语音识别技术基础知识

语音识别技术基础知识
语音识别技术基础知识

语音识别技术基础知识

————————————————————————————————作者:————————————————————————————————日期:

语音识别技术基础知识

6月27日,美国权威科技杂志《MIT科技评论》公布2017全球最聪明50家公司榜单。科大讯飞名列中国第一、全球第六。全世界排在科大讯飞前面企业分别是:英伟达、Spacex、亚马逊、23andme、Alphabet。《MIT科技评论》认为,“科大讯飞旗下的语音助手是中国版的Siri,其可携带实时翻译器则是一款杰出的人工智能应用,克服了方言、俚语和背景杂音,可将汉语精准地翻译成十几种语言。科大讯飞在中国语音技术市场的占有率70%。”越来越多的人认为,语音识别将成为下一代交互革命的关键技术。

与此同时,在日常生活中,我们已经习惯用Siri或者Cortana这样的语音助手在一些特定的情况下帮我们解决一些小问题,如在开车时制定本周的日常,简短地回复他人消息等等,然而,在大多数情况下语音助手的使用率并不高,据研究机构CreativeStrategies的调查-有62%的安卓用户从未使用过语音助手,而这个数字苹果用户中则是70%。是语音识别的技术还不够先进,还是人们不需要语音助手呢?Amazon Echo的成功或许能给我一些启示。

Amazon Echo是亚马逊公司于2014年11月推出的一款家庭语音助手,能够实现包括购物、控制智能家居、阅读Kindle、预约Uber、跟踪(亚马逊)快递、订披萨、计时、算术、放音乐、找手机、模仿雨声等等诸多功能,一经推出就点燃了市场的热情,据国外研究机构统计,2015年Echo的销量是170万台左右,2016年则增长至650万余台,而截至2017年1月,亚马逊Echo的全球销量已超过700万台,预计今年将突破1100万台。另据eMarketer的一份报告,在美国智能音箱市场,亚马逊Echo占据的市场份额超过70%。

同样是语音助手,为何Echo与Siri的境况如此不同呢,有研究者认为,这主要是两种产品使用环境不同而导致的。对于大多数人而言,在公共场合拿出手机,对着一个机器人说话不但缺乏隐私,同时多少有些不适;而在家庭中,面对家人和朋友,这点就能够有效避免,同时安静的环境更能有效提高机器识别的速度与精度,可以认为,Amazon Echo精准地切入了市场。然而,其他巨头也不甘人后,纷纷推出了自己的家庭智能语音助手:苹果推出了Home pod, 而google 也推出了google home. 看来,一场语音大战已经风雨欲来。

二、语音识别的基本原理

所谓语音识别,就是将一段语音信号转换成相对应的文本信息,系统主要包含特征提取、声学模型,语言模型以及字典与解码四大部分,其中为了更有效地提取特征往往还需要对所采集到的声音信号进行滤波、分帧等预处理工作,把要分析的信号从原始信号中提取出来;之后,特征提取工作将声音信号从时域转换到频域,为声学模型提供合适的特征向量;声学模型中再根据声学特性计算每一个特征向量在声学特征上的得分;而语言模型则根据语言学相关的理论,计算该声音信号对应可能词组序列的概率;最后根据已有的字典,对词组序列进行解码,得到最后可能的文本表示。

1. 声学信号预处理

作为语音识别的前提与基础,语音信号的预处理过程至关重要。在最终进行模板匹配的时候,是将输入语音信号的特征参数同模板库中的特征参数进行对比,因此,只有在预处理阶段得到能够表征语音信号本质特征的特征参数,才能够将这些特征参数进行匹配进行识别率高的语音识别。

首先需要对声音信号进行滤波与采样,此过程主要是为了排除非人体发声以外频率的信号与50Hz电流频率的干扰,该过程一般是用一个带通滤波器、设定上下戒指频率进行滤波,再将原有离散信号进行量化处理实现的;之后需要平滑信号的高频与低频部分的衔接段,从而可以在同一信噪比条件下对频谱进行求解,使得分析更为方便快捷;分帧加窗操作是为了将原有频域随时间变化的信号具有短时平稳特性,即将连续的信号用不同长度的采集窗口分成一个个独立的频域稳定的部分以便于分析,此过程主要是采用预加重技术;最后还需要进行端点检测工作,也就是对输入

语音信号的起止点进行正确判断,这主要是通过短时能量(同一帧内信号变化的幅度)与短时平均过零率(同一帧内采样信号经过零的次数)来进行大致的判定,具体可以参考文末【参考文献】。

2. 声学特征提取

完成信号的预处理之后,随后进行的就是整个过程中极为关键的特征提取的操作。将原始波形进行识别并不能取得很好的识别效果,频域变换后提取的特征参数用于识别,而能用于语音识别的特征参数必须满足以下几点:

?特征参数能够尽量描述语音的根本特征;

?尽量降低参数分量之间的耦合,对数据进行压缩;

?应使计算特征参数的过程更加简便,使算法更加高效。基音周期、共振峰值等参数都可以作为表征语音特性的特征参数。

目前主流研究机构最常用到的特征参数有:线性预测倒谱系数(LPCC)和 Mel 倒谱系数(MFCC)。两种特征参数在倒谱域上对语音信号进行操作,前者以发声模型作为出发点,利用 LPC 技术求倒谱系数。后者则模拟听觉模型,把语音经过滤波器组模型的输出做为声学特征,然后利用离散傅里叶变换(DFT)进行变换。

所谓基音周期,是指声带振动频率(基频)的振动周期,因其能够有效表征语音信号特征,因此从最初的语音识别研究开始,基音周期检测就是一个至关重要的研究点;所谓共振峰,是指语音信号中能量集中的区域,因其表征了声道的物理特征,并且是发音音质的主要决定条件,因此同样是十分重要的特征参数。关于这二者的详细提取方法以及目前主流的特征参数LPCC、MFCC等详细方法在此不再赘述,可以查阅文末【参考文献】。此外,目前也有许多研究者开始将深度学习中一些方法应用在特征提取中,取得了较快的进展,这部分将在第3章中进行比较详细的介绍。

3. 声学模型

声学模型是语音识别系统中非常重要的一个组件,对不同基本单元的区分能力直接关系到识别结果的好坏。语音识别本质上一个模式识别的过程,而模式识别的核心是分类器和分类决策的问题。

