选修11第三章导数及其应用教案

选修11第三章导数及其应用教案
选修11第三章导数及其应用教案

第三章导数及其应用

备课人周志英

3.1 导数的概念

教学目的

1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义;

2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法

3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。

教学重点和难点

导数的概念是本节的重点和难点

教学过程

一、前置检测(导数定义的引入)

1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度)

2.怎样求非匀速直线运动在某一时刻t0的速度?

在高台跳水运动中,如果我们知道运动员相对于水面的高度h(单位:m)及起跳后的时间t(单位:s)存在关系()10

=t

t

t

h,

-

+

5.6

9.42+

那么我们就会计算任意一段的平均速度v,通过平均速度v来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多

少?

我们现在会算任意一段的平均速度,先来观察一下2秒附近的情况。先计算2秒之前的t ?时间段内的平均速度v ,请同学们完成表格1左边部分,(事先准备好的),再完成表格的右边部分〉

表格1

格2

0

0>?t 时,在[]t ?+2,2这段时间内

()()()1

.139.41.139.422222-?-=?-?+?=

?+-?+-=t t

t t t t h h v ()()()1

.139.41.139.422222-?-=??-?-=

-?+-?+=t t

t t t h t h v 当-=?t 0.01时,-=v 13.051; 当=?t 0.01时,-=v 13.149;

当-=?t 0.001时,-=v 13.095 1; 当=?t 0.001时,-=v 13.104 9; 当-=?t 0.000 1时,-=v 13.099 51;

当=?t 0.000 1时,-=v 13.100 49;

当-=?t 0.000 01时,

-=v 13.099 951; 当=?t 0.000 01时,-=v 13.100 049;

当-=?t 0.000 001时,-=v 13.099 995 1; 当=?t 0.000 001时,

-=v 13.100 004 9; 。。。。。。

。。。。。。

问题:1你能描述一下你算得的这些数据的变化规律吗?(表格2) 关于这些数据,下面的判断对吗?

2.当t ?趋近于0时,即无论t 从小于2的一边,还是t 从大于2的一边趋近于2时,平均速度都趋近于一个确定的值-13.1s m /。

3. 靠近-13.1

且比-13.1大的任何一个数都可以是某一段[]2,2t ?+上

的平均速度;

4. 靠近-13.1

且比-13.1小的任何一个数都可以是某一段[]t ?+2,2上

的平均速度;

5. -13.1

表示在2秒附近,运动员的速度大约是-13.1s m /。

分析:2=t 秒时有一个确定的速度,2秒附近的任何一段上的平均速度都不等于瞬时速度,所以比-13.1大的数作为2秒的瞬时速度不合理,比-13.1小的数作为2秒的瞬时速度也不合理,因此,运动员在2秒时的瞬时速度是-13.1s m /。

这样,我们就得到了2秒时的瞬时速度是-13.1s m /,现在我们一起回忆一下是如何得到的: 首先,算出[]t ?+2,2上的平均速度

()()t

h t h ?-?+22=1.139.4-?-t ,接着观

察当t ?趋近于0时,上式趋近于一个确定的值-13.1,这个值就是运动员在2秒时的瞬时速度。为了表述方便,我们用

()()1.1322lim 0-=?-?+→?t

h t h t

表示“当2=t ,t ?趋近于0时,平均速度v 趋近于确定值-13.1”。

思考:当t ?趋近于0时,平均速度v 有什么样的变化趋势? 结论:当t ?趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-. 从物理的角度看,时间t ?间隔无限变小时,平均速度v 就无限趋近于实际的瞬时速度,因此,运动员在2t =时的瞬时速度是

13.1/m s -

为了表述方便,我们用0

(2)(2)

lim

13.1t h t h t

?→+?-=-?

表示“当2t =,t ?趋近于0时,平均速度v 趋近于定值13.1-” 小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。 二、精讲点拨(互动探究)

函数()x f y =在0x x =处的瞬时变化率如何表示? 导数的定义(板书) 函数

()

x f y =在

x x =处的瞬时变化率是

x

x f x x f x f

x x ?-?+=??→?→?)()(lim lim

0000,

我们称它为函数()x f y =在0x x =处的导数,记作()0'x f 或0

|'x x y =,

即()0'x f =x

x f x x f x f

x x ?-?+=??→?→?

)()(lim lim 0000

。例如:2秒时的瞬时速度可以表示为()1.132'-=h 或1.13|'2-==t y 。

附注:①导数即为函数y =f (x )在x =x 0处的瞬时变化率;

②定义的变化形式:()x f '=x

x x f x f x y

x x ??--=??→?→?

)()(lim )(lim 0000

()x f '=00)()(lim )(lim

00x x x f x f x y

x x x

x --=??→→;()x f '=x

x f x x f x ?--?-→?-)()(lim 000; 0x x x ?=-,当0x ?→时,0x x →,所以000

()()

()lim

x f x f x f x x x ?→-'=-

③求函数()x f y =在0x x =处的导数步骤:“一差;二比;三极限”。

例1.(1)求函数y =3x 2在x =1处的导数.

