE); gray_level=graythresh(f); f=im2bw(f,gray_level); [l,n]=bwlabel(f,8) %%8连接的连接分量标注 imshow(f) hold on for k=1:n %%分割字符子句 [r,c]=find(l==k); rbar=mean(r); cbar=mean(c); plot(cbar,rbar,'Marker','o','MarkerEdgeColor','g','MarkerFaceColor',' y','MarkerSize',10); % plot(cbar,rbar,'Marker','*','MarkerEdgecolor','w'); row=max(r)-min(r) col=max(c)-min(c) for i=1:row for j=1:col seg(i,j)=1; end

(完整word版)基于MATLAB的人脸识别

图像识别 题目:基于MATLAB的人脸识别 院系:计算机科学与应用系 班级: 姓名: 学号: 日期:

目录 引言 (1) 1 人脸识别技术 (2) 1.1人脸识别的研究内容 (2) 1.1.1人脸检测(Face Detection) (2)

1.1.2人脸表征(Face Representation) (2) 1.2几种典型的人脸识别方法 (3) 1.2.1基于几何特征的人脸识别方法 (3) 1.2.2基于K-L变换的特征脸方法 (4) 1.2.3神经网络方法 (4) 1.2.4基于小波包的识别方法 (5) 1.2.5支持向量机的识别方法 (5) 2 人脸特征提取与识别 (5) 2.1利用PCA进行特征提取的经典算法——Eigenface算法 (6) 2.2 PCA人脸识别流程 (6) 2.3特征向量选取 (8) 2.4距离函数的选择 (9) 2.5 基于PCA的人脸识别 (9) MATLAB人脸识别程序 (10) 3 MATLAB软件程序编写 (10) 3.1.创建图片数据库 (10) 3.2 主程序 (11) 3.3最终程序结果 (12) 4 心得与体会 (12) 参考文献 (13)

引言 随着社会的发展及技术的进步,社会各方面对快速高效的自动身份验证的需求可以说无处不在,并与日俱增。例如,某人是否是我国的居民,是否有权进入某安全系统,是否有权进行特定的交易等。尤其是自2001年美国“9.1l”恐怖袭击发生以来,如何在车站、机场等公共场所利用高科技手段,迅速而准确地发现并确认可疑分子成了目前世界各国在反恐斗争中普遍关注的问题。为此,各国都投入大量人力、物力研究发展各类识别技术,使得生物特征识别技术得到了极大的发展。生物特征识别技术主要包括:人脸识别、虹膜识别、指纹识别、步态识别、语音识别、笔迹识别、掌纹识别以及多生物特征融合识别等。人类通过视觉识别文字,感知外界信息。在客观世界中,有75%的信息量都来自视觉,因此让计算机或机器人具有视觉,是人工智能的重要环节。由于生物特征是人的内在属性,具有很强的稳定性和个体差异性,因此是身份验证最理想的依据。与虹膜、指纹、基因、掌纹等其他人体生物特征识别系统相比,人脸识别系统更加直接、方便、友好,易于为用户所接受,并且通过人脸的表情、姿态分析,还能获得其它识别系统难以得到的一些信息。 人脸识别技术在国家重要机关及社会安防领域具有广泛用途。例如:公安系统的罪犯识别、信用卡验证、医学、档案管理、视频会议、人机交互系统等身份识别和各类卡持有人的身份验证。同其他人体生物特征(如:指纹、掌纹、虹膜、语音等)识别技术相比,人脸识别技术的隐性最好,人脸识别系统更直接、友好,是当今国际反恐和安防最重视的科技手段和攻关标志之一。虽然人类能毫不费力地识别出人脸及表情,但对人脸的机器自动识别确实一个难度极大的课题,它涉及到模式识别、图像处理及生理、心理学等诸多方面的知识。人脸识别技术的研究虽然己经取得了一定的可喜成果,但在实际应用中仍存在着许多严峻的问题。人脸的非刚体性、姿态、表情、发型以及化妆的多样性都给正确识别带来了困难,要让计算机像人一样方便地识别出大量的人脸,尚需不同科学研究领域的科学家共同不懈的努力。