通常,在孤立词、中小词汇量识别中使用动态时间规整(DTW)分类器会有良好的识别效果,并且识别速度快,系统开销小,是语音识别中很成功的匹配算法。但是,在大词汇量、非特定人语音识别的时候,DTW 识别效果就会急剧下降,这时候使用隐马尔科夫模型(HMM)进行训练识别效果就会有明显提升,由于在传统语音识别中一般采用连续的高斯混合模型GMM来对状态输出密度函数进行刻画,因此又称为GMM-HMM构架。

同时,随着深度学习的发展,通过深度神经网络来完成声学建模,形成所谓的DNN-HMM构架来取代传统的GMM-HMM构架,在语音识别上也取得了很好的效果,将在第3章中进行介绍,本章先对于高斯混合模型-隐马尔科夫模型(GMM-HMM)的基本理论进行介绍。

3.1 高斯混合模型

对于一个随机向量 x,如果它的联合概率密度函数符合公式2-9,则称它服从高斯分布,并记为 x ~ N(μ, Σ)。

其中,μ 为分布的期望,Σ 为分布的协方差矩阵。高斯分布有很强的近似真实世界数据的能力,同时又易于计算,因此被广泛地应用在各个学科之中。但是,仍然有很多类型的数据不好被一个高斯分布所描述。这时候我们可以使用多个高斯分布的混合分布来描述这些数据,由多个分量分别负责不同潜在的数据来源。此时,随机变量符合密度函数。

其中,M 为分量的个数,通常由问题规模来确定。

我们称认为数据服从混合高斯分布所使用的模型为高斯混合模型。高斯混合模型被广泛的应用在很多语音识别系统的声学模型中。考虑到在语音识别中向量的维数相对较大,所以我们通常会假设混合高斯分布中的协方差矩阵Σm 为对角矩阵。这样既大大减少了参数的数量,同时可以提高计算的效率。

使用高斯混合模型对短时特征向量建模有以下几个好处:首先,高斯混合模型的具有很强的建模能力,只要分量总数足够多,高斯混合模型就可以以任意精度来逼近一个概率分布函数;另外,使用 EM 算法可以很容易地使模型在训练数据上收敛。对于计算速度和过拟合等问题,人们还研究出了参数绑定的 GMM 和子空间高斯混合模型 (subspace GMM) 来解决。除了使用 EM 算法作最大似然估计以外,我们还可以使用和词或音素错误率直接相关的区分性的误差函数来训练高斯混合模型,能够极大地提高系统性能。因此,直到在声学模型中使用深度神经网络的技术出现之前,高斯混合模型一直是短时特征向量建模的不二选择。

但是,高斯混合模型同样具有一个严重的缺点:高斯混合模型对于靠近向量空间上一个非线性流形 (manifold) 上的数据建模能力非常差。例如,假设一些数据分布在一个球面两侧,且距离球面非常近。如果使用一个合适的分类模型,我们可能只需要很少的参数就可以将球面两侧的数据区分开。但是,如果使用高斯混合模型描绘他们的实际分布情况,我们需要非常多的高斯分布分量才能足够精确地刻画。这驱使我们寻找一个能够更有效利用语音信息进行分类的模型。

3.2 隐马尔科夫模型

我们现在考虑一个离散的随机序列,若转移概率符合马尔可夫性质,即将来状态和过去状态独立,则称其为一条马尔可夫链 (Markov Chain)。若转移概率和时间无关,则称其为齐次 (homogeneous) 马尔可夫链。马尔可夫链的输出和预先定义好的状态一一对应,对于任意给定的状态,输出是可观测的,没有随机性。如果我们对输出进行扩展,使马尔可夫链的每个状态输出为一个概率分布函数。这样的话马尔可夫链的状态不能被直接观测到,只能通过受状态变化影响的符合概率分布的其他变量来推测。我们称以这种以隐马尔可夫序列假设来建模数据的模型为隐马尔可夫模型。

对应到语音识别系统中,我们使用隐马尔可夫模型来刻画一个音素内部子状态变化,来解决特征序列到多个语音基本单元之间对应关系的问题。

在语音识别任务中使用隐马尔可夫模型需要计算模型在一段语音片段上的可能性。而在训练的时候,我们需要使用 Baum-Welch 算法[23] 学习隐马尔可夫模型参数,进行最大似然估计 (Maximum Likelihood Estimation, MLE)。Baum-Welch 算法是EM (Expectation-Maximization) 算法的一种特例,利用前后项概率信息迭代地依次进行计算条件期望的 E 步骤和最大化条件期望的 M 步骤。

4. 语言模型

语言模型主要是刻画人类语言表达的方式习惯,着重描述了词与词在排列结构上的内在联系。在语音识别解码的过程中,在词内转移参考发声词典、词间转移参考语言模型,好的语言模型不仅能够提高解码效率,还能在一定程度上提高识别率。语言模型分为规则模型和统计模型两类,统计语言模型用概率统计的方法来刻画语言单位内在的统计规律,其设计简单实用而且取得了很好的效果,已经被广泛用于语音识别、机器翻译、情感识别等领域。

最简单又却又最常用的语言模型是 N 元语言模型 (N-gram Language Model,N-gram LM) 。N 元语言模型假设当前在给定上文环境下,当前词的概率只与前N-1 个词相关。于是词序列 w1, . . . , wm 的概率 P(w1, . . . , wm) 可以近似为

为了得到公式中的每一个词在给定上文下的概率,我们需要一定数量的该语言文本来估算。可以直接使用包含上文的词对在全部上文词对中的比例来计算该概率,即

对于在文本中未出现的词对,我们需要使用平滑方法来进行近似,如 Good-Turing 估计或 Kneser-Ney 平滑等。

5. 解码与字典

解码器是识别阶段的核心组件,通过训练好的模型对语音进行解码,获得最可能的词序列,或者根据识别中间结果生成识别网格 (lattice) 以供后续组件处理。解码器部分的核心算法是动态规划算法 Viterbi。由于解码空间非常巨大,通常我们在实际应用中会使用限定搜索宽度的令牌传递方法 (token passing)。