分析:先求Δf =Δy =f (1+Δx )-f (1)=6Δx +(Δx )2, 再求

6f x x

?=+??再求0lim 6x f

x ?→?=?

解:法一(略); 法二:222211113313(1)

|lim

lim lim3(1)611

x x x x x x y x x x =→→→-?-'===+=-- (2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.

解:x x

x x x y ?-=?-?+-+?+--=

??32

)1()1(2 200(1)(1)2

(1)lim lim (3)3x x y x x f x x x

?

→?→?--+?+-+?-'-===-?=?? 例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.

解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,

0(2)()f x f x f

x x

+?-?=??

22(2)7(2)15(27215)3

x x x x

+?-+?+--?+==?-?

所以0

(2)lim

lim(3)3x x f

f x x ?→?→?'==?-=-?;同理可得:(6)5f '= 在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h 的速率下降,在第6h 附近,原油温度大约以5/C h 的速率上升.

注:一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.

17世纪,力学、航海、天文等方面取得了突飞猛进的发展,这些发展对数学提出了新的要求,它们突出地表现为四类问题,其中的两类问题直接导致了导数的产生:一是根据物体的路程关于时间的函数求速度和加速度;二是求已知曲线的切线。

由导数的定义,我们知道,高度h 关于时间t 的导数是运动员的瞬时速度;气球半径r 关于体积V 的导数就是气球的瞬时膨胀率。

实际上,导数可以描述任何事物的瞬时变化率,如效率、点密度、国内生产总值GDP 的增长率等等。下面我们来看一个导数的应用。 三、当堂测评

1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为. 2.求曲线y =f (x )=x 3在1x =时的导数.

3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义. 四、总结提升

1.导数的产生是由于17世纪力学、天文学等的飞速发展,对数学提出的要求,主要是两类问题:一是根据物体的路程关于时间的函数求

速度和加速度;二是求已知曲线的切线; 2.导数就是瞬时变化率; 3.导数的计算公式:()0'x f =x

x f x x f x f

x x ?-?+=??→?→?)()(lim

lim

0000

。 4. 求函数()x f y =在0x x =处的导数步骤:“一差;二比;三极限” 五、布置作业

1.《课时作业》十六

2.预习《导数的几何意义》:(1)知道导数的几何意义;(2)会求曲线上某点处的切线方程。

3.2.1几个常用函数的导数教案

教学目标:

1. 能够用导数的定义求几个常用函数的导数;

2.

利用公式解决简单的问题。

教学重点和难点

1.重点:推导几个常用函数的导数; 2.难点:推导几个常用函数的导数。 教学方法:

自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆。 教学过程: 一 、前置检测

1、函数在一点处导数的定义;

2、导数的几何意义;

3、导函数的定义;

4、求函数的导数的步骤。 二、精讲点拨

例1.推导下列函数的导数 (1)()f x c = 解:

()()0y f x x f x c c x x x

?+?--===???, '00

()lim lim 00x x y

f x x ?→?→?===?

1. 求()f x x =的导数。

解:

()()1y f x x f x x x x x x x

?+?-+?-===???, '00

()lim lim11x x y

f x x ?→?→?===?。

'1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x

=表示路程关于时间的函数,则'1y =可以解释为某物体做瞬时速度为1的匀速运动。

思考:(1).从求y x =,2y x =,3y x =,4y x =的导数如何来判断这几个函数递增的快慢?

(2).函数(0)y kx k =≠增的快慢及什么有关?

可以看出,当k>0时,导数越大,递增越快;当k<0时,导数越小,递减越快.

2. 求函数2()y f x x ==的导数。

解: 22

()()()2y f x x f x x x x x x x x x

?+?-+?-=

==+????,

''00

()lim

lim(2)2x x y

y f x x x x x ?→?→?===+?=?。

'2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说

明随着x 的变化,切线的斜率也在变化:

(1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢; (2)当x>0时,随着 x 的增加,2y x =增加得越来越快。 3. 求函数1

()y f x x

==的导数。

解: 211

()()()1

()y f x x f x x x x x x x x x x x x x x x x x

-

?+?--+?+?====-???+??+??,

''220011()lim

lim()x x y y f x x x x x x

?→?→?===-=-?+??

思考:(1)如何求该曲线在点(1,1)处的切线方程?

'(1)1k f ==-,所以其切线方程为2y x =-+。

(2)改为点(3,3),结果如何?

(3)把这个结论当做公式多好呀,,既方便,又减少了复杂的运算过程。

三、当堂测评

1. 试求函数()y f x x ==的导数。 解:

()()

()()

()()

y f x x f x x x x

x x x

x x x x x x x x x x x x x ?+?-+?==???+?-+?+=

?+?++?+ =

''0011()lim

lim 2x x y y f x x x x x x

?→?→?====?+?+

2. 已知点P (-1,1),点Q (2,4)是曲线2y x =上的两点,求及直线PQ 平行的曲线的切线方程。 解:'2y x =,设切点为00(,)M x y ,则0

'02.x x y x ==

因为PQ 的斜率41

1,21

k -=

=+又切线平行于PQ , 所以021k x ==,即012x =,切点11

(,)24

M ,

所求直线方程为4410x y --=。 四 练习

1.如果函数()5f x =,则'(1)f =( )