人脸识别MATLAB代码

1.色彩空间转换 function [r,g]=rgb_RGB(Ori_Face) R=Ori_Face(:,:,1); G=Ori_Face(:,:,2); B=Ori_Face(:,:,3); R1=im2double(R); % 将uint8型转换成double型G1=im2double(G); B1=im2double(B); RGB=R1+G1+B1; row=size(Ori_Face,1); % 行像素 column=size(Ori_Face,2); % 列像素 for i=1:row for j=1:column rr(i,j)=R1(i,j)/RGB(i,j); gg(i,j)=G1(i,j)/RGB(i,j); end end rrr=mean(rr); r=mean(rrr); ggg=mean(gg); g=mean(ggg); 2.均值和协方差 t1=imread('D:\matlab\皮肤库\1.jpg');[r1,g1]=rgb_RGB(t1); t2=imread('D:\matlab\皮肤库\2.jpg');[r2,g2]=rgb_RGB(t2); t3=imread('D:\matlab\皮肤库\3.jpg');[r3,g3]=rgb_RGB(t3); t4=imread('D:\matlab\皮肤库\4.jpg');[r4,g4]=rgb_RGB(t4); t5=imread('D:\matlab\皮肤库\5.jpg');[r5,g5]=rgb_RGB(t5); t6=imread('D:\matlab\皮肤库\6.jpg');[r6,g6]=rgb_RGB(t6); t7=imread('D:\matlab\皮肤库\7.jpg');[r7,g7]=rgb_RGB(t7); t8=imread('D:\matlab\皮肤库\8.jpg');[r8,g8]=rgb_RGB(t8);

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

基于MATLAB的人脸识别

基于MATLAB的人脸识别

————————————————————————————————作者: ————————————————————————————————日期:

图像识别 题目:基于MATLAB的人脸识别 院系:计算机科学与应用系 班级: 姓名: 学号: 日期:

设计题目基于MATLAB的人脸识别设 计技术参数 测试数据库图片10张训练数据库图片20张图片大小1024×768 特征向量提取阈值 1 设计要求综合运用本课程的理论知识,并利用MATLAB作为工具实现对人脸图片的预处理,运用PCA算法进行人脸特征提取,进而进行人脸匹配识别。 工作量 两周的课程设计时间,完成一份课程设计报告书,包括设计的任务书、基本原理、设计思路与设计的基本思想、设计体会以及相关的程序代码; 熟练掌握Matlab的使用。 工作计划第1-2天按要求查阅相关资料文献,确定人脸识别的总体设计思路; 第3-4天分析设计题目,理解人脸识别的原理同时寻求相关的实现算法;第5-8天编写程序代码,创建图片数据库,运用PCA算法进行特征提取并编写特征脸,上机进行调试; 第9-12天编写人脸识别程序,实现总体功能; 第13-14天整理思路,书写课程设计报告书。 参考资料1 黄文梅,熊佳林,杨勇编著.信号分析与处理——MATALB语言及应用.国防科技大学出版社,2000 2 钱同惠编著.数字信号处理.北京:机械工业出版社,2004 3 姚天任,江太辉编著.数字信号处理.第2版.武汉:武汉理工大学出版社,2000 4 谢平,林洪彬,王娜.信号处理原理及应用.机械工业出版社,2004 5刘敏,魏玲.Matlab.通信仿真与应用.国防工业出版社,2005 6 楼顺天.基于Matlab7.x 的系统分析与设计.西安电子科技大学,2002 7孙洪.数字信号处理.电子工业出版社,2001 目录 引言?错误!未定义书签。 1 人脸识别技术?错误!未定义书签。 1.1人脸识别的研究内容?错误!未定义书签。 1.1.1人脸检测(Face Detection)........... 错误!未定义书签。

人脸识别matlab程序

人脸识别 % FaceRec.m % PCA 人脸识别修订版,识别率88% % calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5 a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); % imshow(a); b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上 到下,从左到右 b=double(b); allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数 据代表一张图片,其中M=200 end end samplemean=mean(allsamples); % 平均图片,1 × N for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M ×N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片” end; % 获取特征值及特征向量 sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d); % 按特征值大小以降序排列 dsort = flipud(d1); vsort = fliplr(v); %以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0; while( dsum_extract/dsum < 0.9) p = p + 1; dsum_extract = sum(dsort(1:p)); end

基于matlab数字图像处理与识别系统含程序

目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (4) 1.5 论文的内容及组织 (5) 第二章图像处理的Matlab实现 (6) 2.1 Matlab简介 (6) 2.2 数字图像处理及过程 (6) 2.2.1图像处理的基本操作 (6) 2.2.2图像类型的转换 (7) 2.2.3图像增强 (7) 2.2.4边缘检测 (8) 2.3图像处理功能的Matlab实现实例 (8) 2.4 本章小结 (11) 第三章人脸图像识别计算机系统 (11) 3.1 引言 (11) 3.2系统基本机构 (12) 3.3 人脸检测定位算法 (13) 3.4 人脸图像的预处理 (18) 3.4.1 仿真系统中实现的人脸图像预处理方法 (19) 第四章基于直方图的人脸识别实现 (21) 4.1识别理论 (21) 4.2 人脸识别的matlab实现 (21) 4.3 本章小结 (22) 第五章总结 (22) 致谢 (23) 参考文献 (24) 附录 (25)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,

