解析各种检测器的原理、用途和作用

解析各种检测器的原理、用途和作用
解析各种检测器的原理、用途和作用

气相色谱仪-检测系统

1.热导检测器热导检测器

( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果

热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。

2.气相色谱仪氢火焰离子化检测器

氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口

及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量有

机物分析。其缺点是不能检测惰性气体、空气、水、C0,CO2、NO、S02及

H2S等。

3.气相色谱仪电子捕获检测器

电子捕获检测器是一种选择性很强的检测器,它只对合有电负性元素的组分产生响应,因此,这种检测器适于分析合有卤素、硫、磷、氮、氧等元素的物质。在电子捕获检测器一端有一个多放射源作为负极,另一端有一正极。两极间加适当电压。当载气(N2)进入检测器时,受多射线的辐照发生电离,生成的正离子和电子分别向负极和正极移动,形成恒定的基流。合有电负性元素的样品AB进入检测器后,就会捕获电子而生成稳定的负离子,生成的负离子又与载气正离子复合。结果导致基流下降。因此,样品经过检测器,会产生一系列的倒峰。电子捕获检测器是常用的检测器之一,其灵敏度高,选择性好。主要缺点是线性围较窄。

解析各种检测器的原理、用途和作用:

FID的全称是火焰离子化检测器,因为一般都用的是氢气,所以一般叫氢火焰检测器。它的原理很简单,氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,在火焰那里会生成比基流高几个数量级的离子,在极化电压的作用下,喷嘴和收集极之间的电流会增大,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流,此离子流经放大器放大后,可被检测。产生的离子流与进入火焰的有机物含量成正比,利用此原理可进行有机物的定量分析。一般的有机化合物在FID上都有响应,一般分子量越大,灵敏度越高。FID是GC最基本的检测器。(仪器信息网)

ECD检测器全称电子捕获检测器,是一种灵敏度高,选择性强的检测器。它有一个放射源,会不间断地发射电子,这个电子流在通常的时间尺度下,可认为是恒定的,我们称为基流。利用镍源发生α射线轰击物质组分,使物质离子逃逸再被检测。当含有强电负性元素如卤素、O还有N等元素的化合物经过检测器时,他们会捕获并带走一部分电子而使基流下降,检测并记录基流信号的变化就可以得到谱图。是分析痕量电负性化合物最有效的检测器,也是放射性离子化检测器中应用最广的一种,被广泛用于生物、医药、环保、金属鳌合物及气象追踪等领域。因此,ECD是一个选择性的检测器,仅对含强电负性元素的化合物有高响应,它的灵敏度很高,比FID要高出2-3个数量级。(仪器信息网)

TCD是根据组分和载气有不同的导热系数研制而成的。组分通过热导池且浓度有变化时,就会从热敏元件上带走不同热量,从而引起热敏元件阻值变化,此变化可用电桥来测量。几乎所有物质的电阻率都随其本身温度的变化而变化,这一蜗箜现象称谓热电阻效应。热导池检测器就是基于气体热传导和热电阻效应的一种检测装置,它检测气体浓度的过程是通过热电阻(钨铼丝元件)与被测气体之间热交换和热平衡来实现的。热导池在结构上就是将电阻率较大的钨铼丝元件置于一个有气体可进出流过的金属块体的气室中,一般多用四个元件,在电路上组成典型的惠斯顿电桥电路。当被测气体组份被载气带入气室时,就发生了一系列的变化:气室中气体组成变化气体导热率变化热电阻温度变化,热电阻阻值变化,电桥平衡

被破坏就输出象应的电讯号,这个讯号与被测气体浓度成一定的线性函数关系。(仪器信息网)

NPD为氮磷检测器。由于NPD 对含N、P 的有机物的检测肯有灵敏度高,选择性强,线性围宽的优点,它已成为目前测定含N 有机物最理想的气相色谱检测器;对含P 的有机物,其灵敏度也高于FPD,而且结构简单,使用方便;所以广泛用于环境、临床、食品、药物、香料、刑事法医等分析领域,成为最常用的气相色谱检测器,目前几乎所以的商品色谱仪都装备这种检测器。

FPD为火焰光度检测器。是分析S、P 化合物的高灵敏度、高选择性的气相色谱检测器。广泛用于环境、食品中S、P 农药残留物的检测。当含S、P 的化合物进入检测器,在富氢焰(H2 与O2 体积比)中燃烧时,从基态到激发态发出特征光谱,分别发射出(350-480)nm 和(480-600)nm 的一系列特征波长光,其中394nm 和526nm 分别为含S 和含P化合物的特征波长。其特征光透过特征光单色滤光片直接投射在光电倍增管上,通过光电倍增管将光信号转换成电信号,经微电流放大器放大传输给色谱工作站的数据采集卡,数据采集卡将其模拟信号转换成数字信号,便可得到相应的谱峰。以前一直将FPD 作为S 和P 化合物的专用检测器,后由于氮磷检测对P 的灵敏度高于FPD,而且更可靠,因此FPD 现今多只作为S 化合物的专用检测器。

最低检出限:1×10-11g S/sec 1×10-12g P/sec,我们国家制定的《气相色谱检定规程》中注明:FPD检测限测定所用的标准物质为:甲基对硫磷!

