电涌保护器运用说明

电涌保护器运用说明
电涌保护器运用说明

避雷器和电涌保护器运用说明

目录

一、定义

二、防雷器与浪涌保护器的比较

三、线路避雷器运用及其说明

四、浪涌保护器设计原理、特性、运用范畴

五、参考依据与文献

一、定义

1.避雷器

避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。

2.浪涌保护器

也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。

二、避雷器与浪涌保护器的比较

避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢?

首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。

其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。

再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

根据分析来回答电涌保护器(SPD,有的称浪涌保护器)和避雷器的区别:

1、应用范围不同(电压):避雷器范围广泛,有很多电压等级,一般从0.4kV低压到500kV 超高压都有(详见楼上分析),而SPD一般指1kV以下使用的过电压保护器;

2、保护对象不同:避雷器是保护电气设备的,而SPD浪涌保护器一般是保护二次信号回路或给电子仪器仪表等末端供电回路。

3、绝缘水平或耐压水平不同:电器设备和电子设备的耐压水平不在一个数量级上,过电压保护装置的残压应与保护对象的耐压水平匹配。

4、安装位置不同:避雷器一般安装在一次系统上,防止雷电波的直接侵入,保护架空线路及电器设备;而SPD浪涌保护器多安装于二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;所以避雷器多安装在进线处;SPD多

安装于末端出线或信号回路处。

5、通流容量不同:避雷器因为主要作用是防止雷电过电压,所以其相对通流容量较大;而对于电子设备,其绝缘水平远小于一般意义上的电器设备,故需要SPD对雷电过电压和操作过电压进行防护,但其通流容量一般不大。(SPD一般在末端,不会直接与架空线路连接,经过上一级的限流作用,雷电流已经被限制到较低值,这样通流容量不大的SPD完全可以起到保护作用,通流值不重要,重要的是残压。)

6、其它绝缘水平、对参数的着眼点等也有较大差异。

7、浪涌保护器适用于低压供电系统的精细保护,依据不同的交直流电源电床可选择各种相应的规格。电源浪涌保护器一精细由于终端设备离前级浪涌保护器距离较大,从而使得该线路上容易产生振荡过电压或感应到其他过电压。适用于终端设备的精细电源浪涌保护,与前级浪涌保护器配合使用,则保护效果更好。

8、避雷器主材质多为氧化锌(金属氧化物变阻器中的一种),而浪涌保护器主材质根据抗浪涌等级、分级防护(IEC61312)的不同是不一样的,而且在设计上比普通防雷器精密得多。

9、从技术上来说,避雷器在响应时间、限压效果、综合防护效果、抗老化特性等方面都达不到浪涌保护器的水平。

共同点:都能防止雷电过电压

因为上述原因,SPD也就应运而生。

SPD的原理是把LEMP转化为热能进行消解,由于不是导通式,反应速度非常快,可低于纳秒,可以有效防止二次雷和三次雷。SPD分为电源SPD,精密仪器SPD,数字线路SPD,而且也是双向作用的,因此可以有效防止感应雷。因此,IEEE标准规定,在安装避雷器的同时应该加上SPD,以形成防雷的双保险。

此外,SPD对于内部的80%的浪涌也能起到有效抑制作用,这是避雷器所不能做到的。

总体上讲,避雷器是专门针对电气设备免受雷电冲击波所设置的防护设备,而浪涌保护器是比避雷器更先进的防护设备,除开雷电冲击波,还可以极大程度消弱电力系统自身所产生的其它破坏性浪涌冲击。在用电单位高压进线系统(10KV及以上)已装设避雷器的情况下,在低压系统中就应装设防护功能更精密的浪涌保护器。

三、避雷器运用与说明

1、线路避雷器防雷的基本原理

雷击杆塔时,一部分雷电流通过避雷线流到相临杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,一般用冲击接地电阻来表征。

雷击杆塔时塔顶电位迅速提高,其电位值为

Ut=iRd L.di/dt(1)

式中i——雷电流;

Rd——冲击接地电阻;

L.di/dt——暂态分量。

当塔顶电位Ut与导线上的感应电位U1的差值超过绝缘子串50的放电电压时,将发生由塔顶至导线的闪络。即Ut-U1>U50,如果考虑线路工频电压幅值Um的影响,则为Ut-U1 Um>U50。因此,线路的耐雷水平与3个重要因素有关,即线路绝缘子的50放电电压、雷电流强度和塔体的冲击接地电阻。一般来说,线路的50放电电压是一定的,雷电流强度与地理位置和大气条件相关,不加装避雷器时,提高输电线路耐雷水平往往是采用降低塔体的

接地电阻,在山区,降低接地电阻是非常困难的,这也是为什么输电线路屡遭雷击的原因。

加装避雷器以后,当输电线路遭受雷击时,雷电流的分流将发生变化,一部分雷电流从避雷线传入相临杆塔,一部分经塔体入地,当雷电流超过一定值后,避雷器动作加入分流。大部分的雷电流从避雷器流入导线,传播到相临杆塔。雷电流在流经避雷线和导线时,由于导线间的电磁感应作用,将分别在导线和避雷线上产生耦合分量。因为避雷器的分流远远大于从避雷线中分流的雷电流,这种分流的耦合作用将使导线电位提高,使导线和塔顶之间的电位差小于绝缘子串的闪络电压,绝缘子不会发生闪络,因此,线路避雷器具有很好的钳电位作用,这也是线路避雷器进行防雷的明显特点。

以往输电线路防雷主要采用降低塔体接地电阻的方法,在平原地带相对较容易,对于山区杆塔,则往往在4个塔脚部位采用较长的辐射地线或打深井加降阻剂,以增加地线与土壤的接触面积降低电阻率,在工频状态下接地电阻会有所下降。但遭受雷击时,因接地线过长会有较大的附加电感值,雷电过电压的暂态分量L.di/dt会加在塔体电位上,使塔顶电位大大提高,更容易造成塔体与绝缘子串的闪络,反而使线路的耐雷水平下降。因为线路避雷器具有钳电位作用,对接地电阻要求不太严格,对山区线路防雷比较容易实现。