A. 5

B. 1

C. 0

D.不存在

2.曲线221y x =-+在点(0,1)的切线斜率是( ) A.-4 B.0 C.2 D. 不存在

3.曲线21

2y x =在点1(1,)2

处切线的倾斜角为( ) A. 4π- B. 1 C. 4π D. 54

π 答案:

1.C

2.B

3.C 四、总结提升

1.记熟几个常用函数的导数结论,并能熟练使用;

2.在今后的求导运算中,只要不明确要求用定义证明,上述几个结论直接使用。 五、布置作业

1. P85 ,A 组 1

2() 4.9 6.510

h t t t =-++2.求双曲线1

y x =过点1(2,)2

的切线方程。

3.预习《函数的单调性及导数》,初步掌握在区间(a,b )内函数的单调性及导数的关系。

3.3.1函数的单调性及导数

教学目标:

1.会熟练用求导,求函数单调区间,证明单调性。

2.会从导数的角度解释增减及增减快慢的情况 教学重点:

会熟练用求导,求函数单调区间,会从导数的角度解释增减及增减快慢的情况 教学难点:

证明单调性

一、前置检测

(1)常函数:0'=C (C 为常数); (2)幂函数 :1)'(-=n n nx x (Q n ∈)

(3)三角函数 : (4)对数函数的导数: 1(ln ).x x

'= 1

(log ).ln a x x a

'=

(5)指数函数的导数: ().x x e e '= ()ln (0,1).x x a a a a a '=>≠

下图(1)表示高台跳水运动员的高度 h 随时

(sin )cos x x '=(cos )sin x x

'=-

间t 变化的函数 的图象,

图(2)表示高台跳水运动员的速度 v 随时间 t 变化的函数

的图象.

运动员从起跳到最高点, 以及从最高点到入水这两段时间的运动状态有什么区别?

①运动员从起跳到最高点,离水面的高度h 随时间t 的增加而增加,即h(t)是增函数. 相应地, ()()0.v t h t '=>

②从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即h(t)是减函数. 相应地, ()()0.v t h t '=< 二、精讲点拨

观察下面一些函数的图象, 探讨函数的单调性及其导函数正负的关系. 见课本P90图

结论:一般地,函数的单调性及其导数的正负有如下关系

在某个区间(a ,b )内,如果()0f x '> ,那么函数()y f x =在这个区间内单调递增; 如果()0f x '<,

那么函数()y f x =在这个区间内单调递减. 如果恒有'()0f x =,则()f x 是常数。

例1 已知导函数()f x ' 的下列信息: 当1 < x < 4 时, ()0;f x '>

当 x > 4 , 或 x < 1时, ()0;f x '< 当 x = 4 , 或 x = 1时, ()0.f x '=

() 4.9 6.5

v t t =-

+

试画出函数()f x 的图象的大致形状.

例2判断下列函数的单调性, 并求出单调区间:

32(1) ()3; (2) ()23;f x x x f x x x =+=--

(3) ()sin ,(0,); f x x x x π=-∈ 32(4) ()2324 1.f x x x x =+-+

三、当堂测评

练习:判断下列函数的单调性, 并求出单调区间:

2(1) ()24; (2) ();x f x x x f x e x =-+=- 332(3) ()3; (4) ().f x x x f x x x x =-=--

例3 如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出及各容器对应的水的高度h 及时间t 的函数关系图象.

一般地, 如果一个函数在某一范围内导数的绝对值较大, 那么函数在这个范围内变化得快, 这时,

函数的图象就比较“陡峭”(向上或向下); 反之, 函数的图象就“平缓”

一些.

如图,函数()

b+∞或

a内的图象“陡峭”,在(,) =在(0,)b或(,0)

y f x

-∞内的图象平缓.

(,)a

四、总结提升

1、求可导函数f(x)单调区间的步骤:

(1)求f’(x)

(2)解不等式f’(x)>0(或f’(x)<0)

(3)确认并指出递增区间(或递减区间)

2、证明可导函数f(x)在(a,b)内的单调性的方法:

(1)求f’(x)

(2)确认f’(x)在(a,b)内的符号

(3)作出结论

五、布置作业

1、完成《课时作业》十九;

2、预习《函数的极值及导数》,知道极值及导数之间的关系,掌握函

数极值的判别方法。

3.3.2函数的极值及导数

教学目标

1.理解函数的极大值、极小值、极值点的意义;

2.掌握函数极值的判别方法.进一步体验导数的作用.

教学重点求函数的极值

教学难点严格套用求极值的步骤

一、前置检测

函数的极值及导数的关系

1、观察下图中的曲线

a点的函数值f(a)比它临近点的函数值都大.b点的函数值f(b)比它临近点的函数值都小.

f

2、观察函数f(x)=2x3-6x2+7的图象,

思考:函数y=f(x)在点x=0,x=2处的函数值,及它们附近所有各点

处的函数值,比较有什么特点?

(1)函数在x=0的函数值比它附近所有各点的函数值都大,我们说f(0) 是函数的一个极大值;

(2)函数在x=2的函数值比它附近所有各点的函数值都小,

则f(2)是函数的一个极小值.