各种检测器的最低检出限的数值和单位的由来与计算方法

最小检测限是实际测出来的。不同的检测器设计就会有不同的检测限,并且检测限往往用一种大家共用的试剂,指定的柱子,并不能代表所有物质的最小检测限,最小检测限和信噪比有一定关系。检测限D=2N/S,其中N为噪声,单位m V或A;S为检测器灵敏度,不同检测器灵敏度的表示方式不同,检测限的表示方式也随之不同。一般来讲D的单位随S的不同也分为3种:mg/ml.ml/ml,g/s。先说计算方法:国一般以物质的峰高为计算依据,要求大于三倍的噪音,安捷伦的要三倍的噪音为最低定性指标,10倍的噪音为最低定量指标。判断噪音的方法简单点的话就是放大基线,看下平稳状态下平均噪音的波动围是多少,或用工作站直接计算。各检测器的最低检测线有两种方法,1是实际测量法,二是理论计算法,当然了,不同的条件,最低检测线也不一样。先说实际测量法,比较简单,色谱的条件保持稳定,然后将配制成一定浓度的样品不断的稀释进样,直到物质峰高小于10倍或国的3倍峰高时候的浓度就是最低检测线。计算法比较省劲,但是要保证检测器线性良好,如10ppm 的物质峰高为1000单位,噪音为1单位,那么10倍的噪音就是10各单位了,1000/10=100倍,然后10ppm/100=0.1ppm,就此我们就可以大致推算出来该条件下,该检测器对该物质的最低检测线为0.1ppm。

(仪器信息网)

解析检测数值的大小对仪器有何作用以及在实际应用的作用,对购买者选择的方向

仪器的最小检测限越小,说明检测器设计较好,灵敏度也越高,但同时也会使仪器的稳定性、重现性降低等等,在使用各种仪器的过程中,不知各位是否发现国产仪器往往比较稳定,但是灵敏度较小;线性围指的是样品的检测浓度和质量的大小能否线性检测,线性围小的检测器,对分析方法的要求较高。

电子捕获检测器(ECD)离子源有哪些种类?主要有哪些物质构成的?

ECD的电离源一直为放射源,即α、β、γ射线。其中β射线最适合作为ECD的电离源。3H2和63Ni是最常使用的放射源。(仪器信息网)

解析基线噪音的大小和计算方法?对检测分析有何影响

检测器的噪声定义,是输出信号随机变化振幅包络线的宽度。基线噪音的大小是整个系统各个部位质量的反应。计算方法,可以通过色谱图或直接测量电信号。当然,基线不稳定,色谱的所有参数的计算都会不准确。想说的是,噪声的单位有mV和A两种,使用哪种取决于检测器的工作原理,即检测器转变成电压还是电流信号。比如FID是转变成离子流,所以用A。但是,你怎么从色谱图上计算出噪声水平呢?这还得知道一些仪器的结构。比如,对于FID,你可以从色谱图上看出噪声的mV值,你要想和仪器的出厂数据比较,就得知道FID放大部分的高阻,然后才能算出来。噪音的测量通常是取10--15分钟的噪声带来计算,以噪声带中峰和谷(最高和最低点)的两条平行线来确定,此时测得的噪声Vn 单位为m V, 这时检测器的噪声电平ND=Vn*A,其中A为衰减。

噪声可分为短期噪声和长期噪声。短期噪声是来回摆动的信号,其频率明显比色谱峰快,此噪声可以通过适当的滤波器将其除去,对分析工作影响不大;长期噪声的出现频率和色谱峰相当,此噪声无法用滤波器除去,也无法与这样大响应值的色谱峰区别开,对接近检测线的组分测定有较大影响。

(仪器信息网)

解析基线漂移的大小和计算方法?对检测分析有何影响

基线漂移的大小是包括检测器在的色谱系统及环境条件决定的。这个其实就是仪器的稳定性,一般仪器要求开机预热一段时间,以便达到热平衡。漂移就是基线包络对基准位置的偏离。可以通过色谱图上计算出来。漂移的测量通常是取0.5小时或1小时基线的变动来计算。从低电平点P作水平线,从高电平点Q作垂线,相交得到交点O,这时检测器的漂移为D=OQ/OP,单位为mV. 多数情况下,漂移是可以控制和改善的,因此对检测结果影响不大。(

检测器的线性是指,被测物质在检测器的载气中的浓度(或质量流速)变化时,检测器灵明度成常数的围。在检测器保持线性响应时,其线性依据最大组分量和最小组分量之比来计算,即线性围=最高检测量/最低检测量。比如FID的最小检测质量流量为10-12g/s,其

响应值偏离线性达5%时的质量流量为10-5g/s,那么其线性为10-5/10-12=107。

线性和线性围对组分准确定量是十分重要的。实际工作中应尽量保证检测器为线性响应,保证样品浓度在线性围。检测器的线性围测定和计算,和分析方法确定时的线性回归一样。越宽越好。线性围窄,在定量分析时对操作比较苛刻。

柱箱和控温程序相关参数

(仪器信息网)

