热管换热器设计说明书

热管换热器设计说明书
热管换热器设计说明书

第一章热管及热管换热器的概述

热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。

热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中。热管气-气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。热管气-气换热器是目前应用最广泛的一种气-气换热器。

我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气-气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6]。

利用热管气-气换热器代替传统的管壳式气-气换热器,一方面,能够大大提高预热空气进入炉的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气-气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低。

1.1 热管及其应用

热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。由热管组成的换热器具有传热效率高、结构紧凑、流体压降小等优点。由于其特殊的传热特性可控制管壁温度,避免露点腐蚀。目前已广泛应用于冶金、化工、炼油、锅炉、瓷、交通、轻纺、机械等行业中进行余热回收以及综合利用工艺过程中的热能,已取得了显著的经济效益[7]。重力热管因其简单的结构及经济的成本得到了广泛的应用,其工作原理是:热管受热侧吸收废气热量,并将热量传给管工质(液态),工质吸热后以蒸发与沸腾的形式转变为蒸汽,蒸汽在压差作用下上升至放热侧,同时凝结成液体放出汽化潜热,热量传给放热侧的冷流体,冷凝液体依靠重力回流到受热侧。由于热管部抽成真空,所以工质极易蒸发与沸腾,热管起动迅速。热管在冷、热两侧均可装设翅片,以强化传热。

1.1.1热管的工作原理

热管工作的主要任务是从加热段吸收热量,通过部相变传热过程,把热量输送到冷却段,从而实现热量转移。完成这一转移有6个同时发生而又相互关联的主要过程,如图1.1。这6个过程是:

图1.1 热管的工作过程示意图

(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到液-汽分界面;(2)液体在蒸发段的液-汽分界面上蒸发;(3)蒸汽腔的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段的汽-液分界面上凝结;(5)热量从汽-液分界面通过吸液芯、液体和管壁传给冷源; (6)在吸液芯由于毛细作用使冷凝后的工作液体回流到蒸发段。为进一步了解热管的传热机理,将以上6个过程详述如下:

从热源到蒸发段液—汽分界面的传热过程基本上是热传导过程。对于水或酒精这类低导热系数的工作液体来说,由于吸液芯(金属网)的导热系数比液体高,因此通过吸液芯和液体时,热能差不多主要靠多孔吸液芯材料进行传导。但是,如果工作液体是具有高导热系数的液态金属,此时热量既通过吸液芯材料进行热传导,同是也通过吸液芯毛细孔的液态金属进行传导。在多孔吸液芯的情况下,对流传热是很小的,因为要产生有实际意义的对流流动,毛细孔显得太小了。通过吸液芯材料和工作液体的传导所产生的温差是热管热流通路中的主要温度梯度之一,它的大小取决于工作液体、吸液芯材料、吸液芯厚度以及径向净热流量。这个温降可以从摄氏几度到几十度。

液膜

蒸汽

q

q

工质

热量传递到液—汽分界面附近以后,液体就可能蒸发,与液体蒸发的同时,由于从表面离开的液体质量使液—汽交界面缩回到吸液芯里面,形成一个凹形的弯月面(如图1.2),这个弯月面的形状对热管工作性能有决定性影响。单个毛细孔上简单的力学平衡现象表明,对于球形分界面,蒸汽压力与液体压力之差是等于表面力除以弯月面半径之商的两倍。这个压差是液体流动和蒸汽流动的基本推动力。它主要起到循环时作用于液体的重力和粘滞力相抗衡的作用。在蒸发段,如果热量进一步增高,则弯月面还要进一步缩入到吸液芯里面,最后它可能妨碍毛细结构中的液体流动,并破坏热管的正常工作。

图1.2 热管的汽—液交界面

当蒸发段里的液体一旦因吸收了汽化潜热并蒸发时,蒸汽就开始通过热管的蒸汽腔向冷却段流动。此流动是由蒸汽腔两端的小压差引起的。蒸发段蒸汽的温度比冷却段的饱和温度稍高一些,从而形成了两端的温度差。蒸发段与冷却段之间这个温差常常可作为热管工作成功与否的一个判据。如果此温差小于0.5℃或1℃,则热管常常被称为在“热管工况”下工作,即等温工作。

