控制阀的设计分析

控制阀的设计分析
控制阀的设计分析

减温减压控制阀的设计分析

减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的

自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分

的结构的优化设计方案和材质的选用。

减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分的结构的优化设计方案和材质的选用。

目前国内还没有针对减温减压控制阀进行更深入的研制和开发,而国内炼油化工企业对减温减压控制阀的需求量还很大。因减温减压控制阀的短缺且无替代产品,每年都需要花费大量外汇从国外进口这种减温减压控制阀。该产品的研制成功,将替代国外进口的产品,满足炼油化工企业的生产需要、节省大量投资。

由于减温减压控制阀使用工况条件比较恶劣,主要用于控制温度高、压差较大的调节。设计选择了输出力大的ZMSZ-4型多弹簧气动薄膜执行机构。即采用8组组合弹簧均匀地分布于膜头之内,这样采用较小的弹簧组替代较大的独立弹簧的方式,降低了加工成本,缩小了整体尺寸,使轴向长度缩短为原来普通结构的1/3左右,特别是减温减压控制阀采用这种结构后体积大大缩小,降低了安装难度,方便了工艺配管的设计。同时节约了材料,降低了制造难度,控制了制造成本,上海明精提高了产品零配件的通用程度。

1.2 阀内件

阀内件是减温减压控制阀的关键部件,它直接影响减温减压控制阀的流量特性。过去通常采用普通单座阀芯、阀座,但这种型式阀内件的可调比较小,使用压差较低。由于现场工作条件苛刻,经过几年冲刷,阀芯的流量特性发生了较大变化,控制阀的减温减压的工作特性逐渐变坏,就经常出现因汽、水分配不匀而产生打水锤现象,伴随着阀芯震动又出现了阀芯转动、卡滞的现象对生产造成较大影响。因此,对减温减压控制阀阀内件型式进行了研究和设计;针对阀芯所受的不平衡力,阀门可调比较小的具体情况,将阀内件设计成为笼式双座结构。提高减温减压控制阀工作稳定性,增大可调比,消除了噪音.

1.3 分流配水器的结构

分流器配水不均一直是困扰减温减压控制阀应用的难题。目前减温减压控制阀分流配水方式主要有2种顶部配水(阀芯中间)和底部配水结构。采用底部配水结构,在阀的底部配水,不将水直接注入在阀芯上使水不在阀芯上汽化,从而避免了阀芯震动的可能。上海明精为了提高注入与过热蒸汽的换热面积,将分流配水器设计成导流罩的形状,同时在上面开出导流槽,水从导流槽里的孔中喷出与被导向的过热蒸汽充分换热汽化。采用分流配水器的结构和阀内件笼式双座结构具有较为先进水平。

2 材料的性能分析

2.1 机械性能

对于阀门的密封面的硬度指标,最重要的是在高温下材料硬度的变化,高温下控制阀材质的硬度变化见图1。

1-铬化硼合金;2-司太立合金;3-9Cr18Mo;

图1 高温下材质的硬度变化

当减温减压控制阀的工况温度超过400℃时,在实际使用过程中阀门材质会出现蠕变和断裂的情况。上海明精减温减压控制阀部件在高温条件下长时间受载时,所受力超出其蠕变极限值,此情况下材质除产生弹性变形外,还会产生材质的蠕变。实际使用中还发现应力小于对应温度下材料的屈服极限,但仍产生变形的情况,在设计过程中需要对这些情况进行考虑。

在同一温度下,应力与蠕变速度成正比关系;在同一应力下,温度与蠕变速度成正比关系。所以材质所受的应力和材质的温度决定了其蠕变速度。在化工装置的减温减压控制阀设计中,工艺管道系统的条件决定了阀体的工作温度,而工艺介质的腐蚀性、粘度等条件又决定了阀门的材质,所以在减温减压控制阀设计中关键的是许用应力的计算确认。如果为了使控制阀材质不产生蠕变,一味的提高材质物理蠕变极限来设计,那么结果一是造成控制阀体积和质量过大,给现场安装带来问题,二是将造成控制阀制造成本上升,浪费人力物力。所以首先要充分熟悉控制阀材质的蠕变速度规律,确定一个合适的应力,在保证控制阀能达到正常使用年限的基础上,减少总的蠕变发生,简化控制阀结构,降低成本。

在实际使用过程中,减温减压控制阀出现过由于长时间处于高温载荷的工况下而出现控制阀部件断裂现象,造成控制阀故障。金属材质在高温短时荷载作用下,金属材料的塑性增加,但在高温长时间荷载作用下,塑性却显著降低,缺口敏感性增加,往往出现脆性断裂的现象。实际使用中控制阀部件常常出现这样的现象:工作应力未达到蠕变极限值,但由于部件长时间在高温载荷下使用,最终出现了断裂的情况。所以在设计中应仔细对比控制阀材质的蠕变性能和断裂性能,选取适当的许用应力。

2.2 热胀量的差别

决定热胀量差别的原因主要有材料热胀系数、材料承受热载的差别和材料所处约束条件的差别,这些差别作为减温减压控制阀设计中慎重确定的内容。当高温工艺介质进入温度较低的控制阀时,阀芯迅速浸没在高温工艺介质中,由于阀芯所处的结构位置不利于温度的迅速传导,仅能通过阀杆向外散热,所以阀芯迅速达到管线工艺介质的温度。阀座与阀芯同时接触高温工艺介质,由于阀座的具有较大的散热面积以及阀体的线胀量常常小于阀座的径向膨胀。而底部配水结构,使水从导流槽里的孔中喷出与被导向的过热蒸汽充分换热汽化又降低阀芯、阀座的温度。所以确定减温减压控制阀部件间的工作间隙量时,应充分考虑上述情况产生的热胀量的差别,预防控制阀部件出现擦伤、卡死的情况。