温度围对检测有何影响?升温速率对检测有何影响

色谱仪温度控温围越宽,适用检测样品的沸点及性质的围就越宽,检测物质的围就越广,对分离有利。一个仪器的温度围宽,说明仪器的设计水平和其研发实力。但有的仪器虽标注最高温限很高,但实际上在那个温度下根本不能运行,高温运行,相关组件要耐高温,温度高蒸汽压就搞,气路部分要承压,对仪器的材质要求很高,仪器价格就会高,温度围越大,制定分析方法的选择性就越宽。虽然在温度高可以缩短分析时间,但注意不要高于色谱柱的最高使用温度,很容易导致仪器的损坏;使用温度低进行分析分离效果好,但分析时间长,对高沸点的物质残留可能比较大。(仪器信息网)

进口产品:柱温控温围:-100度~420度;而国产色谱一般:室温+10度~400度。柱温直接影响分离效能和分析速度。提高柱温可以提高柱效和分析速度,但选择性因子变小,分离

度降低。气化室和检测器的温度主要取决于样品的化学和热稳定性,沸程围,相应进样器和检测器的类型。

升温速率的选择主要考虑分离度和分析速度。适当的选择程序升温的升温速率使沸点围宽的样品中每一个组分在最佳的温度条件下得到分离,能提高样品的分离度和定性定量的准确性!升温速率越小,则对性质非常相近的物质分离有利。升温速率快又平稳,不容易造成基线漂移,如果慢速升温,换取基线稳定得不偿失,这是仪器的一个重要技术指标,尤其是对于程序升温分析方法。

N阶升温程序有何作用和意义(仪器信息网)

N的数字越大,代表同一分析周期可控制的温度平台的数量。N阶升温程序是为了应对样品组成复杂且各组分性质差异较大的物质组来进行的,先进行低温运行,有一些组分就先出峰,然后很多高沸程组分再进行进一步分离。N阶升温程序的有效利用,既可以达到组分的有效分离,又可以缩短检测的时间有利于提高仪器的工作效率。(

1)解析各种检测器的原理、用途和作用?

dct1983:FID的全称是火焰离子化检测器,因为一般都用的是氢气,所以一般叫氢火焰检测器。它的原理很简单,当有机物经过检测器时,在火焰那里会产生离子,在极化电压的作用下,喷嘴和收集极之间的电流会增大,对这个电流信号进行检测和记录即可得到相应的谱图。一般的有机化合物在FID上都有响应,一般分子量越大,灵敏度越高。FID是GC最基本的检测器。

ECD检测器全称电子捕获检测器,它有一个放射源,会不间断地发射电子,这个电子流在通常的时间尺度下,可认为是恒定的,我们称为基流。当含有强电负性元素如卤素、O还有N等元素的化合物经过检测器时,他们会捕获并带走一部分电子而使基流下降,检测并记录基流信号的变化就可以得到谱图。因此,ECD是一个选择性的检测器,仅对含强电负性元素的化合物有高响应,它的灵敏度很高,比FID要高出2-3个数量级。

shenyan1981:各检测器原理:

(1)FID:氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,生成比基流高几个数量级的离子,在电场作用下,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流;此离子流经放大器放大后,可被检测。产生的离子流与进入火焰的有机物含量成正比,利用此原理可进行有机物的定量分析。

(2)TCD:是根据组分和载气有不同的导热系数研制而成的。组分通过热导池且浓度有变化时,就会从热敏元件上带走不同热量,从而引起热敏元件阻值变化,此变化可用电桥来测量。

(3)NPD:由于NPD 对含N、P 的有机物的检测肯有灵敏度高,选择性强,线性围宽的优点,它已成为目前测定含N 有机物最理想的气相色谱检测器;对含P 的有机物,其灵敏度也高于FPD,而且结构简单,使用方便;所以广泛用于环境、临床、食品、药物、香料、刑事法医等分析领域,成为最常用的气相色谱检测器,目前几乎所以的商品色谱仪都装备这种检测器。

(4)FPD:是分析S、P 化合物的高灵敏度、高选择性的气相色谱检测器。广泛用于环境、食品中S、P 农药残留物的检测。当含S、P 的化合物在富氢焰(H2 与O2 体积比)中燃烧时,伴有化学发光效应,分别发射出(350-480)nm 和(480-600)nm 的一系列特征波长光,其中394nm 和526nm 分别为含S 和含P化合物的特征波长。光信号经滤波、放大,便可得到相应的谱峰。以前一直将FPD 作为S 和P 化合物的专用检测器,后由于氮磷检

测对P 的灵敏度高于FPD,而且更可靠,因此FPD 现今多只作为S 化合物的专用检测器。(5)ECD:是一种灵敏度高,选择性强的检测器,利用镍源发生α射线轰击物质组分,使物质离子逃逸再被检测,是分析痕量电负性化合物最有效的检测器,也是放射性离子化检测器中应用最广的一种,被广泛用于生物、医药、环保、金属鳌合物及气象追踪等领域。zhaoyt1979:气相色谱检测器按其检测特性分类可分为浓度型检测器和质量型检测器。

1. 热导检测器(thermal conductivity detector,TCD)

结构:热敏元件装入检测池池体中,制成热导池,再将热导池与电阻组成惠斯顿电桥。

原理:热敏电阻消耗的电能所产生的热与载气热传导和强制对流等散失的热达到热动平衡,当载气中有组分进入热导池时由于组分的导热系数与载气不同,热平衡被破坏,热敏电阻温度发生变化,其电阻值也随之发生变化,惠斯顿电桥输出电压不平衡的信号,记录该信号从而得到色谱峰。