函数y=2x3-6x2+7 的一个极大值: f (0);一个极小值: f

函数y =2x 3-6x 2+7 的 一个极大值点: ( 0, f (0) ); 一个极小值点: ( 2,f (2) ). 二、精讲点拨

1.极值的概念:

一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )< f (x 0)

我们就说f (x 0)是函数f (x )的一个极大值,记作y 极大值

=f (x 0);如果

对x 0附近的所有的点,

都有f (x )>f (x 0),我们就说f (x 0)是函数f (x )的一个极小值,记作y

极小值

=f (x 0).

极大值及极小值统称为极值. 2.观察下图中的曲线

考察上图中,曲线在极值点处附近切线的斜率情况.

上图中,曲线在极值点处切线的斜率为0,

极大值点左侧导数为正,右侧为负;极小值点左侧导数为负,右侧为正.

函数的极值点x i 是区间[a , b ]内部的点,区间的端点不能成为极值

>0

函数的极大(小)值可能不止一个,并且函数的极大值不一定大于极小值,极小值不一定小于极大值.

函数在[a , b ]上有极值,其极值点的分布是有规律的,像相邻两个极大值间必有一个极小值点.

3.利用导数判别函数的极大(小)值:

一般地,当函数f (x )在点x 0处连续时,判别f (x 0)是极大(小)值的 方法是:

⑴如果在x 0附近的左侧f '(x )>0,右侧f '(x )<0,那么,f (x 0)是极大值;

⑵如果在x 0附近的左侧f '(x )<0,右侧f '(x )>0,那么,f (x 0)是极小值;

思考:导数为0的点是否一定是极值点?

导数为0的点不一定是极值点.

如函数f (x )=x 3,x =0点处的导数是0,但它不是极值点. 例1求函数31

44.3

y x x =-+的极值

解:y ¢=x 2-4=(x +2)(x -2).令 y ¢=0,解得 x 1=-2,x 2=2. 当

因此,当=-2时, 极大值=

3 ,当x =2时,y 极小值=-43

求可导函数f (x )的极值的步骤: ⑴ 求导函数f ¢(x ); ⑵ 求方程 f ¢(x )=0的根;

⑶ 检查f ¢(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;

如果左负右正,那么f (x )在这个根处取得极小值. 例2.求函数x e x y -=2的极值 三、当堂测评

例3 求函数y =(x 2-1)3+1的极值.

解:定义域为R ,y ¢=6x (x 2-1)2.由y ¢=0可得x 1=-1,x 2=0,

x 3=1

当x 变化时,y ¢,y 的变化情况如下表:

=0.

例4.2

3)1(22

--=x x y 的极值

思考: 导数值为0的点一定为极值点吗?极值点一定导数值为0吗? 练习:求函数x

e x y -=3的极值 四、总结提升

1.考察函数的单调性的方法;2.导数及单调性的关系;3.用导数

求单调区间的步骤.

五、布置作业

1.《课时作业》二十

2.预习《函数的最大(小)值及导数》,理解最值及极值的区别,会

求某些简单函数的最大值和最小值

3.3.3 函数的最大(小)值及导数

教学目标

1.使学生理解函数的最大值和最小值的概念,掌握可导函数

f在闭区间[]b a,上所有点(包括端点b a,)处的函数中的最大(x

)

(或最小)值必有的充分条件;

2.使学生掌握用导数求函数的极值及最值的方法和步骤.

教学重点

利用导数求函数的最大值和最小值的方法

教学难点

函数的最大值、最小值及函数的极大值和极小值的区别及联系

一、前置检测

我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的

性质.也就是说,如果0x 是函数()y f x =的极大(小)值点,那么在点0x 附近找不到

比()0f x 更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数

在某个区间上,哪个至最大,哪个值最小.如果0x 是函数的最大(小)值,那么()0f x 不

小(大)于函数()y f x =在相应区间上的所有函数值.

观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 及3()f x 是极小值,

2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .

结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =

在[]b a ,上必有最大值及最小值.

说明:(1)如果在某一区间上函数()y f x =的图像是一条连续不断的曲线,则称函数()y f x =在这个区间上连续.(可以不给学生讲) (2)给定函数的区间必须是闭区间,在开区间(,)a b 内连续的函数)(x f 不一定有最大值及最小值.