2.3 热交变的影响

流经减温减压控制阀工艺介质的热交变会导致阀门部件的过盈配合或连接部位松动,从而造成泄漏。所以应考虑使用封焊或点焊的方式来代替原有的螺纹连接。上海明精对于较大口径控制阀可以使用本体堆焊阀座的方式来进行处理。

减温减压控制阀高温热交变会产生交变应力,阀门部件长期受交变应力影响会降低阀门部件的使用寿命。热交变工况下使用弹性阀座的密封结构会达到较好的应用效果。

2.4 擦伤问题

在化工装置实际生产应用中,常见的造成控制阀内件擦伤的原因多是由工艺介质中夹杂了大的硬杂质,在其通过控制阀时对阀座和阀芯表面造成擦伤,偶尔也会出现由机械振动冲击造成的擦伤。

为了防止出现擦伤,设计中需要重点关注控制阀的实际工作温度、载荷,选择适当的阀门部件材质、密封面光洁度、硬度,防擦伤性能的配对材料选择见表1。

表1 防擦伤性能的配对材料

2.5 材质的确定

上海明精生产的减温减压控制阀在苛刻工况环境下,除了要考虑材质的耐高温性能,气蚀对调节阀节流件的破坏是十分严重的。在结构设计上采用笼式双座结构、多级降压等措施以避免气蚀,减少冲刷,也要在材质上选用耐磨耐冲刷的高硬度材料。常用的是经过热处理的马氏体沉淀硬化型不锈钢17-7PH,经固溶处理、时效处理,析出硬化型超高强度不锈钢NASMA-164和马氏体不锈钢9Cr18。CO43CrNiWNb合金尤其用于高压工况下的阀芯、阀座选用。常采用的材料和工艺方法也有以1Cr18Ni9为基的阀芯阀座密封面堆焊司太莱合金或超音速火焰喷涂(HVOF)WC-Co喷涂。

上海明精在减温减压控制阀设计中,控制阀所处位置的工况温度是决定阀门材质和结构的关键问题。为了保障控制阀的使用寿命和功能,在不同使用温度下,明精控制阀应选择不同的结构形式以适应相应的工况。

(1)根据在实际生产经验得知,在不同温度时设计中应注意5项内容。

大于250℃增长阀盖颈和阀杆,增大散热面积保证填料工作温度不至于过高。

大于300℃需使用强度较高的阀座、阀芯密封面,并适当增大阀内件的间隙。

大于400℃使用封焊的方式对密封环进行处理,防止连接部件出现松动导致泄漏。

大于500℃应采用高强度材质制造控制阀的导向套和导向段,并采用点焊方式进行导向套与其支承件的连接。

大于600℃应该选用本体堆焊密封面。

(2)选择适当的许用应力值,并合理的选择能够相匹配的材质。

(3)在高温热交变工况下的阀座、阀芯应采用弹性结构。

减压控制阀的设计

*******学院 毕业课题(设计) 题目减压控制阀的设计 指导教师 院系 班级 学号 姓名 年月日

摘要 随着工业技术的不断发展,使得越来越多的机器设备使用上了高效的液压系统,在不同规格,不同型号,不同大小的液压设备里,我们都可以发现一个共同的控制元件—液压控制阀。它的性能和寿命在很大程度上决定了液压系统的稳定性。但是我发现仅仅是安装了液压控制阀还是完全不够的,有些机器还会发生机械元件过热,推进器失灵,没有过载保护而产生的机器毁坏。而这些事故都是因为液压系统压力过大而产生的问题。本文将着重研究减压控制阀的设计,并对减压阀结构进行探究。意在不断优化减压阀的整体性能。 关键词:压力控制阀, 技术调节阀, 管式连接, 阀芯

目录 1引言 (1) 1.1压力控制阀的介绍 (1) 1.2减压控制阀的介绍 (1) 1.2减压阀的运行机制 (2) 1.4减压阀的生活作用 (2) 2减压控制阀的设计 (3) 2.1定比减压阀 (3) 2.2减压阀研究优化设计 (5) 2.3定差减压阀 (6) 2.4导阀和主阀研究的重要性 (7) 3 减压控制阀的导阀设计 (8) 3.1主要结构尺寸确定 (9) 3.2先导锥阀角2的选定 (11) 3.3减压阀的定值输出方式 (12) 4主阀弹簧的设计 (12) 4.1弹簧外径的计算 (14) 4.2弹簧曲度系数计算 (15) 4.3弹簧的工作圈数 (16) 5减压阀设计中有关注意事项 (17) 6研究课题的优化设计 (18) 6.1观点 (18) 参考文献 (19) 致谢 (20)