在蒸汽向冷却段流动的同时,在蒸发段的沿途上不断加进补充的质量(蒸汽),因此在整个蒸发段,轴向的质量流量和速度是不断增加的,在热管的冷却段则出现相反的情况。

热管的蒸汽流动可以是层流,也可是湍流,这取决于热管的实际工作情况。当蒸汽流过蒸发段和绝热段时,由于粘滞效应和速度效应使得压力不断下降(在

绝热段只有粘滞效应),一旦到达冷却段,蒸汽就开始在液体—吸液芯表面上凝结,减速流动使部分动能转化为静压能,从而使得在流体运动的方向上压力有所回升。应该指出:蒸汽腔的驱动压力要比蒸发段与冷却段液体的饱和蒸汽压差销为小一些。这是因为要维持一个边界蒸发的过程,蒸发段液体的蒸汽压力必须超过该处与之相对应的蒸汽压力。同样,为了保持连续凝结,正在冷凝中的蒸汽压力必须超过该处与之对应的液体的蒸汽压力。

当蒸汽凝结时,液体就浸透冷却段的吸液芯毛细孔,弯月面具有很大的曲率半径,可以认为是无穷大。在热管只要有过量的工质,就一定集中在冷凝表面上,因而实际上冷凝段的汽—液分界面是一个平面,蒸汽凝结释放出的潜热通过吸液芯、液体层和管壁把热量传给管外冷源。如果有过量液体存在,则从分界面到管壁外面的温降将比蒸发段相应的温降大,因而,冷却段的热阻在热管设计中是应当考虑的重要热阻之一。

1.1.2热管的发展历程及应用领域

热管作为一种具有高导热性能的传热装置,其概念首先是由美国通用发动机公司的Gaugler于1944年提出的。他当时的想法是:液体在某一位置上吸热蒸发,而后在它的下方某一位置放热冷凝,不附加任何动力而使冷凝的液体再回到上方原位置继续吸热蒸发,如此循环,达到热量从一个地点传动到另一个地点的目的。Gaugler所提出的第一个专利是一个冷冻装置,由于时代条件的限制,Gaugler的发明在当时未能得到应用。

1962年特雷费森向美国通用电气公司提出报告,倡议在宇宙飞船上采用一种类似Gaugler的传热设备。但因这种倡议并未经过实验证明,亦未能付诸实施。

1963年Los-Alamos科学实验室的Grover在他的专利中正式提出热管的命名,该装置基本上与Gaugler的专利相类似。他采用一根不锈钢管作壳体,钠为工作介质,并发表了管装有丝网吸液芯的热管实验结果,进行了有限的理论分析,同时提出了以银和锂作为热管的工作介质的观点。

1964年Grover等人首次公开了他们的试验结果。此后英国原子能实验室开始了类似的以钠和其它物质作为工作介质的热管研究工作。工作的兴趣主要是热管在核热离子二极管转换器方面的应用。与此同时,在意大利的欧洲原子能

联合核研究中心也开展了积极的热管研究工作。但兴趣仍然集中在热离子转换器方面,热管的工作温度达到1600~1800℃。

1964年至1966年期间,美国无线电公司制作了以玻璃、铜、镍、不锈钢、钼等材料作为壳体,水、铯、钠、锂、铋等作为管的工作液体的多种热管,操作温度达到1650℃。

1967年至1968年,美国应用于工业的热管日渐广泛,应用围涉及到空调、电子器件、核电机的冷却等方面。并初次出现了柔性热管和平板式的异形热管。

Los-Alamos科学实验室的工作一直处于领先状态,其工作重点是卫星上热管的应用研究。1967年一根不锈钢-水热管首次在空间运转成功。1965年Cotter 首次较完整地阐述了热管理论,他描述了热管中发生的各个过程的基本方程,并提出了计算热管工作毛细限的数学模型,从而奠定了热管理论的基础。

Katzoff于1966年首先发明有干道的热管。干道的作用是为后冷凝段回流到蒸发段的液体提供一个压力降较小的通道。后来莫里茨核普鲁客提出了一个新的名词,把在吸液芯结构中加进一些干道的热管称为“第二代热管”,并把它与“第一代热管”即装有丝网层等吸液芯的热管作了比较,他们证明“第二代热管”比第一代热管好。