传统解码器会完全动态生成解码图 (decode graph),如著名语音识别工具HTK(HMM Tool Kit) 中的 HVite 和 HDecode 等。这样的实现内存占用较小,但考虑到各个组件的复杂性,整个系统的流程繁琐,不方便高效地将语言模型和声学模型结合起来,同时更加难以扩展。现在主流的解码器实现会一定程度上使用预生成的有限状态变换器 (Finite State Transducer, FST) 作为预加载的静态解码图。这里我们可以将语言模型 (G),词汇表(L),上下文相关信息 (C),隐马尔可夫模型(H)四个部分分别构建为标准的有限状态变换器,再通过标准的有限状态变换器操作将他们组合起来,构建一个从上下文相关音素子状态到词的变换器。这样的实现方法额外使用了一些内存空间,但让解码器的指令序列变得更加整齐,使得一个高效的解码器的构建更加容易。同时,我们可以对预先构建的有限状态变换器进行预优化,合并和剪掉不必要的部分,使得搜索空间变得更加合理。

小结:

在过去,最流行的语音识别系统通常使用梅尔倒谱系数MFCC或者相对频谱变换-感知线性预测 RASTA-PLP,作为特征向量,使用高斯混合模型-隐马尔科夫模型

GMM-HMM作为声学模型,用最大似然准则,ML和期望最大化算法来训练这些模型。

三、语音识别的前沿领域

语音识别技术综述

语音识别技术综述

语音识别技术综述 电子信息工程2010级1班郭珊珊 【摘要】随着计算机处理能力的迅速提高,语音识别技术得到了飞速发展,该技术的发展和应用改变了人们的生产和生活方式,正逐步成为计算机处理技术中的关键技术。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。 【关键词】语音识别;语音识别原理;语音识别发展;产品 语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器人自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的命令或文本的高新技术。 1 语音识别的原理 语音识别系统本质是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单位元。未知语音经过话筒变换成电信号后加载识

别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需特征,在此基础上建立语音识别所需的模板。 计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表可给出计算机的识别结果。这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。 2 语音识别系统的分类 语音识别系统可以根据对输入语音的限制加以分类。 2.1从说话者与识别系统的相关性考虑 可以将识别系统分为3类:(1)特定人语音识别系统:仅考虑对于专人的话音进行识别;(2)非特定人语音系统:识别的语音与人无关,通常要用大量不同人的语音数据库对识

别系统进行学习;(3)多人的识别系统:通常能识别一组人的语音,或者成为特定组语音识别系统,该系统仅要求对要识别的那组人的语音进行训练。 2.2从说话的方式考虑 也可以将识别系统分为3类:(1)孤立词语音识别系统:孤立词识别系统要求输入每个词后要停顿;(2)连接词语音识别系统:连接词输入系统要求对每个词都清楚发音,一些连音现象开始出现;(3)连续语音识别系统:连续语音输入是自然流利的连续语音输入,大量连音和变音会出现。 2.3从识别系统的词汇量大小考虑 也可以将识别系统分为3类:(1)小词汇量语音识别系统。通常包括几十个词的语音识别系统。(2)中等词汇量的语音识别系统。通常包括几百个词到上千个词的识别系统。(3)大词汇量语音识别系统。通常包括几千到几万个词的语音识别系统。随着计算机与数字信号处理器运算能力以及识别系统精度的提高,识别

语音识别系统实验报告材料

语音识别系统实验报告 专业班级:信息安全 学号: 姓名:

目录 一、设计任务及要求 (1) 二、语音识别的简单介绍 2.1语者识别的概念 (2) 2.2特征参数的提取 (3) 2.3用矢量量化聚类法生成码本 (3) 2.4VQ的说话人识别 (4) 三、算法程序分析 3.1函数关系 (4) 3.2代码说明 (5) 3.2.1函数mfcc (5) 3.2.2函数disteu (5) 3.2.3函数vqlbg (6)

3.2.4函数test (6) 3.2.5函数testDB (7) 3.2.6 函数train (8) 3.2.7函数melfb (8) 四、演示分析 (9) 五、心得体会 (11) 附:GUI程序代码 (12) 一、设计任务及要求 实现语音识别功能。 二、语音识别的简单介绍

基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。 语音识别系统结构框图如图1所示。 图1 语音识别系统结构框图 2.1语者识别的概念 语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,

基于matlab的语音识别系统

机电信息工程学院专业综合课程设计 系:信息与通信工程 专业:通信工程 班级:081班 设计题目:基于matlab的语音识别系统 学生姓名: 指导教师: 完成日期:2011年12月27日

一.设计任务及要求 1.1设计任务 作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。以语音识别开发出的产品应用领域非常广泛,有声控电话交换、语音拨号系统、信息网络查询、家庭服务、宾馆服务、旅行社服务系统、订票系统、声控智能玩具、医疗服务、银行服务、股票查询服务、计算机控制、工业控制、语音通信系统、军事监听、信息检索、应急服务、翻译系统等,几乎深入到社会的每个行业、每个方面,其应用和经济社会效益前景非常广泛。本次任务设计一个简单的语音识别系。 1.2设计要求 要求:使用matlab软件编写语音识别程序 二.算法方案选择 2.1设计方案 语音识别属于模式识别范畴,它与人的认知过程一样,其过程分为训练和识别两个阶段。在训练阶段,语音识别系统对输入的语音信号进行学习。学习结束后,把学习内容组成语音模型库存储起来;在识别阶段,根据当前输入的待识别语音信号,在语音模型库中查找出相应的词义或语义。 语音识别系统与常规模式识别系统一样包括特征提取、模式匹配、模型库等3个基本单元,它的基本结构如图1所示。 图1 语音识别系统基本结构图 本次设计主要是基于HMM模型(隐马尔可夫模型)。这是在20世纪80年代引入语音识别领域的一种语音识别算法。该算法通过对大量语音数据进行数据统计,建立识别词条的统计模型,然后从待识别语音信号中提取特征,与这些模