第一章引言 液压元件减压处理技术在功率密度、结构组成、响应速度、调速保护、过载保护、电液整台等方面都具有一定的优势,使其成为现代传动的重要技术手段和不可替代的关键基础技术之一,这些应用已经遍及了国民经济各个领域。 压力控制阀的介绍: 压力控制阀是指用来对液压系统中液流的压力进行控制与调节的阀。压力控制阀是控制和调节液流压力的阀的总称,简称压力阀。它是采取使作用在阀芯上的液压力与阔芯弹簧力相平衡的方法,建立和维持被控液体的工作压力。如果弹簧力是可调的,则被控液体的压力也可随之改变,从而达到控制和调节液流压力的目的。压力阀都并联在油路系统中加以使用。当被控液体由于外界原因压力升高超过弹簧预调压力时,阀芯与弹簧的平衡关系被破坏,此肘,阀芯将被迫移动,打开通路向回油管路泄油(溢流),使被控油液的压力仍维持在弹簧预调压力的水平;有时阀芯移动不是打开回油通路,而是改变其专设节流减压口的通流断面,即改变其压力降,来使预调减压油路的工作压力维持不变;有时则有意提高油液压力,使其进入另一工作油路,以达到顺序动作的目的。压力控制阀是制压力的阀的总称。按用途分为溢流阀﹑减压阀和顺序阀。 减压控制阀的介绍: 减压控制阀隶属液压控制阀这一大类,拥有以下特征: 1.减压阀是能够将出口压力调节到低于进口压力的控制阀。减压阀可以减低系统中任一分支液压油路的压力,用来满足液压设备执行元件的需要,常见于各种液压控制系统、夹紧系统、辅助系统及润滑系统中。 2.按调节要求的不同其可以分为定值减压阀、定比减压阀和定差减压阀。定压减压阀控制出口压力为定值,使液压系统中某一部分比供油压力更低的稳定压力;定比减压阀可以控制它的进、出口压力保持恒定的比例;定差减压阀可以控制进、出口压力差为恒定的大小。

【开题报告】暖通电动调节阀的结构设计

开题报告 机械设计制造及其自动化 暖通电动调节阀的结构设计 一、选题的背景与意义 随着社会的发展,人居生活条件的不断改善,人们对生活质量追求的不断提高,室内温度的舒适度成为了人们生活的一项基本要求,对于我国北方来说冬季供暖必不可少,但由于近年来的能源紧张,能源价格上涨,节能环保成为了未来供暖系统所必须面临的一个重要问题。目前民用供暖的方式主要是铸铁管道俗称暖气片供暖与地热管道供暖,商用的主要是中央空调的温度调节。现存的主要供暖方式主要存在能源浪费与温度调节能力不灵敏等的缺陷。供暖系统中的控制端主要是电动调节阀,因此为了达到节能环保低碳的未来经济模式,就必须对这一结构进行分析改进。 二、研究的基本内容与拟解决的主要问题 研究的基本内容: 1.查找相关产品资料,对暖通电动调节阀的现状与发展进行了解概括,分析国内外现有暖通调节阀;了解电动调节阀的应用现状,应用领域,并对产品的驱动部分进行分析;通过参考资料了解它的工作原理与应用领域;了解交流电机的原理和用途,比较几种常见类型的优点和缺点,掌握双向交流同步电机在暖通阀中使用特点。 2.对现有产品进行分析,弄懂其各部分的功能,原理与传动关系,以及暖通电动调节阀在整个供暖系统中的作用;掌握双向交流同步电机的工作原理,并与其他类型电机进行比较,得出其优势所在;分析暖通阀的开关量与模拟量控制的差别,完成本课题调节阀的设计; 3.完成齿轮的设计计算,实现暖通电动调节阀的产品设计,完成三维建模,画出装配图和零件图。 主要解决的问题: 由于现在使用的暖通电动调节阀仍然存在这样或者那样的缺点与不足,主要表现在,调节能力不够灵敏致使室内温度不够舒适,影响居民生活质量,并且造成大量的能源浪费,与我国目前的节能低碳的经济发展方向不一致;另外对产品的设计进行改进,降低成本,增加可靠性。

调节阀的选型计算

二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适

用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。(8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。 三、调节阀的流量特性及其选择 调节阀流量特性分固有特性和工作特性两种。固有特性又称调节阀的结构特性,是由生产厂制造时决定的。调节阀在管路中工作,管路系