应用:热导检测器是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,但因其灵敏度较低,故一般用于常量分析。

2. 氢火焰离子化检测器(flame ionization detector,FID)

结构:金属圆筒做外壳,部装有燃烧的喷嘴,载气及组分从色谱柱流出后与氢气(必要时还有尾吹气)一起从喷嘴逸出并与喷嘴周围的空气燃烧。喷嘴附近装有发射极和收集极,两极间形成电场。

原理:FID是以氢气在空气中燃烧所生成的热量为能源,组分燃烧时生成离子,同时在电场作用下形成离子流。组分在火焰中生成离子的机理,至今不是很清楚。

工作条件:温度一般应在150℃以上以防积水;氢气:氮气:空气=1:1:10。

性能与应用:FID是多用途的破坏性质量型检测器。灵敏度高,线性围宽,广泛应用于有机物的常量和微量检测。

3. 氮磷检测器(nitrogen-phosphorus detector,NPD)

结构:与氢火焰离子化检测器类似,但在火焰喷嘴与收集极之间,装有铷珠(硅酸铷,Rb 2O·SiO2)。

原理:一些研究者提出了一些不同的机理,但都不能完满地解释实验现象。

工作条件:两种操作方式,NP方式和P方式,其工作条件也不一样。

性能与应用:NPD是选择性检测器。NP操作方式时,可用于测定含氮和含磷的有机化合物;P操作方式时,可用于测定含磷的有机化合物。作为选择性检测器,对于检测的化合物灵敏度非常高,为其它检测器所不及。

4. 电子捕获检测器(electron capture detector,ECD)

结构:检测室有正负电极与β-射线源,目前所使用的最佳的放射源是Ni63,在衰变中没有γ辐射,产生的β射线能量低,半衰期长,可用到400℃。

原理:检测室的放射源放出β-射线粒子(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用下,分别向与自己极性相反的电极运动,形成检测室本底电流,当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室的电子,变成带负电荷的离子,由于电子被组分捕获,使得检测室本底电流减少,产生倒的色谱峰信号。工作条件:载气一般选用高纯氮气,气体中微量氧和微量水会污染检测室,必须用净化管除去。

性能与应用:ECD是浓度型选择性检测器,对负电性的组分能给出极显著的响应信号。

用于分析卤素化合物、多核芳烃、一些金属螯合物和甾族化合物。

5. 火焰光度检测器(flame-photometric detector,FPD)

结构:一般分为燃烧和光电两部分;前者为火焰燃烧室,与FID相似,后者由滤光片和光电倍增管等组成。

热导检测器工作原理、结构组成及检测条件

热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1R3=R2R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N 二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为和,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作。③、④是为了获得高稳定性。表 3 -2-3 列出了商品TCD中常用的热丝性能。 钨丝电阻率低,相同长度之阻值只有铁铼丝的一半,灵敏度难以提高。另外,钨丝强度差,高温下易氧化,致使噪声增加、信!噪比下降。

解析各种检测器原理、用途和作用

气相色谱仪-检测系统 1.热导检测器热导检测器 ( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

简述热导检测器方法1234

简述热导检测器技术 陈洋洋 (安徽建筑工业学院土木工程学院安全工程(1)班09201040116) 摘要:热导检测器是一种安全检测方法,它是气相色谱法最常用的一种检测器,它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应。本文将介绍一下它的工作原理、使用条件、结构组成、使用范围和一些注意事项。 关键词:热导;检测;注意事项 随着科学检测技术的发展,出现了很多更灵敏、更高效的检测器产品。热导检测器作为一种常见的检测器,尽管在许多方面它已被更灵敏更专属性的各种检测器所取代,但是由于它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应,最适合作微量分析(ppm级)。在分析测试在中,热导检测器不仅用于分析有机污染物,而且用于分析一些用其他检测器无法检测的无机气体,如氢、氧、氮、一氧化碳、二氧化碳等。 1.工作原理 热导检测器又称热导池或热丝检热器,是气相色谱法最常用的一种检测器。基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。敏感元件为热丝,如钨丝、铂丝、铼丝,并由热丝组成电桥。在通过恒定电流以后,钨丝温度升高,其热量经四周的载气分子传递至池壁。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),钨丝传向池壁的热量也发生变化,致使钨丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出。热导检测器是气象色谱法中最早出现和应用最广的检测器。 热导检测器的工作原理是基于不同气体具有不同的热导率。热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池时,热丝被加热。由于载气的热传导作用使热丝的一部分热量被载气带走,一部分传给池体。当热丝产生的热量与散失热量达到平衡时,热丝温度就稳定在一定数值。此时,热丝阻值也稳定在一定数值。由于参比池和测量池通入的都是纯载气,同一种载气有相同的热导率,因此两臂的电阻值相同,电桥平衡,无信号输出,记录系统记录的是一条直线。当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池,由于载气和待测量组分二元混合气体的热导率和纯载气的热导率不同,测量池中散热情况因而发生变化,使参比池和测量池孔中热丝电阻值之间产生了差异,电桥失去平衡。检测器有电压信号输出,记录仪画出相应组分的色谱峰。载气中待测组分的浓度越大,测量池中气体热导率改变就越显著,温度和电阻值改变也越显著,电压信号就越强。此时输出的电压信号与样品的浓度成正比,这正是热导检测器的定量基础。 2.热导检测器的使用条件 2.1载气种类 常用的载气有He和H2,因为其热导系数远大于其他化合物,且其具有较高的灵敏度和稳定的响应因子,便于定量,较宽的线性范围。其中,氦气较氢气安全,但氦气较贵,所以许多地区多用氢气作为载气。