2线路避雷器使用及动作情况

淄博电业局管辖的110kV龙博1线和35kV南黑线、炭谢线位于丘陵和山地,多年来经常发生雷击跳闸故障,据统计110kV龙博1线在1989~1996年共发生5次雷击掉闸,35kV 南黑线、炭谢线分别在1994~1997年各发生6次雷击掉闸,虽然采取了各种措施,效果均不明显。1997年在易遭雷击的龙博1线62~64号和南黑线87、89、90号及炭谢线51号分别装设了7组共20只线路型氧化锌避雷器,安装方式是在龙博1线和南黑线各悬挂3组9只,在炭谢线51号上相和下相各悬挂1只(该杆不久前遭雷击),经过2个雷雨季节的考验,线路未发生故障及掉闸事故。

3避雷器的选型及安装维护

线路避雷器有2种类型,即带串联间隙和无串联间隙2种,因运行方式不同和电站避雷器相比在结构设计上也有所区别。

线路避雷器安装时应注意:(1)选择多雷区且易遭雷击的输电线路杆塔,最好在两侧相临杆塔上同时安装;(2)垂直排列的线路可只装上下2相;(3)安装时尽量不使避雷器受力,并注意保持足够的安全距离;(4)避雷器应顺杆塔单独敷设接地线,其截面不小于25mm2,尽量减小接地电阻的影响。

投运后进行必要的维护:(1)结合停电定期测量绝缘电阻,历年结果不应明显变化;(2)检查并记录计数器的动作情况;(3)对其紧固件进行拧紧,防止松动;(4)5a拆回,进行1次直流1mA及75参考电压下泄漏电流测量。

四、浪涌保护器设计原理、特性、运用范畴

设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。

MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。

这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。

另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。当电压处于某一特定范围时,该气体的组成决定了它是不良导体。如果电压出现浪涌并超过这一范围,电流的强度将足以使气体电离,从而使气体放电管成为非常良好的导体。它会将电流传导至地线,直到电压恢复正常水平,随后它又会变成不良导体。

这两种方法都是采用并联电路设计——多余的电压从标准电路流入另一个电路。有几种浪涌保护器产品使用串联电路设计抑制电涌——它们不是将多余的电流分流到另一条线路,而是通过降低流过火线的电量。基本上说,这些抑制器在检测到高电压时会储存电能,随后再逐渐释放它们。制造这种保护器的公司解释说该方法可以提供更好的保护,因为它反应速度更快,并且不会向地线分流,但另一方面,这种分流可能会干扰建筑物的电力系统。

抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7.

抑制二极管的技术参数主要有:

(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。

(2)最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最高电压。

(3)脉冲功率:它是指在规定的电流波形(如10/1000μs)下,管子两端的最大箝位电压与管子中电流等值之积。

(4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。

(5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。

(6)响应时间:10-11us

作为辅助元件,有些浪涌保护器还配有内置保险丝。保险丝是一种电阻器,当电流低于某个标准时,它的导电性能非常好。反之,当电流超过了可接受的标准,电阻产生的热量会烧断保险丝,从而切断电路。如果MOV不能抑制电涌,过高的电流将烧断保险丝,保护连接的设备。该保险丝只能使用一次,一旦烧断就需要更换。

SPD前端熔断器应根据避雷器厂家的参数安装。

如厂家没有规定,一般选用原则:

根据(浪涌保护器的最大保险丝强度A)和(所接入配电线路最大供电电流B)来确定(开关或熔断器的断路电流C)。

确定方法:

当:B>A时C小于等于A

当:B=A时C小于A或不安装C

当:B

有些浪涌保护器具有线路调节系统,用于滤除“线路噪声”,减小电流波动。这种基本浪涌保护器的系统结构非常简单。火线通过环形扼流线圈接到电源板插座上。扼流线圈只是一个用磁性材料做成的环,外面缠绕着导线——基本的电磁铁。火线中所流经电流的上下波动会给电磁铁充电,使其发出电磁能量,从而消除电流的微小波动。这种“经过调节”的电流更加稳定,可使计算机(或其他电子设备)的供电电流更加平缓。

在电子设计中,浪涌主要指的是电源(只是主要指电源)刚开通的那一瞬息产生的强力脉冲,

由于电路本身的非线性有可能有高于电源本身的脉冲;或者由于电源或电路中其它部分受到本身或外来尖脉冲干扰叫做浪涌。它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等等。而浪涌保护就是利用非线性元器件对高频(浪涌)的敏感设计的保护电路,简单而常用的是并联大小电容和串联电感。

浪涌保护器(SPD)的分类

按工作原理分:

(1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

(2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

(3)分流型或扼流型

分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

按用途分:

(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。

(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。

浪涌保护器及其应用

1、浪涌电压

电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高的操作过电压,这种瞬时过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰:例如直流6V继电器线圈断开时会出现300V~600V的浪涌电压;接通白炽灯时会出现8~10倍额定电流的浪涌电流;当接通大型容性负载如补偿电容器组时,常会出现大的浪涌电流冲击,使得电源电压突然降低;当切断空载变压器时也会出现高达额定电压8~10倍的操作过电压。浪涌电压现象日趋严重地危及自动化设备安全工作,消除浪涌噪声干扰、防止浪涌损害一直是关系到自动化设备安全可靠运行的核心问题。现代电子设备集成化程度在不断提高,但是它们的抗御浪涌电压能力却在下降。在多数情况下,浪涌电压会损坏电路及其部件,其损坏程度与元器件的耐压强度密切相关,并且与电路中可以转换的能量相关。

为了避免浪涌电压击毁敏感的自动化设备,必须使出现这种浪涌电压的导体在非常短的时间内同电位均衡系统短接(引入大地)。在其放电过程中,放电电流可以高达几千安,与此同时,人们往往期待保护单元在放电电流很大时也能将输出电压限定在尽可能低的数值上。因此,空气火花间隙、充气式过电压放电器、压敏电阻、雪崩二极管、TVS (Transientvoltagesuppressor)、FLASHTRAB、VALETRAB、SOCKETTRAB、MAINTRAB 等元器件,是单独或以组合电路形式被应用到被保护电路中,因为每个元器件有其各自不同的特性,并且具有不同的性能:放电能力;响应特性;灭弧性能;限压精度。根据不同的应用场合以及设备对浪涌电压保护的要求,可根据各类产品的特性来组合出符合应用要求的过电压保护系统。