如函数x

x f 1

)(=在),0(+∞内连续,但没有最大值及最小值; (3)在闭区间上的每一点必须连续,即函数图像没有间断, (4)函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值及最小值的充分条件而非必要条件.(可以不给学生讲) 二、精讲点拨

高中数学选修1-1第三章《导数及其应用》知识点归纳及单元测试[1]

第三章《导数及其应用》单元测试题 一、 选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A)x x f π4)(=' (B)x x f 2 4)(π=' (C) x x f 28)(π=' (D)x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B)[]8,2 (C)[]2,1 (D)[]2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D )2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294 e B.22e C.2 e D.22e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 8.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1)'(0)f f 的最小值为( )A .3 B .52 C .2 D .3 2 9.设2 :()e ln 21x p f x x x mx =++++在(0)+∞, 内单调递增,:5q m -≥,则p 是q 的

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_1

高中数学第三章导数及其应用习题课导数的应用学案苏教版 选修1_1 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) 知识点二 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪

个区间上为负,在哪个点处与x轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是________.类型二构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+<0,若a=f(),b=-f(-),c=(ln )f(ln ),则a,b,c的大小关系是________. 反思与感悟本例中根据条件构造函数g(x)=xf(x),通过g′(x)确定g(x)的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a=,b=,c=,则a,b,c的大小关系是________.命题角度2 求解不等式 例 3 定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)2ex的解集为________.反思与感悟根据所求结论与已知条件,构造函数g(x)=,通过导函数判断g(x)的单调性,利用单调性得到x的取值范围. 跟踪训练3 设函数f(x)是定义在R上的偶函数,f′(x)为其导函数.当x>0时,f(x)+x·f′(x)>0,且f(1)=0,则不等式x·f(x)>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x>1,证明不等式x-1>ln x.

第三章导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 () | A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. , C.D. 8.设函数的导函数,则数列的前n项和是 () A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为()! A.B.C.D. 12.如图所示的是函数的大致图象,则等于() A.B.

C.D. 第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 , 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a. 。

2020版高中数学高二选修1-1教案及练习归纳整理70知识讲解导数的综合应用题基础

《导数及其应用》全章复习与巩固 编稿:李 霞 审稿: 张林娟 【学习目标】 1. 会利用导数解决曲线的切线的问题. 2. 会利用导数解决函数的单调性等有关问题. 3. 会利用导数解决函数的极值、最值等有关问题. 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一:有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上; ③切线斜率等于曲线在切点处的导数值. 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组. 要点二:有关函数单调性的问题 设函数()y f x =在区间(a,b)内可导, (1)如果恒有'()0f x >,则函数()f x 在(a,b)内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a,b)内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a,b)内为常数函数. 要点诠释: (1)若函数()f x 在区间(a,b)内单调递增,则'()0f x ≥,若函数()f x 在(a,b)内单调递减,则 '()0f x ≤. (2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤. ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥.

(或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题 (1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根; (4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域 ②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点. 注意:无定义的点不用在表中列出 ③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值. 要点诠释: ①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可. ②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.

选修1-1第三章导数及其应用A卷@停课不停学中学精品

旗开得胜 选修1-1第三章导数及其应用A 卷 考试时间:120分钟 满分:150分 第Ⅰ卷(选择题共60分) 一、选择题(共12小题;共60分) 1 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A 0()f x ' B 02()f x ' C 02()f x '- D 0 2 一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 3 函数3 y x x 的递增区间是( ) A ),0(+∞ B )1,(-∞ C ),(+∞-∞ D ),1(+∞ 4 32()32f x ax x =++,若(1)4f '-=,则a 的值等于( ) A 319 B 316 C 313 D 3 10 5 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )

A 充分条件 B 必要条件 C 充要条件 D 必要非充分条件 6 函数344+-=x x y 在区间[]2,3-上的最小值为( ) A 72 B 36 C 12 D 0 7. 已知 a 函数 ()312f x x x =-的极小值点,则 ()a = A. B. C. D. 8. 函数 3223125y x x x =--+在 []0,3上的最大值,最小值分别是 ( ) A. , B. , C. , D. , 9. 函数 ()()3e x f x x =-的单调递增区间是 A. B. C. D . 10. 与直线 240x y -+=平行的抛物线 2y x =的切线方程是 . A. 230x y -+= B. 230x y --= C. 210x y -+= D. 210x y --=

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

数学第三章导数及其应用测试1新人教A版选修1 1

第三章导数及其应用单元测试 一、选择题 1. 函数()323922yxxxx=---<<有() A. 极大值5,极小值27? B. 极大值5,极小值11? C. 极大值5,无极小值 D. 极小值27?,无极大值 2. 若'0()3fx??,则000()(3)lim h fxhfxhh?????() A. 3? B. 6? C. 9? D. 12? 3. 曲线3()2fxxx=+-在0p处的切线平行于直线41yx=-,则0p点的坐标为() A. (1,0) B. (2,8) C. (1,0)和(1,4)?? D. (2,8)和(1,4)?? 4. ()fx与()gx是定义在R上的两个可导函数,若()fx,()gx满足''()()fxgx?, 则 ()fx与()gx满足() A. ()fx?()gx B. ()fx?()gx为常数函数 C. ()fx?()0gx? D. ()fx?()gx为常数函数 5. 函数xxy142??单调递增区间是() A. ),0(?? B. )1,(?? C. ),21(?? D. ),1(?? 6. 函数xxyln?的最大值为() A. 1?e B. e C. 2e D. 310 二、填空题 1. 函数2cosyxx??在区间[0,]2?上的最大值是. 2. 函数3()45fxxx???的图像在1x?处的切线在x轴上的截距为________________.