25热导检测器TCD的使用

常州工程职业技术学院 《仪器分析》教案 气相色谱法 基本技能训练 TCD 的使用及灵敏度等参数的测定 复习 n 气路系统的要求 n 气路系统的连接(学生操作) n 气路系统的检漏(学生操作) n 载气流量的测定 课程引入 n 样品在气化室气化后,随着载气的流动进入色谱柱,经色谱柱分离后,以单一 组成流出色谱柱。同学们,你们用肉眼能看出组分什么时候流出色谱柱的吗? 你们用肉眼能看出组分流出了多少吗? n 学生思考并回答:“不能” 。 n 怎么办? n 学生思考…… n 提示:将经色谱柱分离后顺序流出的化学组分的信息转变为便于记录的电信 号。 气相色谱检测器(教师讲解) n 气相色谱检测器的作用是将经色谱柱分离后顺序流出的化学组分的信息转变 为便于记录的电信号,然后对被分离物质的组成和含量进行鉴定和测量。 n 检测器是色谱仪的“眼睛”。 检测器的种类(教师讲解) n 微分型检测器,这类检测器显示的信号是组分随时间的瞬时量的变化。 n 微分型检测器按原理的不同又分为浓度敏感型检测器和质量敏感型检测器。

n 浓度敏感型检测器的响应值取决于载气中组分的浓度。常见的浓度型检测器有 热导检测器及电子捕获检测器等。 n 质量敏感型检测器输出信号的大小取决于组分在单位时间内进入检测器的量, 而与浓度关系不大。常见的质量型检测器有氢火焰离子化检测器和火焰光度检 测器等。 TCD 的结构(教师讲解) n.TCD . 检测器图片。 ...... . . n TCD检测器图片热导池由池体和热敏元件构成,有双臂热导池和四臂热导池两 种。 n 双臂热导池池体用不锈钢或铜制成,具有两个大小、形状完全对称的孔道,每 一孔道装有一根热敏铼钨丝(其电阻值随本身温度变化而变化),其形状、电 阻值在相同的温度下,基本相同。 n 四臂热导池,具有四根相同的铼钨丝,灵敏度比双臂热导池约高一倍。 n 目前大多采用四臂热导池。 n 热导池气路形式有三种,即直通式、扩散式和半扩散式。 n 热导池体中,只通纯载气的孔道称为参比池,通载气与药品的孔道为测量池。 n 双臂热导池是一个参比池,另一个是测量池;四臂热导池中,有两臂为参比池, 另两臂为测量池。 TCD 工作原理(教师讲解) n.TCD ...... . 工作原理动画 . . n 热导池检测器中,热敏元件电阻值的变化可以通过惠斯通电桥来测量。 n 热导池检测器的工作原理是基于不同气体具有不同的热导系数。 n 热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池热丝时(此时 池内已预先通有一定流速的纯载气),热丝被加热。由于参比池和测量池通入 的都是纯载气,同一种载气有相同的热导系数,因此两臂的电阻值相同,电桥 平衡,无信号输出,记录系统记录的是一条直线。 n 当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池, 由于载气和待测组分二元混合气体的热导系数和纯载气的热导系数不同,测量

热导检测器(TCD)原理及操作注意事项

【资料】-热导检测器(TCD)原理及操作注意事项 热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E 流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。M、N二点电位相等,

电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻 ....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为0.1~1.0mm 的小珠,密封在玻壳内。 热敏电阻有三个优点 ..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点 ..:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝 ..一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高 阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度 ....,同时丝体积小 ,可缩小池体积,制作微TCD。③、④是为了获得高稳定性 ....。表 3 -2-3 列出了商品TCD中常用的热丝性能。

常见的化学成分分析方法及其原理98394

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。 沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以

热导检测器的原理

热导检测器的原理 热导检测器的原理及注意事项 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD )或热导计、卡他计(k atherometer或Catherometer ),它是知名的整体性能检测器,属物理常数检测方法。热导检测器的原理及注意事项从以下几个方面给 予阐述。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 图3-2-1 TCD工作原理图 1-**池IE 妙样器:*一色谱柱:4一测B池腔

当调节载气流速、桥电流及 TCD温度至一定值后,TCD处于工作状态。从电源 E流出之电流I在A点分成二路i i、i2至B点汇合,而后回到电源。这时,两个热丝均处于被加热状态, 维持一定的丝温T f,池体处于一定的池温 T w。一般要求T f与T w差应大于1 00 C以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R i R3 = R2 R4,或写成R l/R4 = R2/R M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气 3。 和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不 同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1 )热敏电阻热敏电阻由锰、镍、钻等氧化物半导体制成直径约为0.1?1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大( 5?50k Q),温度系数亦大,故灵敏度相当高。可直接作口g/g级的痕量分析;②热敏 电阻体积小,可作成 0.25mm直径的小球,这样池腔可小至50此;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120 C以下使用。使用范 围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60 C时,池温改变1C, 热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV ,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为 突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而 多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数 大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作微T