多孔式套筒控制阀节流孔的设计

| Control Valve Magazine | July 2016 70Application Story 设计与制造 应用园地 文/吴建曼 陈志滔 浙江金锋自动化仪表有限公司 The Design of Throttling Holes for Multi-holes Cage Guided Control Valve 阀笼节流孔的设计 引言 在工业自动化流体控制系统中,控制阀是得到广泛应用的流体控制设备之一,用来调节系统的流量或者压力参数。当阀门前后压差较大时介质流过控制阀节流处,由于节流口面积的急剧变化,流通面积缩小,流速升高,压力下降,易产生阻塞流,出现闪蒸空化现象,这种现象是诱发阀内件破坏以及噪音的主要原因。当阀门前后压差不大时,介质正常流动选用常规的控制阀即可满足要求。而当压差较大时,为了降低噪音以及消除气蚀的破坏,我们必须要采用多孔式套筒控制阀来解决这个问题。多孔式套筒控制阀降压的原理是采用了带有多孔式节流的阀笼,当介质从各对小孔喷射进去后,介质从各阀笼的小孔流过,分担总压差的一部分。各个阀笼的局部压差能防止液体压力低于汽化压力,消除气泡的形成。根据阀门前后压差的不同阀内件可设计成一级降压,二级降压,三级降压,这种阀内件的设计在国内外的各个厂家中都是十分常见的。其中最著名的就是Fisher公司的Cavitrol系列阀内件(见图1)。 对于工程师来说该类型阀内件的结构设计是不复杂的只要根据阀门的腔体将多个套筒阀笼相互嵌套形成一个降压阀笼组放置在阀体内即可;而真正的难点在于如何根据给定的额定Cv值以及流量特性来确定阀笼上的孔大小,数 本文介绍如何根据给定的额定Cv值来对多孔式套筒控制阀阀笼上的节流孔进行设计,节流孔的设计包括孔大小、数量以及排列形式的确定。再利用CFD软件对设计方法进行流体模拟分析来论证计算方法的准确性,为广大控制阀设计人员提供一种计算方法。 图1 Cavitrol系列阀内件 量以及排列形式,额定Cv值以及流量特性对于一台控制阀的调节性能是至关重要的。在笔者与国内众多厂家的技术人员接触过程中了解到对于多孔式阀笼节流孔大小、数量设计这一问题上,很多技术人员给出的设计依据是将同口径阀门的阀笼上节流孔总面积与传统套筒控制阀的窗口面积进行比值然后得出Cv值也成正比关系。由于传统的套筒控制阀与多孔式的套筒控制阀流阻系数的不同,将节流面积与阀门的额定Cv 值成正比关系作为设计依据显然不够严谨。下面笔者就将对这一问题进行剖析,为广大控制阀设计人员提供一种计算方法。 设计原理 一台阀门的总流通能力C v 受两个因 素影响,即阀座的流通能力C Vb 及多孔式阀笼的流通能力C vc 。从理论上讲提高C vb 或C vc 可以使阀的C v 增加。但阀座的流通能力C vb 取决于阀的公称通径,公称通径确定后,一般阀座直径也就确定了,所以C vb 是定值。阀门的总流通能力可以用以下公式概括: 当阀笼为一级降压时,阀门的总流通能力C V : 阀座的流通能力C Vb :一级阀笼的流通能力C vc1: C V = 1+1C vb 21C vc12 C Vb = πD b 2K b 4×25.42 C Vc1=×n 1 πD c12K c1 4×25.42

调节阀配管设计规定

目次 1 总则 1.1 范围 1.2 引用标准 2 设计原则 2.1 一般要求 2.2 安装位置 3 安装要求 3.1 调节阀的布置 3.2 调节阀布置的间距 3.3 调节阀组直径的确定 3.4 调节阀组的配管 附录A调节阀组的布置 附录B调节阀的安装尺寸 1 总则 1.1 范围 1.1.1 本标准规定了调节阀布置的一般要求和安装位置的要求,并对调节阀的安装要求和布置方案的适用性作了规定。 1.1.2 本标准适用于石油化工工艺装置用气动调节阀的配管设计;电动、液动调节阀,可参照执行。 1.2 引用标准 使用本标准时,应使用下列标准最新版本。

SH 3012 《石油化工管道布置设计通则》 2 设计原则 2.1 一般要求 2.1.1 在布置调节阀时,应执行SH 3012中有关气动调节阀的布置规定。 2.1.2 调节阀的安装位置应满足工艺流程设计要求,并应尽量靠近与其有关的一次指示仪表,尽量接近测量元件位置,便于在用旁路阀手动操作时能观察一次仪表。 2.1.3 调节阀应尽量正立垂直安装于水平管道上,只有在特殊情况下才可以水平或倾斜安装,但须加支撑。对于气动偏心旋转调节阀,其执行机构可根据需要在四象限内自由安装。 2.2 安装位置 2.2.1 调节阀应布置在地面、楼面或操作平台上便于安装、维修和操作的地方。 2.2.2 调节阀尽可能靠近其相关联的设备。 2.2.3 调节阀应安装在环境温度不高于60 ℃,不低于 -40 ℃的地方。 2.2.4 调节阀应安装在离振动源较远的地方。 2.2.5 遥控阀、自动调节阀及其控制系统的安装位置应尽量避开火灾危险和火灾的影响。 3 安装要求 3.1 调节阀的布置 3.1.1 在调节阀的布置设计中应考虑核对调节阀组件的尺寸(如操纵器的高度和宽度),以保证调节阀所需的空间和指示仪表及操作的正常位置。如有手轮,还应考虑其方位。 3.1.2 调节阀组垂直于地面安装时,调节阀接管直径不小于DN25时,应把调节阀安装在旁路的下方或旁路相同标高;调节阀接管直径小于DN25时,调节阀可安装在旁路的上方、下方或与旁路相同标高,当调节阀安装在旁路上方时,旁路上应装排液阀。 3.1.3 输送含有固体颗粒介质的管道上的调节阀小于DN25时,小口径调节阀容易堵塞,应在入口隔断阀后增设过滤器或将旁路阀布置在调节阀的下方。