3. 函数32xxy??的单调增区间为,单调减区间为 ___________________. 4. 若32()(0)fxaxbxcxda?????在R增函数,则,,abc的关系式为是 . 5. 函数322(),fxxaxbxa????在1?x时有极值10,那么ba,的值分别为________. 三、解答题 1.已知曲线12??xy与31xy??在0xx?处的切线互相垂直,求0x的值. 2. 如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去 四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大? 3. 已知cbxaxxf???24)(的图象经过点(0,1),且在1x?处的切线方程是2yx??(1)求)(xfy?的解析式;(2)求)(xfy?的单调递增区间. 4. 平面向量13(3,1),(,)22ab???,若存在不同时为0的实数k和t,使 2(3),,xat bykatb??????且xy?,试确定函数()kft?的单调区间.

笔记(数学选修—导数及其应用)

数学选修—导数及其应用 1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h →+-- 的值为( ) A .' 0()f x B .'02()f x C .'02()f x - D . 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 A .7米/秒 B . 6米/秒 C . 5米/秒 D . 8米/秒 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于 A .19/3 B .16/3 C .13/3 D .10/3 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0 1.若3'0(),()3f x x f x ==,则0x 的值为_____;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为_____;3.函数sin x y x =的导数为_____;4.曲线x y ln =在点(,1)M e 处的切线的 斜率是____,切线的方程为______;5.函数5523--+=x x x y 的单调递增区间是________。 1.求垂直于直线2610x y -+=并且与曲线 3235y x x =+-相切的直线方程。 2.求函数()()()y x a x b x c =---的导数。 3.求函数543()551f x x x x =+++在区间[]4,1-上的最大值与最小值。 4.已知函数23bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值。 2.若'0()3f x =-,则000()(3)lim h f x h f x h h →+--= A .-3 B .-6 C .-9 D .-12 4.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.函数x x y ln =的最大值为( )A .1-e B .e C .2e D .10/3 1.函数2cos y x x =+在区间[0,]2 π上的最大值是 。 2.函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为____________。 3.函数32x x y -=的单调增区间为 ,单调减区间为___________________。 4.若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是 。 5.函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为______。 已知曲线12-=x y 与31x y +=在0x x =处的切线互相垂直,求0x 的值。 3. 已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。

选修2-2教案1.1.3导数的几何意义

§1.1.3导数的几何意义 教学目标: 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一.创设情景 (一)平均变化率、割线的斜率 (二)瞬时速度、导数 我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 二.新课讲授 (一)曲线的切线及切线的斜率:如图3.1-2,当(,()(1,2,34)n n n P x f x n =沿着曲线() f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么? 我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线. 问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? ⑵切线PT 的斜率k 为多少? 容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 沿着曲线无限接近点P 时, n k 无限趋近于切线PT 的斜率k ,即0000()() lim ()x f x x f x k f x x ?→+?-'==? 说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切

线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. (二)导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000 ()() ()lim x f x x f x f x k x ?→+?-'==? 说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标; ②求出函数在点0x 处的变化率0000 ()() ()lim x f x x f x f x k x ?→+?-'==? ,得到曲线在 点00(,())x f x 的切线的斜率; ③利用点斜式求切线方程. (二)导函数: 由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ', 即: 0 ()() ()lim x f x x f x f x y x ?→+?-''==? 注:在不致发生混淆时,导函数也简称导数. (三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。 (1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。 (2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f(x)的导函数 (3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是 求函数在点0x 处的导数的方法之一。 三.典例分析 例1:(1)求曲线y =f (x )=x 2 +1在点P (1,2)处的切线方程. (2)求函数y =3x 2 在点(1,3)处的导数. 解:(1)222 100[(1)1](11)2|lim lim 2x x x x x x y x x =?→?→+?+-+?+?'===??, 所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -= (2)因为222211113313(1) |lim lim lim3(1)611 x x x x x x y x x x =→→→-?-'===+=-- 所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --= (2)求函数f (x )=x x +-2 在1x =-附近的平均变化率,并求出在该点处的导数. 解:x x x x x y ?-=?-?+-+?+--=??32 )1()1(2

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章 单元测试题 一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点() A.1 个B.2 个 C.3 个D.4 个 1 1 2.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在 1 同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是() C.8D.4 2 3.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( ) ππ3 A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π) 3 π 3 C.[ 4π,π ) D.[ 2,4π] 1 4.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()

3 3 A.m≥2 B.m>2 3 3 C.m≤2 D.m<2 x 2 2 5.函数f ( x) =cos x-2cos 2的一个单调增区间是 () f x 0+3 -f x 0 Δx 6.设f ( x) 在x=x0 处可导,且lim Δx =1, Δx→0 则 f ′(x0)等于( ) A.1 B.0 C.3 x+9 7.经过原点且与曲线y=x+5相切的切线方程为() A.x+y=0 B.x+25y=0 C.x+y= 0 或x+25y=0 D.以上皆非 8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2- 3b<0 时,f ( x) 是() A.增函数 B.减函数 C.常数 D.既不是增函数也不是减函数