仪器分析简答题

11.原子吸收谱线变宽的主要因素有哪些? 一方面是由激发态原子核外层电子决定,如自然宽度;一方面是由于外界因素,多普勒变宽,碰撞变宽,场致变宽,压力变宽、自吸变宽、电场变宽、磁场变宽等。 1.自然宽度:谱线固有宽度,与原子发生能级间跃迁的激发态原子的有限寿命有关。可忽 略 2.多普勒变宽:由于无规则的热运动而变化,是谱线变宽主要因素。 3.压力变宽:由于吸光原子与蒸汽中原子相互碰撞而引起能级的微小变化,使发射或吸收的光量子频率改变而变宽。与吸收气体的压力有关。包括洛伦兹变宽和霍尔兹马克变宽。场致变宽:在外界电场或磁场作用下,原子核外层电子能级分裂使谱线变宽。 自吸变宽:光源发射共振谱线被周围同种原子冷蒸汽吸收,使共振谱线在V0 处发射强度 减弱所产生的谱线变宽。 原子吸收谱线变宽主要原因是受多普勒变宽和洛伦兹变宽的影响 12.说明荧光发射光谱的形状通常与激发波长无关的原因。 由于荧光发射是激发态的分子由第一激发单重态的最低振动能级跃迁回基态的各振动能级所产生的,所以不管激发光的能量多大,能把电子激发到哪种激发态,都将经过迅速的振动弛豫及内部转移跃迁至第一激发单重态的最低能级,然后发射荧光。因此除了少数特殊情况,如S1 与S2 的能级间隔比一般分子大及可能受溶液性质影响的物质外,荧光光谱只有一个发射带,且发射光谱的形状与激发波长无关。 13.有机化合物产生紫外-可见吸收光谱的电子跃迁有哪些类型? 在有机分子中存在σ、π、n三种价电子,它们对应有σ-σ*、π-π*及n 轨道,可以产 生以下跃迁: 1.σ-σ* 跃迁:σ-σ*的能量差大所需能量高,吸收峰在远紫外(<150nm)饱和烃只有σ- σ*轨道,只能产生σ-σ*跃迁,例如:甲烷吸收峰在125nm;乙烷吸收峰在135nm ( < 150nm) 2.π-π*跃迁:π-π*能量差较小所需能量较低,吸收峰紫外区(200nm左右)不饱和烃类分子中有π电子,也有π* 轨道,能产生π-π*跃迁:CH2=CH2,吸收峰165nm。(吸收系数大,吸收强度大,属于强吸收) 1.n-σ*跃迁:n-σ*能量较低,收峰紫外区(200nm左右)(与π-π*接近)含有杂原子团如:-OH,-NH2 ,-X,-S 等的有机物分子中除能产生π-π*跃迁外,同时能产生n-σ*跃迁4. n-π*跃迁:n-π*能量低吸收峰在近紫外可见区(200 ~ 700nm)含杂原子的不饱和基团,如- C=O,-CN 等 各种跃迁所需能量大小次序为:σ-σ*> n-σ*>π-π*>n-π* 除外分子内部还有电荷迁移跃迁,指用电磁辐射照射化合物时,电子从给予体向接受体相 联系的轨道上跃迁,实质是氧化还原过程,相应的光谱最大特点是摩尔吸光系数较大。14、简单说明紫外-可见吸收光谱法、荧光光谱法、原子吸收光谱法的定量原理和依据是什么?请画出紫外分光光度法仪器的组成图(即方框图),并说明各组成部分的作用? 答:作用: 光源:较宽的区域内提供紫外连续电磁辐射。 单色器:能把电磁辐射分离出不同波长的成分。 试样池:放待测物溶液 参比池:放参比溶液

热导池检测器的维护

https://www.360docs.net/doc/5d15784910.html, HTYSP-H油色谱分析仪 热导池检测器的维护 6.1热导池检测器注意事项 在TCD检测器使用期间,一定要注意和遵守下列内容: ●没有通入载气时,禁止设定桥流,以免造成钨丝烧毁的事故。 ●初次老化柱子时,不要将柱后载气接入热导池,应直接放空在柱箱内;老化时不能用氢气!一般是用氮气。老化期间也绝对禁止设定桥流。 ●热导池检测器是个精密的部件,请勿自行拆装池体内钨丝,以免造成不必要的损失。 6.2热导检测器常见故障分析与排除 6.2.1进样不出峰 6.2.2信号输出幅度太大(未进样时)

https://www.360docs.net/doc/5d15784910.html, HTYSP-H 6.2.3基线噪音大 附录关于接地 要想使仪器能安全可靠地运行,仪器的接地良好是非常重要的。一般来说,大多数国家和地区都要求给电器设备安装地线,以确保人身的安全。 安全接地 各种标准一般都要求给电器设备安装安全导体。标准中一般都有这样的要求:每根火线回线(中线)都要伴随一个安全导体。安全导体的大小必须与火线的大小一样。 一般来说,安全标准都要求把安全导体接到操作人员可能会碰到的电器设备的导电表面上,或由于电器事故可能激励起来的导电表面。在正常操作情况下,这根线不应带返回的交流电。如果仪器的框架没接地,或者火线偶然碰到框架上,该框架上的电压很可能会达到一定的危害程度。 把安全地线接到仪器的底盘上即可避免触电的危险,因为这样就形成一个极低阻抗回路,发生意外时会使电路的闸刀跳闸或保险丝烧断。每台仪器产品中都