1969年,联、日本的有关杂志均发表了有关热管应用研究的文章。在日本的文章中描述了带翅片热管管束的空气加热器。在能源日趋紧的情况下,它可以用来回收工业排气中的热能。同年特纳核比恩特提出了“可变导热管”作为恒温控制使用。格雷提出转动热管,此种热管没有吸液芯,依靠转动中的离心力使液体从冷凝段回流到蒸发段,这些发明都是热管技术的重大进展。

热管自1964年问世以来,获得了广泛的应用。高温液态金属热管已广泛地被用于动力工程的核反应堆和同位素反应器的冷却系统,并在空间应用中作为热离子核热电发生器的重要部件;此外,作为高温换热器回收高温热能颇具前途。中温热管广泛地被用于电子器件及集成电路的冷却、大功率行波管的冷却、密闭仪表的冷却;在动力工程中用于透平叶轮、发电机、电动机以及变压器的冷却;在能量工程方面用于废气热能回收、太阳能和地热能的利用;在机械工程方面用于高速切削工具(车刀、钻头)的冷却。低温热管在通信联络中冷却红外线传感器、参量放大器;在医学方面可用作低温手术刀,进行眼睛和肿瘤的手术。随着热管技术的发展,其应用围还在扩大。几个典型的应用如下:

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (4) 2.2.1 换热器类型的选择 (4) 2.2.2流径的选择 (6) 2.2.3流速的选择 (6) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (7) 三、工艺及设备设计计算 (7) 3.1确定设计方案 (7) 3.2确定物性数据 (8) 3.3计算总传热系数 (8) 3.4计算换热面积 (9) 3.5工艺尺寸计算 (9) 3.6换热器核算 (11) 3.6.1传热面积校核 (11) 3.6.2.换热器压降的核算 (12) 四、辅助设备的计算及选型 (13) 4.1拉杆规格 (13)

4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

换热器设计说明书模板

换热器课程设计说明书 专业名称:核工程与核技术姓名:*** 班级:*** 学号:*** 指导教师:*** 哈尔滨工程大学 核科学与技术学院 2017 年 1 月 13 日

目录 1 设计题目…………………………………………………………………………… 1.1 设计题目………………………………………………………………………1.2 团队成员……………………………………………………………………… 1.3 设计题目的确定过程………………………………………………………… 2 设计过程…………………………………………………………………………… 3 热力计算…………………………………………………………………………… 4 水力计算…………………………………………………………………………… 5 分析与总结………………………………………………………………………… 5.1 可行性评价和方案优选………………………………………………………5.2 技术分析………………………………………………………………………5.3 总结与体会……………………………………………………………………参考文献………………………………………………………………………………附录计算程序………………………………………………………………………

1.1、设计题目 设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t 1 ’冷却至 t 1 ”,冷却水入口温 度 t 2 ’,出口温度 t 2 ”,设热水和冷却水的运行压力均为低压。 初始参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 80℃; 热水出口温度 t 1 ”: 50℃; 冷却水入口温度 t 2 ’: 20℃; 冷却水出口温度 t 2 ”: 45℃; 1.3设计题目的确定过程 首先,我们小组集中讨论了本次课程设计内容,即换热器设计的内容和具体细节上的要求,然后在组内达成了共识——求同存异。在题目初始参数相同的情况下对后续的计算以及编程过程发挥各自的特长,并将自己存在的疑问于组内其他成员讨论,充分发挥组内成员的自主和协作能力,努力做到一个合格并且优秀的核专业学生应有的素质。 对于管壳式换热器的设计计算,我们查阅了相关的资料(在本说明书最后一并提到),第一次尝试选择参数,如下: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 46℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 并尝试进行初步计算,不过在后面进行有效平均温差的计算时,针对我们手头有限的资料(见附录3),为了保证R可查,将参数修正为以下值。 二次选择参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 42℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 继续往下计算,我们通过之前的知识,发现在换热器的设计中,除非处于必须降 ψ>,至少不小于0.8。 低壁温的目的,一般按照要求使0.9