控制阀细节分析之7_阀门定位器的连接

控制阀细节分析之七——阀门定位器与控制阀的连接 李宝华 摘要:阀门定位器是控制阀的重要附件,与执行机构配合使用,可以改善控制阀的静态特性和动态特性,克服阀杆的摩擦力并消除不平衡力的影响,实现控制信号对控制阀的准确定位,最终保证控制系统及工业过程的有效运行。对于阀门定位器与控制阀的连接,长期以来各个厂家各自设计配套,相互配用困难。随着控制系统和控制阀诊断技术的发展及最终用户需求的提高,阀门定位器与控制阀的连接标准化是对制造厂家的基本要求,而国际国内也早有相关标准发布实施。 本文试对阀门定位器与控制阀连接的技术细节进行分析探讨。 关键词:连接;阀门定位器;控制阀;标准化;技术细节;分析 引言 对于调节型的控制阀,配置阀门定位器已是用户普遍选择。阀门定位器与控制阀执行机构(主要是气动执行机构)配合使用,可以改善控制阀的静态特性和动态特性,克服阀杆的摩擦力并消除不平衡力的影响,实现控制信号对控制阀的准确定位,最终保证控制系统及工业过程的有效运行。在摩擦力大需要精确定位、缓慢过程需要提高控制阀响应速度、需要提高执行机构输出力和切断能力、分程控制和控制阀运行中有时需要改变正反作用形式、需要改变控制阀流量特性以及阀前后高压差的场合,都适用阀门定位器。控制阀预测性维护和使控制阀成为现场智能设备更是通过配置数字式阀门定位器来实现。 阀门定位器与控制阀的连接标准化符合工业产品先进制造技术的要求。同时,随着控制系统和总线技术的快速发展,终端控制元件及其配套的阀门定位器也要快速跟进,加之控制阀诊断技术的推出,对不同厂家的控制阀使用相同类型/型号的阀门定位器已是用户进行预测性维护和降低运行成本的手段之一。符合标准的产品也能增加制造厂家的市场竞争力。 国内外的控制阀生产厂家众多,造成控制阀品种多、规格多、参数多。仅此连接的问题而言,目前只有SAMSON、ARCA等一小部分制造厂家生产符合阀门定位器与控制阀连接标准的产品。笔者结合相关标准和部分控制阀产品试对阀门定位器与控制阀连接的技术细节进行分析探讨。 阀门定位器与控制阀的连接标准 对于阀门定位器与控制阀的连接,长期以来各个厂家各自设计配套,相互配用困难,有的连接结构也不太适合复杂现场环境、反馈部件和外管路繁杂、易碰损、抗震性差、维护不方便。欧洲国家尤其是德国很早就开始推动此项标准化工作。德国测量与控制标准协会(NAMUR)30多年前就制定有NE 04标准,业内称为NAMUR连接(NAMUR有一系列有关过程控制仪表连接的标准规范,国内控制仪表行业统称之为NAMUR连接),基本解决了不同厂家的控制阀执行机构与阀门定位器相互组合、方便互换的问题;后来在此基础上演变形成了IEC标准IEC 60534-6-1和IEC 60534-6-2。中国于2005年发布了等同于IEC的GB/T标准(GB/T 17213.6-2005和GB/T 17213.13-2005)并于2006年开始实施。而在德国,其德国工程师协会/德国电气工程师协会(VDI/VDE)也发布有阀门定位器与控制阀连接的VDI/VDE 3847标准和VDI/VDE 3845标准, IEC 60534-6-1《工业过程控制阀第6-1部分定位器与控制阀执行机构连接的安装细节定位器在直行程执行机构上的安装》,目的是构筑阀门定位器在执行机构侧面连接的标准化,使各种阀门定位器能直接地或利用过渡支架安装于直行程执行机构上,以满足各种控制阀执行机构与阀门定位器能互换的要求。标准化安装方式适用于铸造支架、杆型(立柱)支架或某种中心管支架,结构规范了带有安装孔的凸缘(即NAMUR NE04标准中的NAMUR rib)、带安装螺孔的平面以及利用U形螺栓固定安装板。其中,带凸缘的铸造支架结构的规范尺寸见图1。 IEC 60534-6-2《工业过程控制阀第6-2部分定位器与控制阀执行机构连接的安装细节定位器在角行程执行机构上的安装》,适用于角行程执行机构,其基本结构和通用结构的规范尺寸见图2。 德国VDI/VDE 3847标准有两个部分,其第1部分针对直行程执行机构提出三种情况的连接标准:直接安装的集成连接方式、铸造支架的连接方式、杆型支架的连接方式。带有凸缘的铸造支架连接型式也就是NAMUR连接。VDI/VDE 3847第1部分中的铸造支架和杆型支架连接方式是与IEC 60534-6-1标准(GB/T 17213.6-2005)基本相同的。第1部分中的直接安装集成连接方式在IEC标准中并没有,但其具有的隐藏保护的反馈连接、无需外部配管的内置气路、很好的防碰撞抗震防护等特征受到大多最终用户的青睐,德国的控制阀和阀门定位器制造厂家基本都有符合直接安装集成连接的产品,计算选型配置时也优先选择直接集成连接方式。