https://www.360docs.net/doc/5d15784910.html, HTYSP-H油色谱分析仪 有安全接地装置,只要把仪器接到有地线的接头上,或将仪器中的接地端子接到地线上,这个回路就算完成了。 如上所述,仪器中的安全地线通常是通过绝缘的接地装置接在建筑物的导管上,这样,反过来又使分电路的配电接地。 安全地线必须正确接在总配电接地母线的端子上。从任何负载返回总接地母线的地线阻抗必须小于10欧姆。 无噪声接地 为了使色谱分析仪运行情况良好,我们坚持建议采用无噪声接地装置。这种接地也称作“绝缘接地”,因为它是与建筑物中的其它电器接地装置分开的。这样将有助于保持系统的可靠性。在大多数情况下,普通的接地是不能满足要求的,因为该接地装置不可能不带进一点接地不良所引起的其他电器噪声,该噪声也可能带有一般较稳定的电流。 典型的容易产生噪声的接地情况如下: 1、导管 2、房顶和建筑物的横梁 3、洒水管(把地线接到这些管子是大多数消防规范所不容许的)。 4、提升地板的支撑结构。 5、煤气管 把地线接到这些管子上很容易受到由于接地不良所产生的建筑物噪声的影响,同时,由于天线的影响,它们还会接收到电波频率的干扰。 可以接地的东西如下(应和当地电器检查部门商量,选用当地可以接受的接地方法): 1、用一根尺寸合适的电线接到楼房的总管线上或接到总导管的入地处。 2、把接地用的长钉子或铜网打进潮湿的土层里并接到入地处。 3、也可以接到其它可靠的入地处。 绝缘的地线必须牢固地接在装置上。不要用夹子把地线夹在管子或接地柱上,也不要使用其它会使接头松动的方法来连接。接头必须用铜焊或锡焊,尽可能减小接地接头处的接触电阻。如果安装的不合适,在接头处就可以测量到电阻,再

热导检测器(TCD)原理及操作注意事项

【资料】—热导检测器(TCD)原理及操作注意事项 热导检测器 热导检测器(TCD )是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或 Catherometer ),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 图3-?」TCD工件原譚便] j多右池曲二at样肚3 测址池腔 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E 流出之电流I在A点分成二路i1、i2至B点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温 Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100 C以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3= R2?R4,或写成R1/R4 = R2/R3 。 M、N二点电位相等, 土£

电位差为零,无信号输出。 当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻热敏电阻由锰、镍、钻等氧化物半导体制成直径约为 0.1?1.0mm 的小珠,密圭寸在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5?50k Q),温度系数亦大,故灵敏度相当高。可直接作卩g/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50 ^L;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点.:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120 C以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在 60 C时,池温改变仁C,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:① 电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度.,同时丝体积小,可缩小池体积,制作微TCD。③、④是为了获得高稳定性.。表3 -2-3列出了商品TCD中常用的热丝性能。 表—2-3常用热卷性能比较 热堂种类砸阳承电粗湿段率歎 /■心、m X201:i 宵乩腔1U 刃皿川号 3.l()x HP 10.0 5.0 x 10 W 6.9 JO 橫-隈合豪- -J353 好 好

各种探测器介绍说明资料讲解

报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 什么是双元红外探测器?什么是四元红外探测器?

热导检测器TCD原理及操作注意事项

【资料】-热导检测器(TCD)原理及操作注意事项热导检 测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。

当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻 ....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~的小珠,密封在玻壳内。 热敏电阻有三个优点 ..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点 ..:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为和,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝 ..一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度 好;④耐氧化或腐蚀。①、②是为了获得高灵敏度 ....,同时丝体积小,可缩小池体积, 制作。③、④是为了获得高稳定性 ....。表 3 -2-3 列出了商品TCD中常用的热丝性能。

各种仪器测试原理

各种仪器分析的基本原理及谱图表示方法!!(补图中......) 化学专业学生必备:各种仪器分析的基本原理及谱图表示方法!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息

红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数 裂解气相色谱法PGC

热导池检测器应用的注意事项

热导池检测器应用的注意事项 热导池检测器(TCD)是气相色谱仪中应用较为广泛的检测器,尤其是在气体分析中应用最多。由于不断的研究和发展,越来越多应用于ppm级气体成份的微量分析,在许多分析应用中取代了FID。然而,热导池检测器损坏的因素较多,应努力避免不必要的损失。 热导池中的关键热导元件是用钨铼丝做的,钨铼丝直径一般只有 15μ-30μ,材料又比较容易氧化,氧化或受污染后,阻值发生变化或断损,造成热导池测量电桥的对称性被破坏,致使仪器无法正常工作。 引起热导元件损坏的因素较多,注意事项归纳如下: 1、热导池接并联双气路应用时,必须同时并联装上二根色谱柱,二路都要同时通载气,如果只装一根柱,而另一路不装柱不通载气,那么,一通电源就会将钨丝元件烧坏。 2、仪器停机后,外界空气往往会返进热导池和柱系统,因此必须在开机时要先通载气10分钟以上再通电,停机时间越长,那么重新开机时先通载气的时间也要长,否则系统中残留的空气中氧气会将钨铼丝元件氧化或烧断。 3、热导检测器使用的载气纯度必须四个9以上(99.99%),最忌载气中含氧量高,载气不纯将会影响热导元件的使用寿命,也会降低检测灵敏度,所以载气必须脱氧净化。 4、在更换装色谱柱时,必须检漏,保证气密性,色谱柱连接处漏气将会造成热导元件损坏,色谱柱出口端必须填装好玻璃棉和不锈钢丝网,避免柱担体吹入TCD。 5、在多次进样分析后,应及时更换进样器上的硅橡胶垫,如果待