2、浪涌电压吸收器

浪涌噪声常用浪涌吸收器进行抑制,常用的浪涌吸收器有:

(1)氧化锌压敏电阻

氧化锌压敏电阻是以氧化锌为主体材料制成的压敏电阻,其电压非线性系数高,容量大、残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小,且具有工艺简单、成本低廉等优点,是目前广泛使用的浪涌电压保护器件。适用于交流电源电压的浪涌吸收、各种线圈、接点间浪涌电压吸收及灭弧,三极管、晶闸管等电力电子器件的浪涌电压保护。

(2)R、C、D组合浪涌吸收器

R、C、D组合浪涌吸收器比较适用于直流电路,可根据电路的特性对器件进行不同的组合,如图1(a)适用于高电平直流控制系统,而图1(b)中采用齐纳稳压管或双向二极管,适用于正反向需要保护的电路。

图1R、C、D浪涌保护器(a)单向保护(b)双向保护

图2TVS电压(电流)时间特性

(3)瞬态电压抑制器(TVS)

当TVS两极受到反向高能量冲击时,它能以10-12s级的速度,将其两极间的阻抗由高变低,吸收高达数kW的浪涌功率,使两极的电位箝位于预定值,有效地保护自动化设备中的元器件免受浪涌脉冲的损害。TVS具有响应时间快、瞬态功率大、漏电流低、击穿电压偏差小、箝位电压容易控制、体积小等优点,目前被广泛应用于电子设备等领域。

①TVS的特性

其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。图2是TVS的电流-时间和电压-时间曲线。在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM 上升到击穿电压Vbr而被击穿。随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。

②TVS与压敏电阻的比较

目前,国内不少需要进行浪涌保护的设备上应用压敏电阻较为普遍,TVS与压敏电阻性能比较如表1所示:

表1TVS与压敏电阻的比较

参数TVS 压敏电阻

反应速度10-12s 50×10-9s

是否老化否是

最高使用温度175℃115℃

器件极性单双极性单极性

反向漏电流5μA 200μA

箝位因子VC/Vbr 不大于1 5 最大7~8

封闭性质密封透气

价格较贵便宜

3、综合浪涌保护系统组合

3.1三级保护

自动控制系统所需的浪涌保护应在系统设计中进行综合考虑,针对自动控制装置的特性,应用于该系统的浪涌保护器基本上可以分为三级,对于自动控制系统的供电设备来说,需要雷击电流放电器、过压放电器以及终端设备保护器。数据通信和测控技术的接口电路,比各终端的供电系统电路显然要灵敏得多,所以必须对数据接口电路进行细保护。

自动化装置的供电设备的第一级保护采用的是雷击电流放电器,它们不是安装在建筑物的进

口处,就是在总配电箱里。为保证后续设备不承受太高的残压,必须根据被保护范围的性质,在下级配电设施中安装过电压放电器,作为二级保护措施。第三级保护是为了保护仪器设备,采取的方法是,把过电压放电器直接安装在仪器的前端。自动控制系统三级保护布置如图3所示。在不同等级的放电器之间,必须遵守导线的最小长度规定。供电系统中雷击电流放电器与过压放电器之间的距离不得小于10m,过压放电器同仪器设备保护装置之间的导线距离则不应小于5m(即一级SPD与二级SPD连接线路间距至少10米,二级SPD与三级SPD 连接线路间距至少5米)。

3.2三级保护器件

(1)充有惰性气体的过电压放电器是自动控制系统中应用较广泛的一级浪涌保护器件。充有惰性气体过电压放电器,一般构造的这类放电器可以排放20kA(8/20μs)或者2.5kA (10/350μs)以内的瞬变电流。气体放电器的响应时间处于ns范围,被广泛地应用于远程通信范畴。该器件的一个缺点是它的触发特性与时间相关,其上升时间的瞬变量同触发特性曲线在几乎与时间轴平行的范围里相交。因此保护电平将同气体放电器额定电压相近。而特别快的瞬变量将同触发曲线在十倍于气体放电器额定电压的工作点相交,也就是说,如果某个气体放电器的最小额定电压90V,那么线路中的残压可高达900V。它的另一个缺点是可能会产生后续电流。在气体放电器被触发的情况下,尤其是在阻抗低、电压超过24V的电路中会出现下列情况:即原来希望维持几个ms的短路状态,会因为该气体放电器继续保持下去,由此引起的后果可能是该放电器在几分之一秒的时间内爆碎。所以在应用气体放电器的过电压保护电路中应该串联一个熔断器,使得这种电路中的电流很快地被中断。

图3放电器分布图

(2)压敏电阻被广泛作为系统中的二级保护器件,因压敏电阻在ns时间范围内具有更快的响应时间,不会产生后续电流的问题。在测控设备的保护电路中,压敏电阻可用于放电电流为2.5kA~5kA(8/20μs)的中级保护装置。压敏电阻的缺点是老化和较高的电容问题,老化是指压敏电阻中二极管的P N部分,在通常过载情况下,P N结会造成短路,其漏电流将因此而增大,其值的大小取决于承载的频繁程度。其应用于灵敏的测量电路中将造成测量失真,并且器件易发热。压敏电阻大电容问题使它在许多场合不能应用于高频信息传输线路,这些电容将同导线的电感一起形成低通环节,从而对信号产生严重的阻尼作用。不过,在30kHz以下的频率范围内,这一阻尼作用是可以忽略的。

(3)抑制二极管一般用于高灵敏的电子电路,其响应时间可达ps级,而器件的限压值可达额定电压的1.8倍。其主要缺点是电流负荷能力很弱、电容相对较高,器件自身的电容随着器件额定电压变化,即器件额定电压越低,电容则越大,这个电容也会同相连的导线中的电感构成低通环节,而对数据传输产生阻尼作用,阻尼程度与电路中的信号频率相关。

五、参考依据与文献

1. IEC61643-12:2002 电涌保护器(SPD)第12部分:连接于低压电力系统的电涌保护器——选型和应用原则。

2. IEC61643-1:1998,IDT :低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法

3.建筑物防雷设计规范(GB50057-94)工程建设标准局部修订公告第24号

4.中国气象局第3号令《防雷减灾管理办法》

北京德曼尼机电技术有限公司总工程师:曹诗华原撰

勿用于出版等商业用途,谢谢合作!