型进行匹配,通过比较匹配分数以获得识别结果。通过大量的语音,就能够获得一个稳健的统计模型,能够适应实际语音中的各种突发情况。并且,HMM算法具有良好的识别性能和抗噪性能。 2.2方案框图 图2 HMM语音识别系统 2.3隐马尔可夫模型 HMM过程是一个双重随机过程:一重用于描述非平稳信号的短时平稳段的统计特征(信号的瞬态特征);另一重随机过程描述了每个短时平稳段如何转变到下一个短时平稳段,即短时统计特征的动态特性(隐含在观察序列中)。人的言语过程本质上也是一个双重随机过程,语音信号本身是一个可观测的时变列。可见,HMM合理地模仿了这一过程,是一种较为理想的语音信号模型。其初始状态概率向量π,状态转移概率矩阵向量A,以及概率输出向量B一起构成了HMM的3个特征参量。HMM 模型通常表示成λ={π,A,B}。 2.4HMM模型的三个基本问题 HMM模型的核心问题就是解决以下三个基本问题: (1)识别问题:在给定的观测序列O和模型λ=(A,B,π)的条件下,如何有效地计算λ产生观测序列O的条件概率P(O︱λ)最大。常用的算法是前后向算法,它可以使其计算量降低到N2T次运算。 (2)最佳状态链的确定:如何选择一个最佳状态序列Q=q1q2…qT,来解释观察序列O。常用的算法是Viterbi算法。 (3)模型参数优化问题:如何调整模型参数λ=(A,B,π),使P(O︱λ)最大:这是三个问题中最难的一个,因为没有解析法可用来求解最大似然模型,所以只能使用迭代法(如Baum-Welch)或使用最佳梯度法。 第一个问题是评估问题,即已知模型λ=(A,B,π)和一个观测序列O,如何计算由该模型λ产生出该观测序列O的概率,问题1的求解能够选择出与给定的观测序列最匹配的HMM模型。 第二个问题力图揭露模型中隐藏着的部分,即找出“正确的”状态序列,这是一个典型的估计问题。

基于matlab的语音识别技术

项目题目:基于Matlab的语音识别 一、引言 语音识别技术是让计算机识别一些语音信号,并把语音信号转换成相应的文本或者命令的一种高科技技术。语音识别技术所涉及的领域非常广泛,包括信号处理、模式识别、人工智能等技术。近年来已经从实验室开始走向市场,渗透到家电、通信、医疗、消费电子产品等各个领域,让人们的生活更加方便。 语音识别系统的分类有三种依据:词汇量大小,对说话人说话方式的要求和对说话人的依赖程度。 (1)根据词汇量大小,可以分为小词汇量、中等词汇量、大词汇量及无限词汇量识别系统。 (2)根据对说话人说话方式的要求,可以分为孤立字(词)语音识别系统、连接字语音识别系统及连续语音识别系统。 (3)根据对说话人的依赖程度可以分为特定人和非特定人语音识别系统。 二、语音识别系统框架设计 2.1语音识别系统的基本结构

语音识别系统本质上是一种模式识别系统,其基本结构原理框图如图l所示,主要包括语音信号预处理、特征提取、特征建模(建立参考模式库)、相似性度量(模式匹配)和后处理等几个功能模块,其中后处理模块为可选部分。 三、语音识别设计步骤 3.1语音信号的特征及其端点检测 图2 数字‘7’开始部分波形 图2是数字”7”的波形进行局部放大后的情况,可以看到,在6800之前的部分信号幅度很低,明显属于静音。而在6800以后,信号幅度开始增强,并呈现明显的周期性。在波形的上半部分可以观察到有规律的尖峰,两个尖峰之间的距离就是所谓的基音周期,实际上也就是说话人的声带振动的周期。 这样可以很直观的用信号的幅度作为特征,区分静音和语音。只要设定一个

门限,当信号的幅度超过该门限的时候,就认为语音开始,当幅度降低到门限以下就认为语音结束。 3.2 语音识别系统 3.2.1语音识别系统的分类 语音识别按说话人的讲话方式可分为3类:(1)即孤立词识别(isolated word recognition),孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机”等。(3)连续语音识别,连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话。 从识别对象的类型来看,语音识别可以分为特定人语音识别和非特定人语音识别,特定人是指针对一个用户的语音识别,非特定人则可用于不同的用户。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。 3.2.2语音识别系统的基本构成 语音识别系统的实现方案如图3所示。输入的模拟语音信号首先要进行处理,包括预滤波,采样和量化,加窗,端点检测,预加重等。语音信号经处理后,接下来很重要的一环就是特征参数提取。 图3 语音识别系统 在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模版库。在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模版,与参考模板进行匹配,将匹配分数最高的参考模型作为识别结果。 3. 2.3 语音识别系统的特征参数提取 特征提取是对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。语音信号是一种典型的时变信号,然而如果把观察时间缩短到十毫秒至几十毫秒,则可以得到一系列近似稳定的信号。人的发音器官可以用若干段前后连接的声管进行模拟,这就是所谓的声管模型。 全极点线性预测参数 (LPC: Liner Prediction Coeffieient)可以对声管模型进行很好的描述,LPC参数是模拟人的发声器官的,是一种基于语音合成的参数模型。 在语音识别中,很少用LPC系数,而是用LPC倒谱参数 (LPCC: Liner Prediction Cepstral Coefficient)。LPCC参数的优点是计算量小,对元音有较好的描述能力,其缺点在于对辅音的描述能力较差,抗噪声性能较差。

语音识别发展现状与展望

中国中文信息学会第七次全国会员代表大会 暨学会成立30周年学术会议 语音识别发展现状与展望中科院自动化研究所徐波 2011年12月4日

报告提纲 ?语音识别技术现状及态势?语音识别技术的行业应用?语音识别技术研究方向?结论与展望

2010年始语音识别重新成为产业热点?移动互联网的兴起成为ASR最重要的应用环境。在Google引领下,互联网、通信公司纷纷把语音识别作为重要研究方向 –Android系统内嵌语音识别技术,Google语音 翻译等; –iPhone4S 上的Siri软件; –百度、腾讯、盛大、华为等都进军语音识别领 域; –我国语音技术领军企业讯飞2010年推出语音云识别、讯飞口讯 –已有的QQ2011版语音输入等等

成熟度分析-技术成熟度曲线 ?美国市场调查咨询公司Gartner于2011年7月发布《2011新兴技术成熟度曲线》报告:

成熟度分析-新兴技术优先矩阵?Gartner评出了2011年具有变革作用的技术,包括语音识别、语音翻译、自然语言问答等。其中语音翻译和自然语言问答有望在5-10年内获得大幅利用,而语音识别有望在2-5年内获得大幅利用;

三十年语音识别技术发展 ---特征提取与知识方面?MFCC,PLP,CMS,RASTA,VTLN;?HLDA, fMPE,neural net-based features ?前端优化 –融入更多特征信息(MLP、TrapNN、Bottle Neck Features等) ?特征很大特点有些是跟模型的训练算法相匹配?大规模FSN图表示,把各种知识源集中在一起–bigram vs. 4-gram, within word dependencies vs. cross-word