到硅橡胶垫被多次注射针扎破漏气时再更换就迟了,因为硅橡胶垫一漏,载气漏出,空气漏进,热导元件就会烧坏。 分析过程中更换硅橡胶垫时,必须将热导电源关断后,再迅速换垫,换好后必须通载气几分钟后才能再通热导池电源。 6、用平面六通阀做气体进样时,六通阀的位置必须停在二个极端位置,不能将阀旋停在中间位置,因为中间位置是六通阀将载气切断不通,这是很危险的,容易导致热导池中因不通载气而损坏。 7、色谱柱高温老化时,必须将热导池电源关断,热导池温控关断,并且将柱出口连接热导池进口的接头处断开,让高温老化的载气(N2)流入柱箱内,这样可避免因柱子老化而污染热导池及钨铼丝元件。 8、热导池桥电流的设定,必须比被分析试样组份的最高沸点高20-30℃,避免试样中高沸点组份冷凝在热导池中和污染钨铼丝元件。 9、热导池桥电流的设定,必须考虑所用载气的种类、工作温度和钨铼丝元件的冷阻,应明了这样的原则: ①轻载气(H2、He)桥电流可大,重载气(N2、Air)桥电流必须小; ②热导池工作温度高,桥电流应减小,工作温度低,桥电流可增加; ③各生产厂家热导池钨铼丝元件阻值是不同的,因此,使用桥电流大小也不同,元件阻值大的,桥电流就应设定小些,具体桥电流设定可看说明书。

热导池检测器使用注意事项

热导池检测器(TCD)是气相色谱仪中应用较为广泛的检测器,尤其是在气体分析中应用最多。由于不断的研究和发展,越来越多应用于ppm级气体成份的微量分析,在许多分析应用中取代了FID。然而,热导池检测器损坏的因素较多,应努力避免不必要的损失。 热导池中的关键热导元件是用钨铼丝做的,钨铼丝直径一般只有15μ-30μ,材料又比较容易氧化,氧化或受污染后,阻值发生变化或断损,造成热导池测量电桥的对称性被破坏,致使仪器无法正常工作。 引起热导元件损坏的因素较多,注意事项归纳如下: 1、 热导池接并联双气路应用时,必须同时并联装上二根色谱柱,二路都要同时通载气,如果只装一根柱,而另一路不装柱不通载气,那么,一通电源就会将钨丝元件烧坏。 2、仪器停机后,外界空气往往会返进热导池和柱系统,因此必须在开机时要先通载气10分钟以上再通电,停机时间越长,那么重新开机时先通载气的时间也要长,否则系统中残留的空气中氧气会将热导元件元件氧化或烧断。 3、 热导检测器使用的载气纯度必须四个9以上(99.99%),最忌载气中含氧量高,载气不纯将会影响热导元件的使用寿命,也会降低检测灵敏度,所以载气必须脱氧净化。 4、 在更换装色谱柱时,必须检漏,保证气密性,色谱柱连接处漏气将会造成热导元件损坏,色谱柱出口端必须填装好玻璃棉和不锈钢丝网,避免柱担体吹入TCD。 5、 在多次进样分析后,应及时更换进样器上的硅橡胶垫,如果待到硅橡胶垫被多次注射针扎破漏气时再更换就迟了,因为硅橡胶垫一漏,载气漏出,空气漏进,热导元件就会烧坏。 分析过程中更换硅橡胶垫时,必须将热导电源关断后,再迅速换垫,换好后必须通载气几分钟后才能再通热导池电源。 6、 用平面六通阀做气体进样时,六通阀的位置必须停在二个极端位置,不能将阀旋停在中间位置,因为中间位置是六通阀将载气切断不通,这是很危险的,容易导致热导池中因不通载气而损坏。 7、 色谱柱高温老化时,必须将热导池电源关断,热导池温控关断,并且将柱出口连接热导池进口的接头处断开,让高温老化的载气(N2)流入柱箱内,这样可避免因柱子老化而污染热导池及钨铼丝元件。 8、热导池温度的设定,必须比被分析试样组份的最高沸点高20-30℃,避免试样中高沸点组份冷凝在热导池中和污染钨铼丝元件。 9、热导池桥电流的设定,必须考虑所用载气的种类、工作温度和钨铼丝元件的冷阻,应明了这样的原则: ①轻载气(H2、He)桥电流可大,重载气(N2、Air)桥电流必须小; ②热导池工作温度高,桥电流应减小,工作温度低,桥电流可增加; ③各生产厂家热导池钨铼丝元件阻值是不同的,因此,使用桥电流大小也不同,元件阻值大的,桥电流就应设定小些,具体桥电流设定可看说明书。

相关文档
最新文档