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近

控制阀细节分析之8_控制阀模块化设计

控制阀细节分析之八——控制阀模块化设计 李宝华 摘要:模块化设计是先进制造技术的现代设计方法,对控制阀产品进行模块化设计是发展趋势。从系统论出发,一个好产品首先要全系统通盘考虑,有一个响应全局的结构;再由系统结构决定部件功能;细节决定功能的完善与缺陷。在决定系统结构后,在结构没有问题的前提下,细节决定成败。本文试对控制阀模块化设计以及部分厂家的模块化控制阀产品进行探讨和细节分析 关键词:模块化设计;控制阀系统结构;细节优化;分析 引言 控制阀(Control valve,国标GB/T 17213.1-1998定义为控制阀,国内旧称调节阀)是终端控制元件,决定着过程控制是否及时有效,在整个控制回路中较为重要但又是长期以来技术比较薄弱的环节。 国内外控制阀的生产厂家众多,造成控制阀品种多、规格多、参数多,质量参差不齐。相比之下,国产控制阀更显弱势,原有的产品设计理念和制造模式使其与国外控制阀厂家的技术差距加大,产品质量更存有较多问题,需要努力和改进的地方很多。 不同厂家的同类型控制阀的设计差异、技术特点和应用情况如何?产品设计理念向何方转变?都是大家关注的问题。针对大多数厂家都能生产的直通单座控制阀,本文试对控制阀模块化设计以及部分厂家的模块化控制阀产品进行探讨和细节分析。 模块化设计 模块化设计(Modular Design缩写MD)是先进制造技术的现代设计方法,也是上世纪九十年代初国际上迅速发展的快速设计技术(Rapid Design Technology缩写RDT)中的重要组成,面对整个产品系统的标准化、组合化设计。 模块化设计是对一定范围内的不同功能或相同功能而不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,并通过对模块的选择和组合构成不同产品的设计方法。分散的相对独立的模块遵守共同的明确规则,以保证这些模块能够组合成一个完整的系统,并能够随时加入新的模块增加系统功能。动态的模块化设计创造了选择权,缩短了产品生产周期,事后竞争性再集中大大增强了产品的灵活性和竞争力。从产品的集中设计到模块化分散设计是一种创新,是工业产品的发展趋势。 从系统论出发,一个好产品首先要全系统通盘考虑,有一个响应全局的结构;再由系统结构决定部件功能。细节决定功能的完善与缺陷。在决定系统结构后,在结构没有问题的前提下,细节决定成败。模块化设计就是系统结构优先、部件功能优化、模块动态组合,用现代设计技术实现包括控制阀在内的工业产品先进制造的成功之路。 控制阀模块化设计 控制回路中向来薄弱的是终端控制元件(控制阀、执行机构),源自OREDA的回路故障分析,终端控制元件的故障率占了全部故障的50%。传统的控制阀产品性能落后、功能单一、维修不便,在技术上急待改进和创新,发展的方向应是控制阀模块化设计以及数字化应用。 控制阀模块化设计也是遵守从系统结构入手,将整个控制阀系列产品按照功能切分成有限多的通用模块(不变部分)和专用模块(变化部分),各模块独立开发并要求具有更多更好的性能,优化设计并尽可能多地在不同口径的阀门中采用相同的零部件,基于大部分部件确定使用通用模块、少部分按用户技术条件选择专用模块,从而快速响应市场,组合成满足需求的控制阀产品。 模块化设计的控制阀以其全新的系统结构、优化的模块部件、简便的计算与选型、高安全性和可靠性,以及产品紧凑坚固、号型齐全多样、部件通用可换、易于维护检修,使控制阀整体功能和性能明显提升。有统计资料显示,采用模块化设计的控制阀与传统设计的控制阀相比,其零部件数量可减少25%,成本可降低20%,可组成的品种规格可增加40%之多。对最终用户来说,会更有利于设备管理和运行维护,并能大幅度减少备件库存数量。对制造厂而言,工装模具数量将明显减少,中间产品数量和库存也将大大减少,响应市场更快。 对控制阀实施模块化设计较早出现在欧洲的控制阀厂家及其产品系列,在上世纪八、九十年代,德国SAMSON公司有模块化的紧凑型240/250/280系列控制阀、德国ARCA公司有模块化的ECOTROL 控制阀。而全球生产控制阀历史最久的美国FISHER公司(属EMERSON集团)一直坚守传统的设计、推崇原有的E家族系列控制阀,最终也在2004年推出模块化GX型控制阀。中国的控制阀制造厂也开

差压变送器用控制阀门的原理及设计

差压变送器用控制阀门的原理及设计 今天为大家介绍一项国家发明授权专利—差压变送器用控制阀门。该专利由宝山钢铁股份有限公司申请,并于2018年8月10日获得授权公告。 内容说明本发明涉及流体压力测量领域,具体来说,本发明涉及一种差压变送器用控制阀门,连接于工艺管道与差压变送器之间。 发明背景差压测量仪表也就是差压变送器,是仪表在线检测中一项非常常用的测量方式,差压变送器采用工艺管道流体流向截流产生相对高、低压,并通过采样管道将高低压引入到仪表,由仪表将检测到的高低压的压差进行相应的转换,并将转换后的结果由标准信号输出,从而完成测量。 现用差压变送器测量与管道的典型连接方法,左部为工艺管道,将工艺管道流体流向由节流孔板200产生相对高、低压(下高上低),高、低压由工艺管道的采样口引出经过一次阀10a、10b分别到达高压侧阀20a和低压侧阀20b,并通过高压侧阀20a和低压侧阀20b 接入差压变送器100进行测量,平衡阀30用于仪表零点校验;高压侧排污阀21a和低压侧排污阀21b用于排污。 现用的技术存在如下问题:(1)差压变送器在实际使用中需要根据不同的要求进行操作,分别是差压变送器的运行、零点调整、停运。三个阀门为保证减少对差压变送器的冲击,根据不同的状态操作如下:运行:先开低压侧阀20b再开高压侧阀20a;零点调整:先关高压侧阀20a再关低压侧阀20b,再打开平衡阀30;停运:先关高压侧阀20a再关低压侧阀20b。从上述可以看到,阀门的操作有先后顺序比较烦琐; (2)由于现场实际使用的差压变送器数量很多,使用一段时间后,差压变送器上原先标注的高、低压字样变得模糊不清,容易出现操作失误,从而对仪表的冲击比较大; (3)在打开高压侧排污阀21a和低压侧排污阀21b排污的时候,会引起管道卸压,造成测量仪表压力的严重不平衡,形成测量的严重干扰,从而影响到工艺控制,严重时引起停机。 发明内容本发明所要解决的技术问题是提供一种差压变送器用控制阀门,其能够便于简化