语音识别技术概述

语音识别技术概述 摘要:本文简要介绍了语音识别技术理论基础及分类方式,所采用的关键技术以及所面临的困难与挑战,最后讨论了语音识别技术的发展前景和应用。 关键词:语音识别;特征提取;模式匹配;模型训练 Abstract:This text briefly introduces the theoretical basis of the speech-identification technology,its mode of classification,the adopted key technique and the difficulties and challenges it have to face.Then,the developing prospect ion and application of the speech-identification technology are discussed in the last part. Keywords:Speech identification;Character Pick-up;Mode matching;Model training 一、语音识别技术的理论基础 语音识别技术:是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高级技术。语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。 不同的语音识别系统,虽然具体实现细节有所不同,但所采用的基本技术相似,一个典型语音识别系统主要包括特征提取技术、模式

语音识别技术

目前主流的语音识别技术是基于统计模式识别的基本理论。一个完整的语音识别系统可大致分为三部分: (1)语音特征提取: (2)声学模型与模式匹配(识别算法) (3)语义理解:计算机对识别结果进行语法、语义分析。 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR), 语音识别的发展简史 1952年AT& T Bell实验室实现了一个单一发音人孤立发音的十个英文数字的语音识别系统,到现在的人机语音交互。语音识别研究从二十世纪50年代开始到现在历半个多世纪的蓬勃发展,在这期间获得了巨大的进展。 现代语音识别技术研究重点包括即兴口语的识别和理解,自然口语对话,以及多语种的语音同声翻译。 语音识别应用的特点 1.语音识别系统必须覆盖的功能包括: (1)语音识别系统要对用户有益(希望它是能检测到的)。例如提高生产率,容易使用,更好的人机界面,或更自然的信息交流模式。 (2)语音识别系统要对用户“友好”。这种“友好”的含义是:用户在和系统进行语音对话时感到舒适;系统的语音提示既有帮助,又很亲近。 (3)语音识别系统必须有足够的精度 (4)语音识别系统要有实时处理能力;例如系统对用户询问的响应时间要很短。 2. 语音识别错误的处理 有以下四种方式可以处理这个问题。 (1)错误弱化法。这种处理仅仅花费用户很少一点时间,对用户几乎没什么其它不利影响。 (2)错误自检纠正法 系统利用已知任务的限制自动地检测并纠正错误。 (3)确认或多层次判定

(4)拒绝/转向人工座席。系统对其中通常较易导致系统识别错误的极少部分语音指令拒绝做出识别决定,而是将其转给人工座席。 在很多情况下,语音识别技术可以充分发挥出RFID的潜能: 1.积压产品、脱销产品 2.被废弃、被召回或已过期产品 3.回收的商品 4.促销产品 RFID系统在利用原有语音导向投资的情况下可以大大增加收益 语音识别技术在邮件分拣中的应用 现代化分拣设备在邮政上的应用大大提高了邮件处理的效率。但是,并不是所有的邮件都能上分拣机处理,那些需要人工处理的邮件成了邮政企业实现自动化的瓶颈。邮政使用人工标码技术以及先进的计算机软件 系统来处理不能上机的邮件,仍需要大量的劳动力。 由MailCode公司开发并准备申请专利的Spell-ItTM软件技术通过提高系统数据库能力的方式对语音识别自动化设备进行了革命性的变革。这种技术提供了无限的数据库能力,并且保证分拣速度不会因数据库的增大而减小。由各大语音引擎公司开发的系统还支持世界上的各种主要语言,这样,语音技术就成为世界性的产品。 以英语语音识别系统为例,系统建立了36个可识别字符26个字母加上0~9的10个数字,同时还建立了一套关键词。Spell-It软件使用这些字符来识别成千上万的口语词汇和无数的词语组合。 对于大公司的邮件收发中心来说,使用MailCode公司的Spell-It软件技术,分拣员实际上只需发出几个字符的音来找到和数据库中相对应的词。例如:碰到了寄给Joseph Schneider的邮件,操作员只需发出“J”、“S”、“C”和“H”几个音就可以得到准确的分拣信息。 姓名和邮箱编码:Jennifer Schroeder, 软件工程部;Joseph Schneider, 技术操作部;Josh Schriver, 技术操作部,因为这三个姓名全都符合(J,S,C,H)的发音标准。邮件中心的操作员知道邮件实际上是寄给Joseph Schneider的,就可以把邮件投入Joseph Schneide的信箱了。 邮局要把邮件按投递路线分发,分拣员必须熟悉长长的投递段列表以及各种各样的国际邮件投递信息。Spell-It技术把地址、投递路线等信息都存入了系统,这样就大大方便了分拣工作。 例如,有一件寄往Stonehollow 路2036号的邮件。使用语音识别技术,分拣员仅仅需要发出“2”、“0”、“S”、“T”和“O”几个音,如表2所示,数据库就会给出所有可能和这几

语音识别实验2

关于语音识别的研究 网络工程专业网络C071班贾鸿姗 076040 摘要:语音识别技术的广泛应用 1前言: 语音识别技术也被称为自动语音识别 (ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。 早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。而1920年代生产的"Radio Rex"玩具狗可能是最早的语音识别器,当这只狗的名字被呼唤的时候,它能够从底座上弹出来。最早的基于电子计算机的语音识别系统是由AT&T 贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字。其识别方法是跟踪语音中的共振峰。该系统得到了98%的正确率。。到1950年代末,伦敦学院(Colledge of London)的Denes 已经将语法概率加入语音识别中。 1960年代,人工神经网络被引入了语音识别。这一时代的两大突破是线性预测编码Linear Predictive Coding (LPC),及动态时间弯折Dynamic Time Warp技术。 语音识别技术的最重大突破是隐含马尔科夫模型Hidden Markov Model的应用。从Baum提出相关数学推理,经过Labiner等人的研究,卡内基梅隆大学的李开复最终实现了第一个基于隐马尔科夫模型的大词汇量语音识别系统Sphinx。。此后严格来说语音识别技术并没有脱离HMM框架。 尽管多年来研究人员一直尝试将“听写机”推广,语音识别技术在目前还无法支持无限领域,无限说话人的听写机应用。 2 正文 2.1应用领域 2.1.1.电话通信的语音拨号 特别是在中、高档移动电话上,现已普遍的具有语音拨号的功能。随着语音识别芯片的价格降低,普通电话上也将具备语音拨号的功能。 2.1.2.汽车的语音控制 由于在汽车的行驶过程中,驾驶员的手必须放在方向盘上,因此在汽车上拨打电话,需要使用具有语音拨号功能的免提电话通信方式。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以由语音来方便的控制。 工业控制及医疗领域。当操作人员的眼或手已经被占用的情况下,在增加控制操作时,最好的办法就是增加人与机器的语音交互界面。由语音对机器发出命令,机器用语音做出应答。 2.1.3数字助理 个人数字助理(Personal Digital Assistant,PDA)的语音交互界面。PDA的体积很小,人机界面一直是其应用和技术的瓶颈之一。由于在PDA上使用键盘非常不便,因此,现多采用手写体识别的方法输入和查询信息。但是,这种方法仍然让用户感到很不方便。现在业界一致认为,PDA的最佳人机交互界面是以语音作为传输介质的交互方法,并且已有少量应用。随着语音识别技术的提高,可以预见,在不久的将来,语音将成为PDA主要的人机交互界面。 智能玩具 通过语音识别技术,我们可以与智能娃娃对话,可以用语音对玩具发出命令,让其完成一些简单的任务,甚至可以制造具有语音锁功能的电子看门狗。智能玩具有很大的市场潜力,而其关键在