基于matlab的人脸识别技术

基于matlab 的人脸识别技术 论文 摘要:随着计算机技术的飞速发展,人脸识别技术逐渐发展壮大起来,并应用到众多领域。 人脸识别是指在人脸检测的基础上针对输入的人脸图像,通过特征提取与特征匹配,找出与人脸库中匹配的人脸图像,从而达到识别效果。当前主要采取的人脸识别方法有:基于几何特征的方法 ,基于模板的方法和基于模型的方法。 这些方法较适合于人脸信息的验证,即待识别者是否为预先指定的对象。不足之处在于,需要建立一个拥有庞大人脸信息的训练样本库,因此就降低了输出结果的时效性和准确性。在应用领域中存在局限性,不适于具有庞大人脸样本训练库的身份鉴别领域。鉴于种种不足,本文提出了一种基于可变人脸库的快速人脸识别方法,使人脸识别技术适用于更多的行业。网络信息化时代的一大特征就是身份的数字化和隐性化,如何准确鉴定一个人的身份,保护信息安全是当今信息化时代必须解决的一个关键社会问题。正在悄然兴起的人脸识别技术正好可以解决这一问题。 关键词:模式识别,K-L 变换,人脸识别,图像处理,matlab,图像增强,边缘检测,图像预处理,灰度直方图,特征提取 1.1识别系统构成 自动人脸识别系统具有如图所示的一半框架并完成相应功能的任务。 (1)人脸图像的获取:一般来说,图像的获取都是通过摄像头摄取,氮摄取的图像可以是真人,也可以是人脸的图片或者为了相对简单,可以不考虑通过摄像头来摄取头像,而是直接给定要识别的图像。 (2)人脸的检测:人脸检测的任务是判断静态图像中是否存在人脸。若存在人脸,给出其在图像中的坐标位置,人脸区域大小等信息。而人脸跟踪需要进一步输出所检测到的人脸位置,大小等状态随时间的连续变化情况。 (3)特征提取通过人脸特征点的检测与标定可以确定人脸图像中显著特征点的位置(如眼睛,眉毛,鼻子,嘴巴等器官),同时还可以得到这些器官及其面部轮廓的形状信息的描述。 1.人脸特征提取的算法:K-L 变换是图像压缩中的一种最优正交变换,通过它可以把人脸样本从高维空间表示转换到低维空间表示,且由低维空恢复的人脸样本和原人脸样本具有最小的均方误差,从而可用人脸样本在低维空间的变换系数作为对人脸特征的描述。其中主元分析法(PCA )就是基于K-L 变换的一种比较流行的算法,它是统计学中分析数据的一种有效的方法,其目的是在数据间中找到一组向量以尽可能地解释数据的方差,将数据从原来的R 维空间将维投影到M 维空间(R>>M)并保存数据的主要信息,从而使数据更易于处理.按照K-L 变换识别算法流程.从人脸样本中提取面部特征.是人脸识别中重要步骤.其实质是一个从高维图像空间到低维数字空间的转换过程,可表示为:Y=T{x} 式中:x 表示原始数据,Y 表示为特征信息,T 表示映射 人脸样本特征提取算法如下:首先计算该库中所有样本的平均值(平均脸): ∑==p i n f P f 1 1 式中;P 表示照片数.f 表示每张照片的线性表示然后构建协方差矩阵: T T i p i i A A f f P C ?==∑=)'('11 式中:f f f i -='表示每张照片与样本平均值的差。A 表示差值形成的矩阵 接着,进行特征的提取:由于此协方差矩阵进行求解特征值和特征向量比较困难的,因此采用奇异值分解的方法得到特征矩阵。 i T i f U Y '=

基于MATLAB数字图像处理杂草识别

基于MATLAB数字图像处理杂草识别

基于数字图像处理的杂草识别 班级:信息5班 组员:李辉李少杰李港深胡欣阳 学号:04141394 04141395 04141393 0414139 指导教师:蔡利梅 组员分工: 李辉:部分程序,查找资料 李少杰:实验报告,PPT,演讲 李港深:部分程序,实验报告 胡欣阳:部分程序,实验报告