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

列管换热器设计一般步骤

列管换热器设计一般步骤 1、作出流程简图。 2、按生产任务计算换热器的换热量Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差D。 11、校核传热量,要求有15-25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。 3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。 9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书 3 1 2列管换热器设计步骤 常规的列管换热器的设计步骤如下。 (1) 输入已知条件:如热流体的生产任务qm2、T1、T2为已知,确定冷流体,则冷流体进口温度t1也为已知,再优化确定t2;确定管材的内径d1、外径d2、管长L,管间距l和挡板间距B;根据冷热流体的性质确定 污垢热阻Rd1和Rd2。 (2) 选择流体流通的通道和方向、管程数和壳程数。 (3) 计算冷流体流量qm1和热负荷。 (4) 计算逆流的Δtm和平均温度差修正系数ψ,再计算实际Δtm。 (5) 计算定性温度tm和Tm,选定流体物性方程,计算定性温度下的物性参数:ρ1, μ1, λ1, cp1, Pr1, ρ2, μ2, λ2, cp2, Pr2。 (6) 设定K的初值。 (7) 由传热速率式计算A。 (8) 由已知管材参数计算n, D。 (9) 计算S1, S2和Re1, Re2。 (10) 设定壁温tW,计算μ1μ1W0 14, μ2μ2W0 14。 (11) 计算α1, α2。 (12) 计算tWc,比较tW与tWc,如不符要求,重复步骤(10)~(12); (13) 计算Kc和Ac,比较A与Ac,考虑一定的安全系数,A>115% Ac,最终设计以A为换热器的传热面积。如 不符要求,重复步骤(6)~(13)。 在编制程序时,应把有关通用部分编制成独立子程序模块。 ①物性数据库,必须包括传热计算所需的冷热流体物性,如密度、黏度、比热容、导热系数、汽化潜热等, 饱和蒸汽、过热蒸汽的温度和压强的相关参数。 ②由于对流给热系数α的关联式很多,可以建立计算α的专用模块。 ③设备的尺寸模块,如系列化尺寸,对计算得到的设备尺寸应按标准系列进行圆整;又如已知列管数和管间 距计算各种排列的管壳的内径,并圆整列管数。 ④计算过程中的试差部分需要有相应的迭代计算子程序。

换热器设计说明书

甲醇■甲醇换热器II的设计 第一部分设计任务书 一,设计题目 甲醇-甲醇换热器II的设计 二,设计任务 1,热交换量:8029.39kw 2,设备形式:长绕管式换热器 三,操作条件 ①甲醇:入口温度7.83°C,出口温度-31.68°C ②甲醇:入口温度-37.68°C,出口温度1.00°C ③允许压强降:管侧不大于1.5*105pa壳侧不大于2.9*10’pa. 四,设计内容 ①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 ②换热器的工艺计算:确定换热器的传热面积和传热系数。 ③换热器的主要结构尺寸设计。 ④主要辅助设备选型。 ⑤绘制换热器总装配图。 第二部分换热器设计理论计算 1,计算并初选换热器的规格

(1) 两流体均不发生相变的传热过程,管程,壳程的介质均为 甲醇。 (2) 确定流体的定性温度,物性数据。 管程介质为甲醇,入口温度为7.83°C,出口温度-31.68°Co 壳程介质也为甲醇,入口温度?37.68°C,出口温度1.00°Co 管侧甲醇的定性温度:打=7兀:型=-H.925 °C 。 2 壳侧的甲醇定性温度:仏=二门卑V —1&34°C 。 2 两流体在定性温度下的物性数据: ⑶传热温差 △ _ 7厂力)一72一" _ (7.83-1)-[-31.8 — (-37.68)] _ 6.83-6 —钳% °C 」厂T- 7?83-(一31?68)_39?51 r-f " 1-(-37.68) ~ 38.68 ") p=hzk= 1—(—37S)=坯=085 「-匕 7.83-(-37.68) 45.51 … 由R 和P 查图得到校正系数为:处ul,所以校正后的温度为 = ^=6.406°C (查传热课本 P288) ,6.83 In ----- 6 [-31.8-(-37.68)]

列管式换热器课程设计..