浪涌保护器的选型及使用

浪涌保护器的选型及使用 由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。 风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。业主对浪涌保护器的需求越来越普遍。这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规范。 应用指南 该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。该标准也说明了选择过电压保护设备的各种问题。标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。下图是评估中最重要问题的概览:

选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT 系统等)。浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。 仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。所以设计该系统时,记得连接电缆要包含火线和接地线。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 1、根据被保护线路制式,例如:单相220V、三相220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 50343-5 4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一 级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 50057-里的分流计算,计算线路所需的泄放电流强度,选择合 适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现 在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理 在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地 线连接在一起。 MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电 源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时, 电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的 电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

电涌保护器(SPD)工作原理和结构

编订:__________________ 审核:__________________ 单位:__________________ 电涌保护器(SPD)工作 原理和结构 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8242-61 电涌保护器(SPD)工作原理和结构 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 电涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: (1).开关型:其工作原理是当没有瞬时过电压

B、C、D类防雷器的作用

B、C、D类防雷器的作用: B类防雷产品在整个防雷系统中所起的根本作用在于:当发生强度很大的雷击时,使产生于供电线路上的感应雷电流,在进入总配电柜之前就迅速泄放入地。因此B类防雷产品本质上应具备的特性是高可靠性、大通流量和长寿命,可承受雷雨季节多次高强度、高能量浪涌过电压的冲击,而稳定可靠的发挥迅速大通流量泄流的作用。在泄放雷电流过程中,B 类防雷器两端所产生的残压,即使仍超过被保护设备的最高瞬态耐压值,也会被安装于设备前端的C类或D类防雷器再次泄放,从而使真正到达设备前线端的浪涌电压已经很低,完全不能对设备的正常运行造成影响,使设备受到可靠的保护。 由于B级防雷产品在泄放供电线路上高能量的雷电流时,在防雷器两端所呈现的残压仍然很高,仍可能大大超过被保护设备所能承受的再高耐压值,因此,按国际电工委员会IEC的要求,在供电线路进入分配电柜前端时,应并联安装相应型号的C类防雷器。C类防雷器的本质作用是通过再次泄流而降低线路上的残压,因此并不要求C类防雷器的通流量特别大(一般40KA)。只是由C类防雷器在整个防雷系统中所起的作用决定的,即进一步泄放线路上的浪涌电流,进一步降低真正达到设备供电端口的浪涌电压值,使之小于设备的耐压值,从而在发生雷击时,使设备遭受损坏的可能性大大减小。 D类防雷器主要用于对设备端的保护,其作用是当发生能量特别大的雷击时,感应雷电流在经过B级、C级防雷器的泄放后,其残压仍然可能高于设备的最高耐压值,重要设备的端口及内部的高精度集成电路仍有可能被烧坏。此时D类防雷器的安装就特别必要了。经过D类防雷器的泄放,设备的完全运行就更为可靠了。 电涌保护器的选型及安装要求: 一、SPD的选型原则: 1、 SPD必须能承受预期通过它们的雷电流,并具有通过电涌时的最大箝压和有熄灭工频续流的能力。 2、安装的SPD电压保护水平加上其两端引线的感应电压应低于被保护设备耐压水平的80%,同时SPD与被保护设备的连线不大于10m时,在被保护设备处可不安装SPD。反之,则应在设备前加装不小于3KA(8/200μs)的SPD。 3、在供电的电压偏差超过所规定的10%以及谐波使电压幅值加大的场所,应根据具体情况对氧化锌压敏电阻SPD的Uc值相应提高。 4、当无法获得被保护设备的耐冲击过电压值时,可参考下表给出的值。

防雷仪器-电涌保护器巡检仪K-2766(说明书)

电涌保护器安全巡检测试仪 K-2766 使用说明书 介绍 谢谢您选购了K-2766电涌保护器安全巡检仪。为了从此产品中获得最大收益,请在使用前先阅读此手册,并将其放在易于找到的地方,以便未来参照使用。 检查 当您收到产品后,仔细检查一下仪表,以确保在运输过程中没有任何损坏,特别要检查配件、面板开关及连接器。如果有损坏或者根据说明仪表也无法使用,请及时与销售商联系。 配置 K-2766电涌保护器安全巡检仪1部 测量电缆1对(黑:1.5m,红:1.5m);表笔1对(黑红各1只);转接电缆1对(黑:10cm,红:10cm);鳄鱼夹1对(黑红各1只);专用充电器1套; 使用说明书1册; 套装配置:感应数字式测电笔1只;防静电手套1副; (可选)SPD运行温度测试仪1部;漏电流钳形表1部; 专用仪表便携箱1个 安全提示 本手册包括此产品安全操作和在安全运行条件下维护的必要的信息和警告,在使用此产品前要仔细阅读下面安全提示。

△!提醒 ●在给电涌保护器安巡仪通电前,务必检查并确认连接于测量端 子的测试线无短路。 ●在测试过程中,可能有最大值为2100V的电压存在于测量端子 之间,注意采取适当的预防措施防止电击。 ●在没有确认可靠连接测试元件前,请不要进行测试键操作。 △!警告 ●为防止电击,不要把产品弄湿,以及手湿的时候不要使用此产 品。在使用户外元件时,要格外小心。 ●此仪表不要在腐蚀剂或易燃气体的环境中使用,否则仪表会损 坏或引起爆炸。 ●除了电池,不要将元件接电以阻止损坏或电击的危险。 △!小心 ●当仪表处于直接光照、高温、潮湿、结霜时,不要贮存或使用。 在这些条件下,可能造成绝缘损坏,使仪表不再满足指标。 ●此仪表并不完全防尘或防水,为了防止可能的损坏,避免在潮 湿或灰尘的环境中使用。 ●在使用仪表前,要确保测量电缆的绝缘没有损坏并且没有裸露 的导体暴露出来。在这种条件下使用仪表可能导致电击。 ●为了避免仪表损坏,在运输和操作中防止仪表撞击或震动,特 别小心不要坠落。 第一部分概要 1.1产品的概要 随着各种电源避雷器(SPD)的大量安装和在线运行,电源避雷器(SPD)的在线安全状态(即安全有效的在线运行状态)会直接影