摘要 杂草同农田作物争夺阳光和养分,严重影响了农作物的生长。为了达到除草的目的,人们开始喷洒大量的除草剂来进行除草。可是却忽略了除草剂的不当使用给人、畜以及环境造成的危害。本文从实际应用出发,设计了一个基于数字图像处理的杂草图像特征提取及识别设计方案。运行在参考了前人研究成果的基础上,不断将算法改进,找出适合于MATLAB杂草识别的可行性方法。本文对杂草图像的处理和识别方法进行研究。采集来的图像经常会有模糊现象的发生,对模糊图像的恢复处理做了大量的研究试验,得出维纳滤波具有较好的恢复效果;绿色植物和土壤背景的分割试验中,提出了一种基于彩色图像的二值化方法,可以不经过彩色图像灰度化就能够直接把绿色植物与土壤背景分割开,和以往的分割方法相比处理速度快,分割效果好,更加满足实时性;杂草和作物的分割主要研究了行间杂草和作物的分割,参考国内外资料,并进行研究试验,表明运用位置特征识别法有很好的分割效果,寻找作物中心行采用了简单快速的像素位置直方图法,采用了区域生长,和其他方法相比减少了重复操作,节省了时间,满足实时处理的要求;分割后的图像为只含有杂草的二值图像,通常会有一些残余的叶片和颗粒的噪声,通过形态学滤波或中值滤波去除噪声。 1、研究目的及意义 杂草是生态系统中的一员,农田杂草是农业生态系统中的

基于matlab的形状识别

1、设计目的 基于Maltab或者C语言对图像进行识别。编写摄像头采集图像程序,对采集的图像进行预处理,如图像增强、图像分割等处理,对于处理的图像进行特征提取,根据特征进行模式识别,如对三角形、正方形与圆形的识别。 2、设计正文 2.1设计分析 1)编写摄像头采集图像程序 2)对采集的图像进行预处理 3)对于处理的图像进行特征提取 4)进行模式识别,区分各种形状 2.2设计原理 2.2.1图像预处理 彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。由彩色转换为灰度的过程叫做灰度化处理。选择的标准是经过灰度变换彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别

等处理中经常将彩色图像转变为灰度图像,以加快处理速度。由彩色转换为灰度的过程叫做灰度化处理。选择的标准是经过灰度变换。 2.2.2对于处理的图像进行特征值提取 二值图像是指整幅图像画面内仅黑、白二值的图像。在实际的车牌处理系统中,进行图像二值变换的关键是要确定合适的阀值,使得字符与背景能够分割开来,二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。车牌识别系统要求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大地提高处理效率。阈值处理的操作过程是先由用户指定或通过算法生成一个阈值,如果图像中某中像素的灰度值小于该阈值,则将该像素的灰度值设置为0或255,否则灰度值设置为255或0。 两个具有不同灰度值的相邻区域之间总存在边缘,边缘就是灰度值不连续的结果,是图像分割、纹理特征提取和形状特征提取等图像分析的基础。为了对有意义的边缘点进行分类,与这个点相联系的灰度级必须比在这一点的背景上变换更有效,我们通过门限方法来决定一个值是否有效。所以,如果一个点的二维一阶导数比指定的门限大,我们就定义图像中的次点是一个边缘点,一组这样的依据事先定好的连接准则相连的边缘点就定义为一条边缘。经过一阶的导数的边缘检测,所求的一阶导数高于某个阈

基于matlab程序实现人脸识别

1.人脸识别流程 基本原理 基于YCbCr颜色空间的肤色模型进行肤色分割。在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显著不同。采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。 流程图 人脸识别流程图 读入原始图像 将图像转化为YCbCr颜色空 间 利用肤色模型二值化图像并 作形态学处理 选取出二值图像中的白色区 域,度量区域属性,筛选后 得到所有矩形块 否 筛选特定区域(高度和宽度的比率 在(0.6~2)之间,眼睛特征) 是 存储人脸的矩形区域 特殊区域根据其他信息筛 选,标记最终的人脸区域

2.人脸识别程序 (1)人脸和非人脸区域分割程序 function result = skin(Y,Cb,Cr) %SKIN Summary of this function goes here % Detailed explanation goes here a=; b=; ecx=; ecy=; sita=; cx=; cy=; xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)]; %如果亮度大于230,则将长短轴同时扩大为原来的倍 if(Y>230) a=*a; b=*b; end %根据公式进行计算