课程设计说明书 学院:机电工程学院 专业:自动化 班级:(1)班 题目:列管式换热器的设计 指导教师:职称:

目录 一、设计的目的、要求及任务________________________________________2 1.1 设计目的_______________________________________________2 1.2 设计要求_______________________________________________2 1.3 设计任务_______________________________________________2 1.3.1 列管式换热器的简介______________________________2 1.3.2 设计的工艺流程__________________________________3 1.3.3 有关数据和已知条件_______________________________4 二、控制方案的选择________________________________________________5 2.1 主回路设计______________________________________________5 2.2 副回路选择______________________________________________6 2.3 主、副调节器规律选择____________________________________6 2.4 主、副调节器正反作用方式确定____________________________6 2.5工艺流程图______________________________________________7 三、调节阀的选择_________________________________________________7 3.1 阀的类型选择___________________________________________7 3.2 确定起开与气关_________________________________________8 四、仪表类型的选择_______________________________________________8 4.1流量变送器的选择________________________________________8 4.2温度变送器______________________________________________9 4.3安全栅的选择____________________________________________10 五、总结_________________________________________________________11 参考文献_______________________________________________________12

列管式换热器设计说明书

摘要: 列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。 关键词:列管式换热器,乙醇,水,温度,固定管板式。 Abstract: The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .?4 1510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchange is 9 BEM400 2.530 2 25 Ⅰ ----, and the diameter of the receiver is 400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

换热器的设计说明书.

西安科技大学—乘风破浪团队 1 换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质; ③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求; ⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温

西安科技大学—乘风破浪团队 2 差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U 形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 分类 管 壳 式 名称 特性 管式 固定管板式 刚性结构用于管壳温差较小的情况(一般≤50°C),管间不 能清洗 带膨胀节:有一定的温度补偿能力,壳程只能承受较低的压 力 浮头式 管内外均能承受高压,壳层易清洗,管壳两物料温差>120℃; 内垫片易渗漏 U 型管式 制造、安装方便,造价较低,管程耐压高;但结构不紧凑、 管子不易更换和不易机械清洗 填料 函式 内填料函:密封性能差,只能用于压差较小场合 外填料函:管间容易泄露,不易处理易挥发、易爆易燃及压 力较高场合 釜式 壳体上都有个蒸发空间,用于蒸汽与液相分离 套管 双套管式 结构比较复杂,主要用于高温高压场合或固定床反应器中

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

中文版列管式冷却器说明书

中文版列管式冷却器说明 书 Prepared on 24 November 2020

冷却器 产品使用说明书 中国广东 郁南县中兴换热器有限公司 一﹑概述 郁南县中兴换热器有限公司是广东中兴液力传动有限公司下属生产热交换器的专业厂家,主要产品有GLC﹑GLL﹑LQ型系列列管式冷却器,BR型系列板式冷却器, FL型﹑KL型、YOFL型(液力偶合器专用)系列空气(风)冷却器及各种热交换器,换热面积从~800m2。产品广泛使用在电力﹑冶金﹑矿山﹑机械﹑船舶﹑化工﹑空调、食品以及液压润滑行业,将工作介质换热(冷却)到规定的温度。 列管式冷却器由进出端盖﹑壳体﹑管束﹑后端盖、密封件及紧固件等组成,冷却介质(水)一般从换热管内通过,被冷却介质(油)从换热管外壳体内通过,冷热介质通过换热管传热,使被冷却介质温度下降。 列管式冷却器一般采用优质铜管﹑不锈钢管﹑钛管等作为换热管,管程可采用单回程、二回程或多回程,管程数增加使冷却介质流通时间加长,提高换热效果,换热管束上一般采用弓形折流板,使被冷却介质(油)在壳程内的流道为S形,达到被冷却介质(油)与换热管充分接触目的。 空气冷却器由进出端盖、本体、后端盖、风机、密封件、紧固件等组成,换热管采用单金属或双金属高效复合管。空气冷却器采用空气(风)作为冷却介质,具有工作稳定、无介质混合、运行费用低、节能环保、维护方便的优点。 二﹑型号及参数