菲尼克斯防雷器、电涌防护器使用说明

菲尼克斯防雷器、电涌防护器使用说明

VAL-MS230 ST 和F-MS 12 ST 德国菲尼克斯浪涌保护器防雷器 防雷器的工作原理:防雷器内部结构其实就是巨功率电压敏感器件,当雷击进入电源进户线路时:防雷器将过高的电压吸收和泄放到大地上,所以地线是很重要的,没有地线就没有防雷效果,只能吸收浪涌效果,当遇到过于强大的雷击时需要空气开关或熔断器(保险丝)来保护,所以空气开关和熔断器的电流要选择合适,不然烧了防雷器还与电网未断开,在空气开关后面再接熔断器是为了更保险,因为空气开关是机械动作的,不会100%可靠。防雷器的使用必须与空气开关和熔断器配合,理论上讲:空气开关或保险丝电流越小越好,防雷器的并联只数越多效果越好,对雷电的吸收功率越大,但如果选用过大电流的空气开关是不利的,当防雷器达到极限功率时间后,如果空气开关或保险丝未断开是不行的。 使用漏电开关要接在防雷线路之后,漏电开关里面有电子线路,接在防雷线路后面可以保护漏电开关被雷击损坏。 本防雷器属于快速更换结构,当过强雷击被击穿后可以快速更换防雷器芯,不用任何工具,只从防雷器座上拔下和插上,购买时也以多买几个防雷器芯备用,防雷器芯购买请看:德国菲尼克斯PHOENIX CONTACT V AL-MS230 防雷器芯 下图是:简单的浪涌保护接线图,本图不能实现防雷保护,只有浪涌保护,空气开关和溶断器大于32A时用两只防雷器并联。

VALVETRAB -MS是一个单通道、导轨安装式的Ⅱ类(C级)电涌保护器。为了对多路导线进行电涌保护,可以将多个VALVETRAB并联在一起安装,并在接地侧桥接。VAL MS...VF产品在保护插头中特殊设计了压敏电阻和气体放电管,可以有效限制漏电流。VALVETRAB产品由保护插头和基座两部分组成,这种构造的优点是,在进行绝缘检测的整个过程中,可以拔出保护插头或者在超负荷情况下无需中断供电便可调换保护插头。保护插头的基座的编码在首次插入保护插头时即行完成。这样就排除了将不合适的保护插头插入已编码的基座中的可能。 VAL-MS产品特性: —可插拔 —热脱离装置 —机械式状态显示 —遥信接点(浮地干接点)

ZFTW防雷器说明书

ZFTW-系列通道防雷保安器说明书 一、功能与特点 ZFTW-系列通道防雷保安器为我公司为铁路信号系统设计,用于防止雷电过电压和瞬态过电压对铁路信号系统及设备造成的损坏。 ●其主要特点是: ●防雷保安器为插拔式,防雷底座即可直接固定于直六柱瓷端子接线柱上,也 可固定于35mm导轨或防雷分线柜绝缘板上。实现传统6柱瓷端子的分线、防雷一体化,使用简单、方便、节省空间及改造成本。 ●内置过流保护电路,避免火险发生 ●内部串接压敏电阻,有效阻断漏流 ●采用绿、红色分别指示工作状态及失效状态,清晰直观 ●防雷模块设有测试点,方便对防雷器整体性能及内部器件定期测试。 二、工作原理及主要元器件选型 二.1 共模型 信号线2 PE

二.2 差模型 二.3 全模型 信号线 信号线 PE 信号线 信号线 PE

三、主要外形参数 防雷模块和底座组装后外形尺寸为49×40×82mm ,图为防雷模块及与底座组装后的示意图如下:

四. 使用方法 鉴别座的方向与电压等级一一对应,使用时,依据电压等级和保护模式选用相应的底座及与之配合的防雷保安器模块,电压等级与鉴别座的对应关系如下图所示: 共模 共模 共模 共模 差模和全模 签别座方向对应电压等级和保护模式对照图 差模和全模 差模和全模 差模和全模

黑点为签别座方向 底座俯视图 使用时,可以通过螺母将防雷保安器底座与直六柱瓷端子的接线柱连接起来,使得防雷保安 器底座固定在直六柱瓷端子上,此步骤还可同时实现接线柱与防雷电路的电气连接,使得防雷保 安器与信号设备并联连接,到达防雷减灾的目的;三个防雷底座可共用一接地连接排,用于与地 线连接;可共用一标识牌,用于记录信号线路的走向及其他信息。 五.检测方法 如图一二三所示,模块引脚和模块上所表示意图对应关系原则如下:左边对应左边;右边对应右边;中间对应中间;近端对应近端;远端对应远端。即原理图中所标的a,b,c,d,x,y,z分别对应模块 下引脚和测试点的A,B,C,D,X,Y,Z;具体对应关系如下: 检测方法如下:举例:如检测M1压敏电阻时,测量引脚D和测试点Y两端电压和漏流即可。检测放电管G1时,检测引脚A和测试点Y两点放电电压即可。