语音识别-科普性介绍

随机过程理论在语音识别中的应用 第一章语音识别总述 1.1语音识别技术简介 语音识别技术就是让机器通过识别和理解过程,把语音信号转变为相应的文本或命令的技术。在当下流行的即时通讯软件(如:微信、QQ等)里,语音识别技术得到了非常广泛的应用。当对方发来一段语音信息而自己不方便收听时便可以使用语音转化功能将语音信息转化成文字信息。此外,在许多输入法(如:讯飞输入法)中也可以使用语音输入功能。用户只需要对着麦克风说话,输入法便可以将语音转换为文字填入输入框,在方便用户的同时也提高了文字输入效率。 语音识别涉及的领域包括:数字信号处理、声学、语音学、计算机科学、心理学、人工智能等,是一门涵盖多个学科领域的交叉科学技术。 语音识别的技术原理是模式识别,其一般过程可以总结为:预处理、特征提取、基于语音模型库下的模式匹配、基于语言模型库下的语言处理、完成识别。 图1.0.1 语音识别过程 第二章预处理 声音的实质是波。在现如中得到广泛应用的音频文件格式(如:mp3等)都经过了压缩无法直接识别。语音识别所使用的音频文件格式必须是未经压缩处理的wav格式文件。下图是一个波形示例。

图2.0.2 语音波形示例 有了声波源文件输入便可以按照图2.1.1所示的各个步骤进行识别。 2.1静音切除 如图2.1.2所示,在得到的声波信号输入中需要实际处理的信号并不一定占满整个时域,会有静音和噪声的存在。因此,必须先对得到的输入信号进行一定的预处理,消去静音的部分并且滤除噪声的干扰才能对实际需要处理的有效语音进行识别。 噪声处理部分本文已在上文进行过讨论,这里不再赘述。去除静音需要用到V AD算法,本文对其做简单介绍。 2.1.1 V AD算法 V AD算法全称为V oice Activity Detection,又称语音边界检测。其可实现的功能有对语音信号进行打断、去除语音信号中的静音部分从而获取有效语音,还可以去除一部分噪声对后续语音识别过程造成的干扰。V AD主要是对输入语音信号的一些时域或频域特征判断其是否属于静音部分。本文只对这些参数做简要介绍,具体算法不属于本文重点因而不在此做细致讨论。 2.1.2时域参数 时域参数是通过对输入信号在时域上的特征参量进行区分。在信噪比较高的环境下使用时域参数进行区分效果显著。 1.相关性分析 通过对足够短的时间范围内的语音信号进行相关性检测可以初步判定该时间范围内的信号是否属于静音部分。在实际应用中,静音的部分实际上会混有各种各样的噪声,因此并非绝对意义上静音。噪声在各个时间范围内的相关性比较低,而人说话的语音相关性则比较强。因此,在高信噪比的条件下区分成功率很

语音识别技术的发展与未来

语音识别技术的发展与未来 与机器进行语音交流,让它听明白你在说什么。语音识别技术将人类这一曾经的梦想变成了现实。语音识别就好比“机器的听觉系统”,该技术让机器通过识别和理解,把语音信号转变为相应的文本或命令。 在1952年的贝尔研究所,Davis等人研制了世界上第一个能识别10个英文数字发音的实验系统。1960年英国的Denes等人研制了第一个计算机语音识别系统。 大规模的语音识别研究始于上世纪70年代以后,并在小词汇量、孤立词的识别方面取得了实质性的进展。上世纪80年代以后,语音识别研究的重点逐渐转向大词汇量、非特定人连续语音识别。 同时,语音识别在研究思路上也发生了重大变化,由传统的基于标准模板匹配的技术思路开始转向基于统计模型的技术思路。此外,业内有专家再次提出了将神经网络技术引入语音识别问题的技术思路。 上世纪90年代以后,在语音识别的系统框架方面并没有什么重大突破。但是,在语音识别技术的应用及产品化方面出现了很大的进展。比如,DARPA是在上世界70年代由美国国防部远景研究计划局资助的一项计划,旨在支持语言理解系统的研究开发工作。进入上世纪90年代,DARPA计划仍在持续进行中,其研究重点已转向识别装置中的自然语言处理部分,识别任务设定为“航空旅行信息检索”。 我国的语音识别研究起始于1958年,由中国科学院声学所利用电子管电路识别10个元音。由于当时条件的限制,中国的语音识别研究工作一直处于缓慢发展的阶段。直至1973年,中国科学院声学所开始了计算机语音识别。 进入上世纪80年代以来,随着计算机应用技术在我国逐渐普及和应用以及数字信号技术的进一步发展,国内许多单位具备了研究语音技术的基本条件。与此同时,国际上语音识别技术在经过了多年的沉寂之后重又成为研究的热点。在这种形式下,国内许多单位纷纷投入到