流量调节阀选型设计

, 浅析流量调节阀的选型设计 内容来源自网络 { 摘要:流量调节阀,在计量收费的供热系统中,占有非常重要的地位。因此,如何正确的进行流量调节阀的选型与设计,就显得特别关键!本文从流量调节阀的构造及工作原理入手,提出在调节阀的选型与设计中应注意的问题。 ~ 摘要:流量调节阀,在计量收费的供热系统中,占有非常重要的地位。因此,如何正确的进行流量调节阀的选型与设计,就显得特别关键!本文从流量调节阀的构造及工作原理入手,提出在调节阀的选型与设计中应注意的问题。在温控阀的选型设计中,在选出与管道同口径的温控阀的同时,还要给选定的温控阀造成一个理想的压差工作条件;电动调节阀是适用于计算机监控系统中进行流量调节的设备,一般多在无人值守的热力站中采用;对手动平衡法来说,如何利用阀门的特性曲线分析阀门的调节性能,如何解决阀门在小开度情况下阀门容易导致导致汽水击现象的问题;对自力式流量控制阀在设计选型时注意阀门有最小工作差的要求。 关键词:温控阀电动调节阀平衡阀差压调节阀 供热系统实行热计量收费可以节约能源,提高供热系统的能效。就目前现状而言,我国供热系统的能效只有30%左右。人们往往只注意锅炉和外网的热损失,而忽略了热用户散热损失。热用户散热损失,主要是由于冷热不均造成的,这部分热损失约为30~40%,是相当可观的的。供热系统搞计量收费,从节能的角度考虑,主要是挖掘这部分的节能潜力。 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理(1) 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。 " 温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双

控制阀的分类及优缺点分析说明

控制阀的分类及优缺点分析说明控制阀有蝶阀、闸阀、球阀、安全阀、蒸汽疏水阀、截止阀等多种类型,每种类型的控制阀都有自己的优点与缺点,下面就将多种不同类型的控制阀进行详细分析。 蝶阀:蝶阀是用圆盘式启闭件往复回转90°左右来开启、关闭和调节流体通道的一种阀门。 优点: ①结构简单,体积小,重量轻,耗材省,别用于大口径阀门中; ②启闭迅速,流阻小; ③可用于带悬浮固体颗粒的介质,依据密封面的强度也可用于粉状和颗粒状介质。可适用于通风除尘管路的双向启闭及调节,广泛用于冶金、轻工、电力、石油化工系统的煤气管道及水道等。 缺点: ①流量调节范围不大,当开启达30%时,流量就达到近95%以上。

②由于蝶阀的结构和密封材料的限制,不宜用于高温、高压的管路系统中。一般工作温度在300℃以下,PN40以下。 ③密封性能相对于球阀、截止阀较差,故用于密封要求不是很高的地方。 闸阀:闸阀是指关闭件(闸板)沿通道轴线的垂直方向移动的阀门,在管路上主要作为切断介质用,即全开或全关使用。一般,闸阀不可作为调节流量使用。它可以适用低温压也可以适用于高温高压,并可根据阀门的不同材质。但闸阀一般不用于输送泥浆等介质的管路中。 优点: ①流体阻力小; ②启、闭所需力矩较小; ③可以使用在介质向两方向流动的环网管路上,也就是说介质的流向不受限制; ④全开时,密封面受工作介质的冲蚀比截止阀小; ⑤形体结构比较简单,制造工艺性较好; ⑥结构长度比较短。 缺点:

①外形尺寸和开启高度较大,所需安装的空间亦较大; ②在启闭过程中,密封面人相对摩擦,摩损较大,甚至要在高温时容易引起擦伤现象; ③一般闸阀都有两个密封面,给给加工、研磨和维修增加了一些困难; ④启闭时间长。 球阀:是由旋塞阀演变而来,它的启闭件是一个球体,利用球体绕阀杆的轴线旋转90°实现开启和关闭的目的。球阀在管道上主要用于切断、分配和改变介质流动方向,设计成V形开口的球阀还具有良好的流量调节功能。 优点: ①具有最低的流阻(实际为0); ②因在工作时不会卡住(在无润滑剂时),故能可靠地应用于腐蚀性介质和低沸点液体中; ③在较大的压力和温度范围内,能实现完全密封; ④可实现快速启闭,某些结构的启闭时间仅为0.05~0.1s,以保证能用于试验台的自动化系统中。快速启闭阀门时,操作无冲击。

调节阀的流量计算

调节阀的流量计算 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中: FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=- PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>时

当P2≤时 式中: Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>时 当P2≤时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 3.低雷诺数修正(高粘度液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量 m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 4.水蒸气的Kv值的计算