第三章导数及其应用

第三章 导数及其应用 考点1 导数的概念及计算 1.(2014·陕西,10)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( ) A .y =12x 3-1 2x 2-x B .y =12x 3+1 2x 2-3x C .y =1 4 x 3-x D .y =14x 3+1 2 x 2-2x 1.解析 法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y =-x ,在(2,0)处的切线方程为y =3x -6,以此对选项进行检验.A 选项, y =12x 3-12x 2-x ,显然过两个定点,又y ′=3 2x 2-x -1,则y ′|x =0=-1,y ′|x =2=3,故条件都满足,由选择题的特点知应选A. 法二 设该三次函数为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题设有?????f (0)=0?d =0, f (2)=0?8a +4b +2c +d =0,f ′(0)=-1?c =-1, f ′(2)=3?12a +4b +c =3,解得a =12,b =-1 2,c =-1,d =0. 故该函数的解析式为y =12x 3-1 2x 2-x ,选A. 答案 A 2.(2016·新课标全国Ⅲ,16)已知f (x )为偶函数,当x ≤0时,f (x )=-x-1 e -x ,则曲线y =f (x ) 在

点(1,2)处的切线方程是________. 2.解析设x>0,则-x<0,f(-x)=e x-1+x, 因为f(x)为偶函数,所以f(x)=e x-1+x,f′(x)=e x-1+1,f′(1)=2, y-2=2(x-1),即y=2x. 答案y=2x 3.(2015·新课标全国Ⅰ,14)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 3.解析f′(x)=3ax2+1,f′(1)=1+3a,f(1)=a+2. 点(1,f(1))处的切线方程为y-(a+2)=(1+3a)(x-1). 将(2,7)代入切线方程,得7-(a+2)=(1+3a), 解得a=1. 答案1 4.(2015·新课标全国Ⅱ,16)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________. 4.解析由y=x+ln x,得y′=1+1 x,得曲线在点(1,1)的切线的斜率为k=y′|x=1=2,所以切 线方程为y-1=2(x-1),即y=2x-1,此切线与曲线y=ax2+(a+2)x+1相切,消去y得ax2+ax+2=0,得a≠0且Δ=a2-8a=0,解得a=8. 答案8 5.(2015·天津,11)已知函数f(x)=a ax ln,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数.若f′(1)=3,则a的值为________. 5.解析f′(x)=x a ln+ax·1x=a(ln x+1),由f′(1)=3得,a(ln 1+1)=3,解得a=3.

新人教A版选修《几个常用函数的导数》word教案

学校: 临清一中 学科:数学 编写人:马长琴 审稿人:张林 1.2.1几个常用函数的导数 一.教学目标: 1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x =的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 二.教学重点,难点 重点:四种常见函数y c =、y x =、2 y x =、1y x =的导数公式及应用 难点: 四种常见函数y c =、y x =、2y x =、1y x =的导数公式 三.教学过程: (一).创设情景 我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢? 由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. (二).新课讲授 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y ?→?→?'=== 0y '=表示函数y c =图像上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x ?+?-+?-===???

人教版高中数学(文科)选修导数的概念及运算教案

导数的概念及运算 【考点指津】 1.了解导数的概念,掌握函数在一点处的导数的定义和导数的几何意义. 2.熟记基本导数公式.掌握两个函数四则运算的求导法则,会求多项式的导数. 【知识在线】 1.函数y =14223++x x 的导数是 . 2.曲线y =x 4+x 2上P 处的切线的斜率为6,则点P 的坐标是 . 3.设函数f(x)= -35 x 5 - 74 x 4+8,则0 lim →?x f(x+Δx)-f(x)Δx = . 4.已知使函数y=x 3+ax 2- 43 a ,若存在0)()(,000=='∈x f x f R x 使的求常数a . 【讲练平台】 例1 函数y=(3x 2+x+1)(2x+3)的导数是 ( ) A . (6x+1)(2x+3) B . 2(6x+1) C . 2(3x 2+x+1) D . 18x+22x+5 分析 先把函数式右边展开,再用和的求导法则求导数. 解 y=(3x 2+x+1)(2x+3)=6x 3+11x 2+5x+3 ∴y'=18x 2+22x+5,故应选D 点评 要善于化归,本题函数解析式就可转化为多项式. 例2 设函数f(x)=x 3-2x 2+x+5, 若f'(x 0)=0,则x 0= . 分析 x 0是方程f'(x)=0的根,只要解方程f'(x)=0 解 f(x)=x 3-2x 2+x+5, 求f'(x)=3x 2-4x+1 由f'(x 0)=0, 得3x 2-4x+1=0 解得x 0=1或13 ∴应填写答案为1或13 点评 导数的运算法则再加上已有的导数公式(如(x n )'=n .x n -1, 其中n ∈N*)是求某些简单函数的导 数的常用工具. 例3 已知抛物线y=ax 2+bx+c 通过点(1,1),且在(2,-1)处的切线的斜率为1, 求a ,b ,c 的值. 分析 题中涉及三个未知数,而已知中有三个独立条件,故可通过解方程组来确定a ,b ,c . 解 ∵y=ax 2+bx+c 分别过(1,1)点和(2,1)点 ∴a+b+c=1 (1) 4a+2b+c=-1 (2) 又 y'=2ax+b ∴y'|x=2=4a+b=1 (3) 由(1)(2)(3)可得,a=3,b=-11,c=9. 点评 函数的导数的几何意义决定了函数的导数知识与平面解析几何中直线的知识有着密切的联系.利用导数能解决许多曲线的切线的问题,使确定曲线在某处的切线斜率变得简单易求. 【知能集成】 1.两种常见函数的导数:c'=0 (C 是常数);(x n )'= nx n - 1(n ∈N *). 导数和运算法则:若 f(x),g(x)的导数存在,则[f(x)±g(x)]' = f '(x)+g'(x), [cf(x)]' = cf '(x).(C 是常数) 2.能应用由定义求导数的三个步骤推导出常数及函数y=x n (n ∈N*)的导数公式,掌握两个函数的和与差的求导法则及常数与函数的积的求导法则,能正确运用这些求导法则及导数公式求某些简单函数的导数.