语音识别技术文献综述

语音识别技术综述 The summarization of speech recognition 张永双 苏州大学 摘要 本文回顾了语音识别技术的发展历史,综述了语音识别系统的结构、分类及基本方法,分析了语音识别技术面临的问题及发展方向。 关键词:语音识别;特征;匹配 Abstact This article review the courses of speech recognition technology progress ,summarize the structure,classifications and basic methods of speech recognition system and analyze the direction and the issues which speech recognition technology development may confront with. Key words: speech recognition;character;matching 引言 语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科,所涉及的领域有信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等,甚至还涉及到人的体态语言(如人民在说话时的表情手势等行为动作可帮助对方理解)。其应用领域也非常广,例如相对于键盘输入方法的语音输入系统、可用于工业控制的语音控制系统及服务领域的智能对话查询系统,在信息高度化的今天,语音识别技术及其应用已成为信息社会不可或缺的重要组成部分。 1.语音识别技术的发展历史 语音识别技术的研究开始二十世纪50年代。1952年,AT&Tbell实验室的Davis等人成功研制出了世界上第一个能识别十个英文数字发音的实验系统:Audry系统。

语音识别基本知识及单元模块方案设计

语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。 1语音识别的基本原理 语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示: 未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。而计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表就可以给出计算机的识别结果。显然,这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。2语音识别的方法 目前具有代表性的语音识别方法主要有动态时间规整技术(DTW)、隐马尔可夫模型(HMM)、矢量量化(VQ)、人工神经网络(ANN)、支持向量机(SVM)等方法。 动态时间规整算法(Dynamic Time Warping,DTW)是在非特定人语音识别中一种简单有效的方法,该算法基于动态规划的思想,解决了发音长短不一的模板匹配问题,是语音识别技术中出现较早、较常用的一种算法。在应用DTW算法进行语音识别时,就是将已经预处理和分帧过的语音测试信号和参考语音模板进行比较以获取他们之间的相似度,按照某种距离测度得出两模板间的相似程度并选择最佳路径。 隐马尔可夫模型(HMM)是语音信号处理中的一种统计模型,是由Markov链演变来的,所以它是基于参数模型的统计识别方法。由于其模式库是通过反复训练形成的与训练输出信号吻合概率最大的最佳模型参数而不是预先储存好的模式样本,且其识别过程中运用待识别语音序列与HMM参数之间的似然概率达到最大值所对应的最佳状态序列作为识别输出,因此是较理想的语音识别模型。 矢量量化(Vector Quantization)是一种重要的信号压缩方法。与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是将若干个语音信号波形或特征参数的标量数据组成一个矢量在多维空间进行整体量化。把矢量空间分成若干个小区域,每个小区域寻找一个代表矢量,量化时落入小区域的矢量就用这个代表矢量代替。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量实现最大可能的平均信噪比。在实际的应用过程中,人们还研究了多种降低复杂度的方法,包括无记忆的矢量量化、有记忆的矢量量化和模糊矢量量化方法。 人工神经网络(ANN)是20世纪80年代末期提出的一种新的语音识别方法。其本质上是一

语音识别技术概述(一)

语音识别技术概述(一) 作者:刘钰马艳丽董蓓蓓 摘要:本文简要介绍了语音识别技术理论基础及分类方式,所采用的关键技术以及所面临的困难与挑战,最后讨论了语音识别技术的发展前景和应用。 关键词:语音识别;特征提取;模式匹配;模型训练 Abstract:Thistextbrieflyintroducesthetheoreticalbasisofthespeech-identificationtechnology,itsmo deofclassification,theadoptedkeytechniqueandthedifficultiesandchallengesithavetoface.Then,the developingprospectionandapplicationofthespeech-identificationtechnologyarediscussedinthelast part. Keywords:Speechidentification;CharacterPick-up;Modematching;Modeltraining 一、语音识别技术的理论基础 语音识别技术:是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高级技术。语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。 不同的语音识别系统,虽然具体实现细节有所不同,但所采用的基本技术相似,一个典型语音识别系统主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。此外,还涉及到语音识别单元的选取。 (一)语音识别单元的选取 选择识别单元是语音识别研究的第一步。语音识别单元有单词(句)、音节和音素三种,具体选择哪一种,由具体的研究任务决定。 单词(句)单元广泛应用于中小词汇语音识别系统,但不适合大词汇系统,原因在于模型库太庞大,训练模型任务繁重,模型匹配算法复杂,难以满足实时性要求。 音节单元多见于汉语语音识别,主要因为汉语是单音节结构的语言,而英语是多音节,并且汉语虽然有大约1300个音节,但若不考虑声调,约有408个无调音节,数量相对较少。因此,对于中、大词汇量汉语语音识别系统来说,以音节为识别单元基本是可行的。 音素单元以前多见于英语语音识别的研究中,但目前中、大词汇量汉语语音识别系统也在越来越多地采用。原因在于汉语音节仅由声母(包括零声母有22个)和韵母(共有28个)构成,且声韵母声学特性相差很大。实际应用中常把声母依后续韵母的不同而构成细化声母,这样虽然增加了模型数目,但提高了易混淆音节的区分能力。由于协同发音的影响,音素单元不稳定,所以如何获得稳定的音素单元,还有待研究。 (二)特征参数提取技术 语音信号中含有丰富的信息,但如何从中提取出对语音识别有用的信息呢?特征提取就是完成这项工作,它对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。对于非特定人语音识别来讲,希望特征参数尽可能多的反映语义信息,尽量减少说话人的个人信息(对特定人语音识别来讲,则相反)。从信息论角度讲,这是信息压缩的过程。 线性预测(LP)分析技术是目前应用广泛的特征参数提取技术,许多成功的应用系统都采用基于LP技术提取的倒谱参数。但线性预测模型是纯数学模型,没有考虑人类听觉系统对语音的处理特点。 Mel参数和基于感知线性预测(PLP)分析提取的感知线性预测倒谱,在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的一些研究成果。实验证明,采用这种技术,语音识别系统的性能有一定提高。