三﹑使用说明 1﹑首先检查冷却器型号与规定要求是否相符,资料附件是否齐全(见装箱单),检查冷却器外观是否破损,紧固螺栓是否松动,冷却器出厂时已进行压力试验和清洗,一般不允许拆动紧固螺栓,确需拆卸清洗的,清洗完后必须进行压力试验,无泄漏、无异常方可使用。 2﹑冷却器安装前须确认进入冷却器的介质压力不大于冷却器铭牌标示设计压力。冷却器一般安装在系统回路或系统中压力相对较低处,必要时设置压力保护装置。列管式冷却器介质为油水时,油侧压力一般应大于水侧压力。试车前应在系统中设计傍路防止过高压力冲坏冷却器。连接冷却器的管道和系统须清洗干净,进入冷却器的介质须进行过滤,严防杂质堵塞和污染冷却器,以免影响冷却器效果。 空气冷却器安装应考虑进出风顺畅,在1米内无阻挡物。安装在室外时,应设置遮盖,防曝晒、防雨淋,以提高换热效率和使用寿命。 3﹑安装时须检查冷却器介质进出口无堵塞,将冷却器与介质管道连接紧密无泄漏。 4﹑冷却器工作时,先打开冷却器出口阀门,缓慢打开冷介质(水)进入阀,再缓慢打开热介质(油)进入阀,调整介质进入流量,以达到最佳效果。注意在打开冷却水进口阀门时不要过快,否则使换热管表面产生导热性很差的“过冷层”影响换热效果。 5﹑冷却器接通介质后,应检查各部位有无泄漏,并注意排尽冷却器中的气体,以提高换热效率和减少腐蚀。 6﹑在冬季冷却器停用时应放尽介质,防止介质冻结澎胀损坏冷却器。长期停用,应将冷却器拆下进行清洗、防锈等维护保养。

换热器设计说明书

设计任务和设计条件 某生产过程的流程如图所示。反应器的混合气体经与进料物流℃之后,进入60换热后,用循环冷却水将其从110℃进一步冷却至为量的流 知混合气体组吸塔收其中的可溶性分。已吸收237301,压力为6.9,循环冷却水的压力为0.4,循环MPaMPa hkg水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。

物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度3?mkg/?901定压 比热容 =3.297kj/kg℃c1p热导率 =0.0279w/m ?1粘度5??Pas51?.?1011 下的物性数据:34℃循环水在3/m=994.3 密度㎏?1℃ =4.174kj/kg定压比热容c1p =0.624w/m℃热导率 ?1粘度3??Pas10742?0.?1确定设计方案 1.选择换热器的类型 两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2.管程安排 从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。

浮头式换热器介绍 浮头式换热器的特点是有一端管板不与外壳连为一体,可以沿轴向自由浮动。这种结构不但完全消除了热应力的影响,且由于固2 定端的管板以法兰与壳体连接,整个管束可以从壳体中抽出,因此便于清洗和检修。故浮头式换热器应用较为普遍,但它的结构比较复杂,造价较高。 确定物性数据

ASPEN PLUS换热器设计说明(中文)

ASPEN PLUS换热器设计说明 ASPEN PLUS与换热器设计 程序的界面 本章讲述的是如何使用ASPEN PLUS 自带的换热器设计程序界面(HXINT)在AS PEN PLUS运行与换热器设计程序包之间传输加热/冷却曲线的数据。 本章的主题包括: §生成物性数据 §开始运行HTXINT §选择加热/冷却曲线的结果 §生成界面文件 §在换热器设计程序包中使用界面程序 关于换热器设计程序界面 用户可以使用HTXINT程序从一个ASPEN PLUS 运行程序中选择加热/冷却曲线数据,并将这些数据传输到某个能被下列换热器设计程序包读取的文件中: §B-JAC中的HETRAN §HTFS的TASC, ACOL, 以及APLE §HTFS的M-系列程序, 包括M-TASC, M-ACOL, 以及M-APLE §HTRI的ST, CST, ACE, PHE以及RKH 用户还可以扩展由加热/冷却曲线所得到的默认数据,使其包括换热器设计程序包所需要的所有物性数据。 完成一次ASPEN PLUS 运行之后,在开始运行设计程序之前要先运行HTXINT。HTXINT将通过一系列提示给用户以指引,为换热器设计程序选择加热/冷却曲线。 HTXINT是一个用于调用ASPEN PLUS 摘要文件工具的应用程序。