第三章 导数及其应用

第三章 导数及其应用 第一节导数的概念及运算、定积分 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx ? 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx . 函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. (2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)?处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). ?曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. (4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式

高中数学1.2第5课时几个常用函数的导数教案理新人教A版选修2_2

课题:几个常用函数的导数 课时:05 课型:新授课 教学目标: 1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x =的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2 y x =、1y x =的导数公式及应用 教学难点: 四种常见函数y c =、y x =、2y x =、1y x =的导数公式 教学过程: 一.创设情景 我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢? 由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. 二.新课讲授 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y ?→?→?'===

0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x ?+?-+?-===??? 所以00 lim lim 11x x y y ?→?→?'=== 1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动. 3.函数2 ()y f x x ==的导数 因为22 ()()()y f x x f x x x x x x x ?+?-+?-==??? 222 2()2x x x x x x x x +?+?-==+?? 所以00 lim lim(2)2x x y y x x x ?→?→?'==+?= 2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化

数学:第三章《导数及其应用》教案(新人教A版选修1-1)

导数及其应用复习 【知能目标】 1.了解导数概念的某些实际背景(如瞬时速度,加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导数的概念。 2、熟记基本导数公式:x m (m 为有理数)、sinx 、cosx 、e x 、a x 、lnx 、log a x 的导数;掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 [教学方法] 1.采用“学案导学”方式进行教学。 2.讨论法、启发式、自主学习、合作探究式教学方法的综合运用。 [教学流程]:独立完成基础回顾,合作交流纠错,老师点评;然后通过题目落实双基,根据学生出现的问题有针对性的讲评. [教学重点和难点] 教学重点:导数的概念、四则运算、常用函数的导数,导数的应用理解运动和物质的关系、教学难点:导数的定义,导数在求函数的单调区间、极值、最值、证明中的应用 【综合脉络】 1.知识网络 2.考点综述 有关导数的内容,在2000年开始的新课程试卷命题时,其考试要求都是很基本的,以后逐渐加深,考查的基本原则是重点考查导数的概念和计算,力求结合应用问题,不过多地涉及理论探讨和严格的逻辑证明。本部分的要求一般有三个层次:第一层次是主要考查导数的概念,求导的公式和求导法则;第二层次是导数的简单应用,包括求函数的极值、单调区间、 导数定义 导数的几何意义 导函数 四则运算 求导法则 复合函数 求导法则 求简单函数的导数 导数的应用 导数的实际背景 判断函数 的单调性 求函数的 极大(小)值 求函数的 最大(小)值 基本求 导公式

《选修11:导数的应用:单调性与极值、最值》教案

适用学科
高中数学
适用年级
适用区域 苏教版区域
课时时长(分钟)
知识点 1、函数的单调性与极值;
2、函数中含参数的单调性与极值、
高二 2 课时
教学目标 1、 能利用导数研究函数的单调性,会用导数法求函数的单调区间。
2、了解函数在某点取得极值的必要条件与充分条件、 3、 会用导数求函数的极大值与极小值
教学重点 利用导数研究函数的单调性;函数极值的概念与求法 教学难点 用导数求函数单调区间的步骤;函数极值的求法
【知识导图】
教学过程

【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状
态、 导入的方法特不多,仅举两种方法: ① 情境导入,比如讲一个与本讲内容有关的生活现象; ② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生
建立知识网络、 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的 快与慢以及函数的最大值或最小值等性质是特不重要的、通过研究函数的这些性质,我们能 够对数量的变化规律有一个基本的了解、函数的单调性与函数的导数一样都是反映函数变化 情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?
用考导点数1求函导数函单数调判性的断步函骤数: 的单调性
(1)明确函数的定义域,并求函数的导函数; (2)若导函数时,并求对应的解集; (3)列表,确定函数的单调性; (4)下结论,写出函数的单调递增区间与单调递减区间、 注意:导函数看正负,原函数看增减。
用导数求函数极值的步骤: (1)明确函数的定义域,并求函数的导函数; (2)求方程的根; (3)检验在方程的根的左右的符号,假如在根的左侧附近为正,右侧附近为负,那么函数在这 个根处取得极大值,这个根叫做函数的极大值点;假如在根的右侧附近为正,左侧附近为负,那 么函数在这个根处取得极小值,这个根叫做函数的极小值点。

相关文档
最新文档