Cb=double(Cb); Cr=double(Cr); t=[(Cb-cx);(Cr-cy)]; temp=xishu*t; value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2; %大于1则不是肤色,返回0;否则为肤色,返回1 if value>1 result=0; else result=1; end end (2)人脸的确认程序 function eye = findeye(bImage,x,y,w,h) %FINDEYE Summary of this function goes here % Detailed explanation goes here part=zeros(h,w); %二值化

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别 摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。 一、设计原理 车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。 二、设计步骤 总体步骤为: 车辆→图像采集→图像预处理→车牌定位

→字符分割→字符定位→输出结果 基本的步骤: a.车牌定位,定位图片中的车牌位置; b.车牌字符分割,把车牌中的字符分割出来; c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。 车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。 (1)车牌定位: 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。 流程图: (2)车牌字符分割 : 完成车牌区域的定位后,再将车牌区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足车牌的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 导入原始图像 图像预处理增强效果图像 边缘提取 车牌定位 对图像开闭运算

人脸识别PCA算法matlab实现及详细步骤讲解

%FaceRec.m %PCA人脸识别修订版,识别率88% %calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5 a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); %imshow(a); b=a(1:112*92);%b是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上 到下,从左到右 b=double(b); allsamples=[allsamples;b];%allsamples是一个M*N矩阵,allsamples中每一行数 据代表一张图片,其中M=200 end end samplemean=mean(allsamples);%平均图片,1×N for i=1:200xmean(i,:)=allsamples(i,:)-samplemean;%xmean是一个M×N矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片” end; %获取特征值及特征向量 sigma=xmean*xmean';%M*M阶矩阵 [v d]=eig(sigma); d1=diag(d); %按特征值大小以降序排列 dsort=flipud(d1); vsort=fliplr(v); %以下选择90%的能量 dsum=sum(dsort); dsum_extract=0; p=0; while(dsum_extract/dsum<0.9) p=p+1; dsum_extract=sum(dsort(1:p)); end i=1; %(训练阶段)计算特征脸形成的坐标系 base=xmean'*vsort(:,1:p)*diag(dsort(1:p).^(-1/2)); %base是N×p阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1) %详见《基于PCA的人脸识别算法研究》p31 %xmean'*vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程 %while(i<=p&&dsort(i)>0) %base(:,i)=dsort(i)^(-1/2)*xmean'*vsort(:,i);%base是N×p阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1) %详见《基于PCA的人脸识别算法研究》p31 %i=i+1;%xmean'*vsort(:,i)是小矩阵的特征向量向大矩阵特 征向量转换的过程 %end %以下两行add by gongxun将训练样本对坐标系上进行投影,得到一个M*p阶矩阵allcoor allcoor=allsamples*base;%allcoor里面是每张训练人脸图片在M*p子空间中的一个点,即在子空间中的组合系数, accu=0;%下面的人脸识别过程中就是利用这些组合系数来进行识别

基于matlab的简单人脸识别程序代码

基于matlab的简单人脸识别实例 简介 人脸识别特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。人脸识别是一项热门的计算机技术研究领域,在生活中许多领域都有着重要应用。 内容 这里通过对人脸图像打上网格,对区域块图像做二值分析,通过像素比例来做处理。进而得到人脸区域。 代码 % Bylyqmath % DLUT School of Mathematical Sciences % BLOG:https://www.360docs.net/doc/5c5598682.html,/lyqmath clc; clear all; close all; % 载入图像 Img = imread('face.jpg'); if ndims(Img) == 3 I=rgb2gray(Img); else I = Img; end BW = im2bw(I, graythresh(I)); % 二值化 figure; subplot(2, 2, 1); imshow(Img); title('原图像', 'FontWeight', 'Bold'); subplot(2, 2, 2); imshow(Img); title('网格标记图像', 'FontWeight', 'Bold'); hold on; [xt, yt] = meshgrid(round(linspace(1, size(I, 1), 10)), ... round(linspace(1, size(I, 2), 10))); mesh(yt, xt, zeros(size(xt)), 'FaceColor', ... 'None', 'LineWidth', 3, ... 'EdgeColor', 'r'); subplot(2, 2, 3); imshow(BW); title('二值图像', 'FontWeight', 'Bold'); [n1, n2] = size(BW); r = floor(n1/10); % 分成10块,行 c = floor(n2/10); % 分成10块,列 x1 = 1; x2 = r; % 对应行初始化 s = r*c; % 块面积 for i = 1:10

相关文档
最新文档