避雷器与浪涌保护器

避雷器和电涌保护器运用说明

目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献

一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

?从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

施耐德电涌保护器上图选型指南

1. 上图标注 2. 性能参数 2.1 通用型产品Ⅰ级分类产品标称放电电流In (8/20us, kA) 电压保护水平Up (kA) 最大可持续运行电压Uc (V) 级数 PRF1 Master 50 1.54401P, 2P, 3P, 4P PRF1 12.5r 25 1.5 350 1P+N, 3P, 3P+N Ⅱ级分类产品标称放电电流 In (8/20us, kA) 电压保护水平Up (kA) 最大可持续运行电压Uc (V) 级数 iPR 120r 60 2.13401P, 2P, 3P, 4P iPR 80r 40 2.03401P, 1P+N, 2P, 3P, 3P+N, 4P iPR 65r 35 2.03401P, 1P+N, 2P, 3P, 3P+N, 4P iPR 40r/4020 1.53401P, 1P+N, 2P, 3P, 3P+N, 4P iPR 20r/2010 1.23401P, 1P+N, 2P, 3P, 3P+N, 4P iPR 105 1.03401P, 1P+N, 2P, 3P, 3P+N, 4P 2.2 通信基站建设和OEM 专用产品 产品名称标称放电电流In (8/20us, kA) 电压保护水平Up (kA) 最大可持续运行电压Uc (V) 级数iPT 40r/4020 1.63851P+N, 3P+N iPT 20r/2010 1.53851P+N, 3P+N 2.3 光伏发电专用直流产品 产品名称标称放电电流In (8/20us, kA) 电压保护水平Up (kA) 最大可持续运行电压Uc (V) 标准开路电压Uocstc (V) iPR-DC 2P+115 2.8840600iPR-DC 3P 15 3.9 1230 1000 3. 应用方案(根据GB 50343-2012) 3.1 建筑物雷电防护等级雷电防护等级A B 施耐德电气电涌保护器选型 最大冲击电流Iimp (10/350us, kA)5012.5最大放电电流Imax (8/20us, kA)12080 6540 2010最大放电电流Imax (8/20us, kA)4020最大放电电流Imax (8/20us, kA)4040 1. 中型计算中心、二级金融设施、中型通信枢纽、移动通信基站、大型体育场(馆)、小型机场、大型港口、大型火车站的电子信息系统 2. 二级安全防范单位,如省级文物、档案库的闭路电视监控和报警系统 3. 雷达站、微波站电子信息系统,高速公路监控和收费系统 4. 二级医院电子医疗设备 5. 五星及更高星级宾馆电子信息系统 建筑物类型 1. 国际级计算中心、国家级通信枢纽、特级和一级国家金融设施、大中型机场、国际级和省级广播电视中心、枢纽港口、火车枢纽站、省级城市水、电、气、热等城市重要公用设施的电子信息系统 2. 一级安全防范单位,如国家文物、档案库的闭路电视监控和报警系统 3. 三级医院电子医疗设备 C D 3.2 雷电防护区划分 4.后备保护装置的选择 4.1 Ⅱ类电涌保护器(8/20us) iPR 10iPR 20r/20iPR 40r/40iPR 65r iPR 80r iPR 120r 最大预期短路电流Isc (kA) iC65N 20A iC65N 25A iC65N 40A iC65N 50A C120H 80A C120H 80A Isc<6iC65H 20A iC65H 25A iC65H 40A iC65H 50A C120H 80A C120H 80A Isc<10iC65L 20A iC65L 25A iC65L 40A iC65L 50A C120L 80A C120L 80A Isc<15NG125H 80A NG125H 80A Isc<25NG125H 80A NG125H 80A Isc<36NG125L 80A NG125L 80A Isc<50 4.2 Ⅰ类电涌保护器(10/350us) PRF1 12.5r PRF1 Master 最大预期短路电流Isc (kA)C120H 80A Campact NSX160B 160A TM Isc<6C120H 80A Campact NSX160B 160A TM Isc<10C120L 80A Campact NSX160B 160A TM Isc<15NG125H 80A Campact NSX160B 160A TM Isc<25NG125H 80A Campact NSX160F 160A TM Isc<36NG125L 80A Campact NSX160N 160A TM Isc<504.3 关于后备保护设备的说明1. 三级金融设施、小型通信枢纽电子信息系统 2.大中型有线电视系统 3.四星及以下级宾馆电子信息系统 除上述A 、B 、C 级以外的一般用途的需防护电子信息设备 3.2.1 雷电防护区的划分是将需要保护和控制雷电电磁脉冲环境的建筑物,从外部到内部划分为不同的雷电防护区(LPZ )。 3.2.2 雷电防护区应划分为:直击雷非防护区、直击雷防护区、第一防护区、第二防护区、后续防护区(如右图),并符合下列规定: 1 直击雷非防护区(LPZOA ):电磁场没有衰减,各类物体都可能遭到直接雷击,属完全暴露的不设防区。 2 直击雷防护区(LPZOB ):电磁场没有衰减,各类物体很少遭受直接雷击,属充分暴露的直击雷防护区。 3 第一防护区(LPZ1):由于建筑物的屏蔽措施,流经各类导体的雷电流比直击雷防护区(LPZOB )减小,电磁场得到了初步的衰减,各类物体不可能遭受直接雷击。 4 第二防护区(LPZ2):进一步减小所导引的雷电流或电磁场而引入的后续防护区。 5 后续防护区(LPZn ):需要进一步减小雷电电磁脉冲,以保护敏感度水平高的设备的后续防护区。 1.所有断路器选择C 曲线 2.断路器的分断能力必须大于该处最大短路电流,且断路器可承受连接处正常情况下雷电流的冲击 3.此选型表中电涌保护器与后备断路的配合关系已经过全面的实验验证,确保匹配正确 4.安装后备保护断路器及相关附件后,可对电涌保护器支路进行实时监测和控制,确保现场安全 5.电涌保护器每极都必须设置保护。例如:1P+N 的电涌保护器必须用2级的断路器 6.使用施耐德电气的电涌保护器,必须使用本公司推荐的选型表中断路器作后备保护,否则会产生电涌保护器损坏等严重后果

电涌保护器设备工作原理

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。 按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理: 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是*回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的, 气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常