在模拟中生成物性数据 HTXINT所使用的物性数据来自加热/冷却曲线,许多ASPEN PLUS单元操作模型都可以生成这种曲线。在使用HTXINT时,用户必须先使用ASPEN PLUS 生成所需的加热/冷却曲线,对于每个想要的单元模块都要生成加热/冷却曲线(一条或多条)。关于指定加热/冷却曲线的详细细节,请参见第10章“要求加热/冷却曲线计算”一节。在模块的Hcurve上就可以: 1.在“Property Sets”栏下选择“HXDESIGN” 2.选择所需采样点的数目。见本章“指定加热/冷却曲线的取样点数”一节 3.指定压力降的数值 下面各节将详细讲述以上各步骤。 指定物性集 为了生成换热器设计程序界面所需要的物性数据,在Hcurve下选择内建的HX DESIGN物性集。 指定加热/冷却曲线的取样点数目 一般地,ASPEN PLUS所默认的10个中间点的设置是可以接受的,用户也可以增减这一数目。假如取样点的数量超过了换热器设计程序所能接受的最大数目,HTXINT会在加热/冷却曲线上选择,将曲线终点以及曲线上的任何露点或泡点包含在内。由于ASPEN PLUS会额外增加露点或泡点,最终的取样点数可能会比用户要求的要多。 指定压降 HETRAN是唯一接受非等压物性曲线的换热器设计程序包。对于其他的换热器设计程序包,不可以将带有压降的加热/冷却曲线拷贝到HTXINT界面就算完事。HTRI程序包可以在每侧接受最多3条不同压力下的加热/冷却曲线。为了使结果尽可能的精确,应该定义下列压力下的3条加热/冷却曲线: §入口压力 §出口压力 §发生相变时的压力 启动HTXINT 要想交互式的运行HTXINT界面,请恰当的使用命令

列管式换热器课程设计说明书

列管式换热器课程设计说明书 1.工原理课程设计任务书 一、设计题目:设计一煤油冷却器 二、设计条件: 1、处理能力 160000吨/年 2、设备型式列管式换热器 3、操作条件 允许压力降:0.02MPa 热损失:按传热量的10%计算 每年按330天计,每天24小时连续运行 三、设计容 4、前言 5、确定设计方案(设备选型、冷却剂选择、换热器材质及载体流入空间的选择) 6、确定物性参数 7、工艺设计 8、换热器计算 (1)核算总传热系数(传热面积) (2)换热器流体的流动阻力校核(计算压降) 9、机械结构的选用 (1)管板选用、管子在管板上的固定、管板与壳体连接结构 (2)封头类型选用 (3)温差补偿装置的选用 (4)管法兰选用 (5)管、壳程接管 10、换热器主要结构尺寸和计算结果表 11、结束语(包括对设计的自我评书及有关问题的分析讨论) 12、换热器的结构和尺寸(4#图纸) 13、参考资料目录

2.流程图 3.工艺流程图水(30℃) 煤油(140℃)浮头式换热器 水(50℃) 可循环利用 产品: 煤油(80℃)

4.设计计算 4.1设计任务与条件 某生产过程中,用自来水将煤油从140℃冷却至80℃。已知换热器的处理能力为160000吨/年,冷却介质自来水的入口温度为30℃,出口温度为50℃,允许压力降为0.02MPa ,热损失按传热量的10%计算,每年按330天计,每天24小时连续运行,试设计一台列管式换热器,完成该生产任务。 4.2设计计算 4.2.1确定设计方案 (1) 选择换热器的类型 两流体温度变化情况: 热流体进口温度1T 140℃,出口温度2T 80℃, 冷流体进口温度1t 30℃,出口温度2t 50℃。 进口温度差1T -1t =110℃>100℃,因此初步确定选用浮头式换热器。 (2) 管程安排 由于自来水较易结垢,若其流速太低,将会加快污垢增长速度,使 换热器热流量下降,而且管程较壳程易于清洗,再加上热流体走壳程可以使热流体更易于散热,减小能耗,所以从总体考虑,应使自来水走管程,混合气体走壳程。 4.2.2确定物性参数 定性温度:对于一般气体和水等低粘度流体,其定性温度可取流体进、出口温度的平均值。故壳程煤油的定性温度为 110280140=+= T ℃ 管程流体的定性温度为 402 5030=+=t ℃ 查资料得,煤油在110℃下的有关物性数据如下: 水在40℃下的有关物性数据如下:

相关文档
最新文档