语音识别基础讲义01

第一章 绪论 1.1 语音识别的重要性 1.1.1 语音信息处理与语音识别 人类利用语言相互交流信息,包括语音和文字两种表达方式。通过语音相互传递信息,这是人类最重要的基本功能之一。随着信息社会的发展,人与人之间,自不必说,即使在人与机器之间也每时每刻都需要进行大量的信息交换。人类在利用语音进行信息交流时,说话人大脑产生思想,通过语言转换,再由发声器官发出相应的语音;语音的声波经由空气传播到达听话人的耳朵,通过听觉器官将语音传送到大脑,由此理解该语音所表达的语言意义。这是人类进行信息交流与处理的过程。用计算机来模拟人类的这一交流信息的过程,包括以下几个部分: (1)将大脑产生的思想转换成语言; (2)将语言转换成相应的语音; (3)识别表达语言的语音内容; (4)理解语音所表达的语言意义。 上述(1)与(4)的部分属于自然语言生成和理解的研究范围,(2)的部分属于语音合成的研究范围;(3)的部分则属于语音识别的研究范围。图1.1为人与人之间、人与机器之间的语音信息处理流程的示意图。 图1.1 人与人之间、人与机器之间的语音信息处理流程图 1.1.2 语音识别的重要性 计算机语音识别是智能计算机系统的重要特征。这一技术的应用将从根本上改变计算机的人机界面,从而对计算机的发展以及推广应用产生深远的影响。基于电话的语音识别技术,使计算机直接为客户提供金融、证券和旅游等方面的信息查询及服务成为可能,进而成为电子商务进展中的重要一环(V oice-Commerce)。其次,语音识别技术作为声控产业,必将对编辑排版、办公自动化、工业过程和机器操作的声控技术起到重大的推进作用。因此可以预言,语音技术必将对工业、金融、商业、文化、教育等诸方面事业产生革命性的影响。这是一项具有巨大应用推广前景的工程。正是由于这一点,一些主要先进国家都把此工程列为国家级研究项目。 面对如此广阔的应用领域,目前国内外众多公司正积极推动语音识别技术的应用。 人与人之间的语音通信 (人 说话方 收听方 (机器

基于AVR单片机的语音识别系统设计

基于AVR单片机的语音识别系统设计 0 引言传统的人机交互依靠复杂的键盘或按钮来实现,随着科技的发展,一些新型的人机交互方式也随之诞生,带给人们全新的体验。基于语音识别的人机交互方式是目前热门的技术之一。但是语音识别功能算法复杂、计算量大,一般在计算机上实现,即使是嵌入式方面,多数方案也需要运算能力强的 ARM 或DSP,并且外扩RAM、FLASH 等资源,增加了硬件成本,这些特点 无疑限制了语音识别技术的应用,尤其是嵌入式领域。本系统采用的主控MCU 为Atmel 公司的ATMEGA128,语音识别功能则采用ICRoute 公司的单芯片LD3320。LD3320 内部集成优化过的语音识别算法,无需外部 FLASH,RAM 资源,可以很好地完成非特定人的语音识别任务。 1 整体方案设计1.1 语音识别原理在计算机系统中,语音信号本身的不确定性、动态性和连续性是语音识别的难点。主流的语音识别技术是基于统计模式识别的基本理论,原理如图1 所示。 语音识别通常需要两个阶段完成。第一阶段是训练,主要是提取语音特征,用户往往需要进行几次语音训练,经过预处理和特征提取后获得相应特征参数。第二阶段是识别,识别过程就是将输入的语音特征参数和模型库中的参数进行相似性比较,最后输出匹配度最高的特征参数完成识别过程。 2 硬件电路设计硬件框架如图2 所示,电路主要由主控制器电路和语音识别电路组成。ATMEGA128 控制LD3320 语音识别电路,输出结果由ATMEGA128 处理,然后通过总线来控制不同的设备。 2.1 控制器电路控制器选用Atmel 公司生产的ATMEGA128 芯片,采用先

基于深度学习的语音识别——文献阅读笔记

语音识别 1 《基于深度学习的语音识别应用研究》 语音识别主要作用就是把一段语音信号转换成相对应的文本信息,系统主要由声学特征提取、语言模型、声学模型和解码器等组成。训练识别的过程是从原始波形语音数据中提取的声学特征经过训练得到声学模型,与发声词典、语言模型组成网络,对新来的语音提取特征,经过声学模型表示,通过维特比解码得出识别结果。 特征 系统主要由声学特征提取、语言模型、声学模型和解码器等组成。 音识别中的特征包括:线性预测参数(LinearPredictionCoefficients,LPC)、倒谱系数(Cepstral Coefficients, CEP)、梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCC)和感知线性预测系数(Perceptual Linear Prediction, PLP)等。 声学模型 声学基元选择 词(Word)、音节(Syllable)、声韵母(Initial/Final) 以及音素(Phone) HMM声学建模 隐马尔科夫模型 声学模型训练准则 最大似然准则 语言模型 统计语言模型,通过概率来表示词序列在语言环境中出现的可能性,并不是基于语法规则的简单判断。 解码器 通过在一个由语言模型、发声词典、声学模型构成的网络空间中 搜索得分较高的状态序列,其中这里的网络空间有动态网络和静态网络,得分主要由声学模型得分和语言模型得分共同决定。 语音识别的深度学习 CNN 将语音看做二维特征输入时,第一维是时域维度,第二维是频域维度,这两维的物理意义完全不同!.

输入层、卷积核、特征图(feature map)都是一维的。 用Kaldi中特征提取工具以帧长25ms、巾贞移10ms,提取原始数据生成39维MFCC特征(12维滤波器输出值加上1维对数能量,以及其一阶差分和二阶差分)。分布满足a, =0及德尔塔=1,这么做可以直接避免训练样本分布的重新估计。 总结 通过深度神经网络提取语音特征的方法、深度神经网络提取声韵母属性的方法和深度学习搭建声学模型的方法的语音识别系统与MFCC特征下GMM-HMM 搭建的系统就词识别率的结果比较可以看出,深度学习网络替换GMM模型做状态输出的系统识别错误率最低,深度神经网络提取声韵母属性的方法的效果次之,深度神经网络提取语音特征效果比深度神经网络提取声韵母属性效果差,但是比MFCC的系统好。 2 卷积神经网络在语音识别中的应用 将语音看做二维特征输入时,第一维是时域维度,第二维是频域维度。 DNN上实验证明,多帧串联的长时特征对模型性能的提高很重要。当前帧的前后几帧串联起来构成长时特征。 频域维度上,一般采用梅尔域的滤波带系数( filterbank) 作为参数( 如图% 中选择+ 个滤波频带) 在送入B++ 训练前,将多帧串联构成长时 特征!所有特征都进行了逐句的均值方差规整! 英文标准连续语音识别库TIMIT 主流的语音识别系统基本上都是以隐马尔科夫模型为基础所建立的 倒谱均值方差归一化、声道长度归一化以及RASTA滤波 用深度学习方法提取语音高层特征通常可以采用MFCC、PLP以及filter-bank 等参数作为输入。

相关文档
最新文档