电涌保护器运用说明

避雷器和电涌保护器运用说明 目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献 一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。 从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。 根据分析来回答电涌保护器(SPD,有的称浪涌保护器)和避雷器的区别: 1、应用范围不同(电压):避雷器范围广泛,有很多电压等级,一般从0.4kV低压到500kV 超高压都有(详见楼上分析),而SPD一般指1kV以下使用的过电压保护器; 2、保护对象不同:避雷器是保护电气设备的,而SPD浪涌保护器一般是保护二次信号回路或给电子仪器仪表等末端供电回路。 3、绝缘水平或耐压水平不同:电器设备和电子设备的耐压水平不在一个数量级上,过电压保护装置的残压应与保护对象的耐压水平匹配。 4、安装位置不同:避雷器一般安装在一次系统上,防止雷电波的直接侵入,保护架空线路及电器设备;而SPD浪涌保护器多安装于二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;所以避雷器多安装在进线处;SPD多

浪涌保护器原理分析

浪涌保护器原理分析 随着相关设备对防雷要求的日益严格,安装浪涌保护器浪涌保护器 (Surge Protection Device, SPD)抑制线路上的浪涌和瞬时过电压、泄放线路上的过电流成为现代防雷技术的重要环节之一。 随着电子技术的高速发展,个人PC机、大中型计算机及相关信息设备的大量应用,使建筑物防雷击电磁脉冲(过电压)愈来愈受到大家的重视,由此,越来越多的过电压保护产品投入市场,浪涌保护器SPD(Surge Protective Device)也逐渐为人们所熟悉。 1 雷电的特性防雷包括外部防雷和内部防雷。外部防雷以避雷针(带、网、线)、引下线、接地装置为主,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针(带、网、线)、引下线等泄放入大地。内部防雷包括防雷电感电感应、线路浪涌、地电位反击、雷电波入侵以及电磁与静电感应的措施。其基本方法是采用等电位联结,包括直接连接和通过SPD间接连接,使金属体、设备线路与大地形成一个有条件的等电位体,将因雷击和其他浪涌引起的内部设施分流和感应的雷电流或浪涌电流泄放入大地,从而保护建筑物内人员和设备的安全。能产生电感作用的元件统称为电感原件,常常直接简称为电感。电感器在电子制作中虽然使用得不是很多,但它们在电路中同样重要。我们认为电感器和电容器一样,也是一种储能元件,它能把电能转变为磁场能,并在磁场中储存能量。 [全文] 雷电的特点是电压上升非常快(10μs

以内),峰值电压高(数万至数百万伏),电流大(几十至几百千安),维持时间较短(几十至几百微秒),传输速度快(以光速传播),能量非常巨大,是浪涌电压中最具破坏力的一种。 2 浪涌保护器的分类SPD是电子设备雷电防护中不可缺少的一种装置,其作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击。 2. 1 按工作原理分类按其工作原理分类, SPD可以分为电压开关开关型、限压型及组合型。开关是最常见的电子元件,功能就是电路的接通和断开。接通则电流可以通过,反之电流无法通过。在各种电子设备、家用电器中都可以见到开关。 [全文] (1)电压开关型SPD。在没有瞬时过电压时呈现高阻抗,一旦响应雷电瞬时过电压,其阻抗就突变为低阻抗,允许雷电流通过,也被称为“短路开关型SPD”。(2)限压型SPD。当没有瞬时过电压时,为高阻抗,但随电涌电流和电压的增加,其阻抗会不断减小,其电流电压特性为强烈非线性,有时被称为“钳压型SPD”。(3)组合型SPD。由电压开关型组件和限压型组件组合而成,可以显示为电压开关型或限压型或两者兼有的特性,这决定于所加电压的特性。 2. 2 按用途分类按其用途分类, SPD可以分为电源电源线路SPD和信号线路SPD两种。电源是向电子设备提供功率的装置,也称电源供应器,它提供计算机中所有部件所需要的电能。 2. 2. 1 电源线路SPD 由于雷击的能量是非常巨大的,需要

菲尼克斯防雷器、电涌防护器使用说明

VAL-MS230 ST 和F-MS 12 ST 德国菲尼克斯浪涌保护器防雷器 防雷器的工作原理:防雷器内部结构其实就是巨功率电压敏感器件,当雷击进入电源进户线路时:防雷器将过高的电压吸收和泄放到大地上,所以地线是很重要的,没有地线就没有防雷效果,只能吸收浪涌效果,当遇到过于强大的雷击时需要空气开关或熔断器(保险丝)来保护,所以空气开关和熔断器的电流要选择合适,不然烧了防雷器还与电网未断开,在空气开关后面再接熔断器是为了更保险,因为空气开关是机械动作的,不会100%可靠。防雷器的使用必须与空气开关和熔断器配合,理论上讲:空气开关或保险丝电流越小越好,防雷器的并联只数越多效果越好,对雷电的吸收功率越大,但如果选用过大电流的空气开关是不利的,当防雷器达到极限功率时间后,如果空气开关或保险丝未断开是不行的。 使用漏电开关要接在防雷线路之后,漏电开关里面有电子线路,接在防雷线路后面可以保护漏电开关被雷击损坏。 本防雷器属于快速更换结构,当过强雷击被击穿后可以快速更换防雷器芯,不用任何工具,只从防雷器座上拔下和插上,购买时也以多买几个防雷器芯备用,防雷器芯购买请看:德国菲尼克斯PHOENIX CONTACT VAL-MS230 防雷器芯 下图是:简单的浪涌保护接线图,本图不能实现防雷保护,只有浪涌保护,空气开关和溶断器大于32A时用两只防雷器并联。