毕业设计(论文)_液压控制阀的研究与设计

液压控制阀的研究与设计 第1章绪论 液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。 液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。 液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。 1.1 液压技术的发展历史 液压传动理论和液压技术发展的历史可追溯17世纪,当时的荷兰人史蒂文斯(Strvinus)研究指出,液体静压力随液体的深度变化,与容器的形状无关。之后托里塞勒(Torricelli)也对流体的运动进行研究。17世纪末,牛顿对液体的粘度以及浸入运动流动体中的物体所受的阻力进行了研究。18世纪中叶,伯努利提出的流束传递能量理论及帕斯卡提出的静压传递原理,使液压理论有了关键性的进展。1795年英国伦敦的约瑟夫.布拉默(Joseph Bramah 1749~1814)创造了世界上第一台水压机——棉花、羊毛液压打包机。1905年,詹尼(Janney)设计了一台带轴向柱塞泵的油压传动与控制装置,并于1906年成功地应用在弗吉尼亚号战舰的炮塔俯仰、转动机构中。1936年,哈里.威克斯(Harry Vikers)提出了包括先导式溢流阀在内的些液压控制元件有力地推动了液压技术的进步。1958年美国麻萨诸塞州理工学院的布莱克本(Blackburn)、李诗颖创造了电液伺服阀,并于1960年发表了对液压技术有杰出贡献的论著——《流体动力控制》。 现在由于微型计算机与液压技术日益密切的结合,对液压控制阀提出了更高、更新的要求,液压控制已开始形成了一个分支学科,继续不断不断地向高、精、尖的方向发展。 1.2 我国液压阀技术的发展概况 我国的液压工业及液压阀的制造,起始于第一个五年计划(1953~1957年),期间,由于机床制造工业发展的迫切需求,50年代初期,上海机床厂、天津液压件厂 - 1 -

120型控制阀主阀结构设计

摘要 由于经济的迅猛发展,资本在全球市场内的流通,跨区域间的合作愈加密切,铁路运输压力越来越大。现代机车正向着―多拉快跑‖的方向发展,列车的制动技术在铁路的发展中也变的尤为重要。论文首先介绍了制动的相关知识,包括120 阀的制动原理;然后分析了120型控制阀的构造,并进行120型空气控制阀主阀部的结构设计;最后以120控制阀为研究对象,705试验台为平台,进行了120 控制阀的性能试验研究。通过对试验数据的分析,可以得知120型空气控制阀的各项指标是否符合国家标准。 试验结果表明,120型控制阀主阀部在实际应用中仍具有较高的可靠性。性能试验中出的主阀故障现象也可以作为120阀在铁路运用中可能出现的故障提供参考,分析试验中的故障原因也可以作为实际检修中的借鉴。同时发现,现有705型试验台上有关120型阀的评价体系中还有不妥当,还有需要改进的地方。 关键词: 120型控制阀;列车制动;705试验台;性能试验

ABSTRACT Due to the rapid economic development and the flow of capital in the global market, the cross-regional cooperation is becoming much closely which increases the railway transport pressure. Modern locomotive is going towards the direction of ―carry more and run faster ", the train's braking technology is particularly important in the development of the railway. In this paper, The braking-related knowledge is introduced first, including the braking principle of 120 valves. After analyzing the structure of the type 120 control valve, design the structure of the main Department of 120 valves. Finally, use 120 control valves for the study and the 705 test bed as a platform to simulate the working status of 120 control valves and problems that may arise. Through the analysis of experimental data, to check if the sensitivity of the 120 air control valve is meet with national standards. The test results show that the main department of 120 the control valve still has a higher reliability in practical applications. The main department of valve failure in the simulation experiments can also be a reference that may occur in the railway. Analyze the reasons for the failure in the test can be used as a reference in the actual repair. Also there is something need to improve of the evaluation system which the existing 705-type test stands about 120 of the valve Keywords:120 main valve; train brake; type 705 experiment platforms; research on the capability

工程设计中调节阀的选择

收稿日期:1997年10月22日修回日期:1998年4月10日 工程设计中调节阀的选择 孙光模 (山东省冶金设计院) 摘 要 从调节阀的流通能力的计算、压差及阀权度的选择、流量特性的选择、阀的实际可调范围的验 算等几方面详细地介绍了工程设计中选择调节阀的方法。 关键词 调节阀,流通能力,压损,压差,流量特性 Selection of Adjusti ng Va lve i n Eng i neer i ng D esign Sun Guangmo (Shandong M etallurgical Industrial D esign Institute ) Abstract T h is paper introduces in detail the selecting m ethod of adjusting valve in the engineering design from som e w ays of the flow ability calculati on of adjusting valve ,the selecti on of differential p ressure and valve w eigh t degree ,the selecti on of flow p roperty and the check ing calculati on m ethod of p ractical adjust 2ing range of valve ,etc . Keywords adjusting valve ,flow ability ,p ressure lo ss ,differential p ressure ,flow p roperty 1 前 言 调节阀对自控系统的质量起着举足轻重的作用。据统计,目前不能正常投入的自控系统有70%~80%是由调节阀的影响造成的。调节阀与介质直接接触,它既是可调节的节流元件,又是承受一定温度、压力的容器,所以应根据介质的种类、性质、温度、压力以及工艺所要求的其它条件合理选择。 2 调节阀的选用步骤 211 流通能力C 的计算 为满足生产要求,调节阀的开度是变化的,因此必然产生一定的压损。由伯努力方程,调节阀前后的能量守恒公式为: h 1+ P 1 Θ+v 2 12g =h 2+P 2Θ+v 2 2 2g +h F (1) 式中 h 1、h 2——阀前后的压头,m ;Θ——介质密度,g c m 3 ;P 1、P 2——阀前后的绝对压力,M Pa ;h F ——阻力损失,m 。 调节阀的阻力损失为: 第20卷 第5期1998年10月 山 东 冶 金Shandong Yejin V o l 120,NO 15O ctober 1998

相关文档
最新文档