下图是:简单型的防雷和浪涌保护(成本低,效果一般)。 下图是:32A典型防雷浪涌保护接线图(效果最好)。

下图是:63A以下大电流防雷浪涌保护接线图(对线路电流大的也有很好效果)。 下图是: 三相五线防雷浪涌保护接线图,电流大的要用多只并联。

浪涌保护器的工作原理

浪涌保护器的工作原理 随着微电子技术的长足进步,个人PC、各类中型、大型及超大型计算机、大型程控交换机的运用越来越普及。由于这类电子设备内部有大量的对过电压十分敏感的大规模或超大规模集成电路,从而使由过电压造成的损失越来越大。针对这种现状,《建筑物防雷设计规范》GB50057-94(2000年版)中加入了第六章——防雷击电磁脉冲的内容。根据这一要求,一些生产厂家也推出了相应的过电压保护产品,也就是我们现在常说的浪涌保护器(SurgeProtectiveDeviceSPD)。要保护电气和电子系统重要的是在电磁兼容性保护区内设置一套包括全部有源导线在内的完整的等电位联结系统。不同种类的过电压保护装置中放电元器件的物理特性在实际应用中既有优点,亦有缺点,因此采用多种元件组合的保护电路运用得更为广泛。 但是,能满足具有当代技术水平的,能传导10/350μs脉冲电流的雷击电流放电器,用于二次配电的可插式浪涌保护器,电器电源保护装置直到电源滤波器所有技术要求的产品系列却是极为少见的。同样这种产品系列应该包括适用于所有的电路,即除电源外,还应包括用于测量、控制、调节技术电路和电子数据处理传输电路以及适用于无线和有线通讯的放电器,以便客户使用。 本文将对目前常用的几种浪涌保护产品做简单的介绍并对其特性及适用场合做简略分析。 1、等电位联结系统 过电压保护的基本原理是在瞬态过电压发生的瞬间(微秒或纳秒级),在被保护区域内的所有金属部件之间应实现一个等电位。“等电位是用连接导线或过电压保护器将处在需要防雷的空间内的防雷装置、建筑物的金属构架、金属装置、外来的导体物、电气和电讯装置等连接起来。”(《建筑物防雷设计规范条文说明》)(GB50057-94)。“等电位联结的目的在于减小需要防雷的空间内各金属部件和各系统之间的电位差”(IEC13123.4)。《建筑物防雷设计规范》(GB50057-94)中规定:“第3.1.2条装有防雷装置的建筑物,在防雷装置与其他设施和建筑物内人员无法隔离的情况下,应采取等电位联结。”在建立这个等电位联结网络时,应注意使相互之间必须进行信息交换的电器和电子设备与等电位联结带之间的连接导线保持最短距离。 根据感应定理,电感量越大,瞬变电流在电路中产生的电压越高;(U=L·di/dt)电感量大小主要和导线的长度有关,与导线截面关系不大。因此,应使接地导线尽可能的短。多条导线的并联连接可显著地降低电位补偿系统的电感量。为了将这两条付诸实践,理论上可以把应与等电位联结装置连在一起的所有电路和设备连在同一块金属板上。基于金属板的构想在补装等电位联结系统时可采用线状、星状或网状结构。设计新的设备时原则上应只采用网状的等电位联结系统。 2、将电源线路与等电位联结系统连接 所谓瞬变电压或瞬变电流意味着其存在时间仅为微秒或毫微秒。浪涌保护的基本原理是:在瞬态过电压存在的极短时间内,在被保护区域内的所有导电部件之间建立起一个等电位。这种导电部件也包括电路中的电源线。人们需要响应速度快于微秒的元件,对于静电放电甚至要快于毫微秒。这种元件能够在极短的时间间隔内,将非常强大直到高达数倍于十千安的电流导出。在预期的雷击情况下按10/350μs脉冲计算,电流高达50kA。通过完备的等电位联结装置,可以在极短的时间内形成一个等电位岛,这个等电位岛对于远处的电位差甚至可高达数十万伏。但重要的是,在需要保护的区域内,所有导电部件都可认为具有接近相等或绝对相等的电位,而不存在显著的电位差。 3、浪涌保护器的安装及其作用 浪涌保护电器元件从响应特性来看,有软硬之分。属于硬响应特性的放电元件有气体放电管和放电间隙型放电器,二者要么是基于斩弧技术(Arc-chopping)的角型火花隙,要么是同轴放电火花隙。属于软响应特性的放电元件有压敏电阻和抑制二极管。所有这些元件的区别在于放电能力、响应特性以及残余电压。由于这些元件各有优缺点,人们将其组合成特殊保护电路,以扬长避短。在民用建筑领域中常用的浪涌保护器主要为放电间隙型放电器和压敏电阻型放电器。 闪电电流和闪电后续电流需要放电性能极强的放电器。为了将闪电电流通过等电位联结系统导入接地

浪涌保护器前端是否该用熔断器

浪涌保护器前端是否该用熔断器? 看见很多电器厂安装浪涌时,前端都要加装熔断器,问其原因答案都是说保护浪涌开关。据我所知,浪涌工作原理是,当雷击进入电网时,浪涌瞬间短路充当旁路泄流,让高压电流分流。如果,此时前端熔断器被击穿处于开路状态,浪涌岂不是成了摆设?不知各位老师的看法如何? 浪涌保护器为什么要加熔断器? 1,防止因雷击而产生的工频续流(针对放电间隙型器件)对SPD 及其线路的损坏。2,方便维护更换SPD。 3,防止因SPD老化(如mov器件的漏流增大)而造成线路故障SPD前端熔断器应根据避雷器厂家的参数安装。 如厂家没有规定,一般选用原则: 根据(浪涌保护器的最大保险丝强度A)和(所接入配电线路最大供电电流B)来确定(开关或熔断器的断路电流C)。

确定方法: 当:B大于A时C小于等于A 当:B等于A时C小于A或不安装C 当:B小于A时C大于等于A 注:避雷器(SPD) 关于避雷器(SPD)能耗指标的问题 1.SPD 只有在浪涌的情况下才动作,在正常的情况下相当于绝缘体,消耗的功率在1W左右,这个在应用的情况下是影像不大的。 2.避雷器没有能耗指标参数。 因为mov(压敏)型有漏电流,应该消耗电能。 三相SPD是安装于L,N与PE之间的所以计算如下:

单模块:P=UI×cosφ=220×30×0.000001=0.0066瓦U是电压,相电流,cosφ取1。三个模块:P=3×UI×cosφ=3×220×30×0.000001=0.0198瓦 MOV 在标称持续工作电压下流过阀片的电流称为漏电流。按国家标准应小于30μA。冲击前后的变化率应小于200%。 另外,间隙型SPD,没有漏电流。应该不耗能。

电涌保护器工作原理和结构(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电涌保护器工作原理和结构(通 用版) Safety management is an important part of production management. Safety and production are in the implementation process

电涌保护器工作原理和结构(通用版) 电涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: (1).开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流

晶体管等。 (2).限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 (3).分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。 按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。

相关文档
最新文档