机械臂的轨迹规划.doc

机械臂的轨迹规划.doc
机械臂的轨迹规划.doc

机械臂的轨迹规划

.机械臂运动的轨迹规划摘要空间机械臂是一个机、电、热、控一体化的高集成的空间机械系统。随着科技的发展,特别是航空飞机、机器人等的诞生得到了广泛的应用,空间机械臂作为在轨迹的支持、服务等以备受人们的关注。

本文将以空间机械臂为研究对象,针对空间机械臂的直线运动、关节的规划、空间直线以及弧线的轨迹规划几个方面进行研究,对机械臂运动和工作空间进行了分析,同时对机械臂的轨迹规划进行了验证,利用MATLAB软件对机械臂的轨迹进行仿真,验证算法的正确性和可行性,同时此路径规划方法可以提高机械臂的作业效率,为机械臂操作提高理论指导,为机器人更复杂的运动仿真与路径规划打下基础。

本文一共分为四章:

第一章,首先总结了机械臂运动控制与轨迹规划问题的研究现状及研究方法,归纳了各种轨迹规划的算法及其优化方法,阐述了机械臂的研究背景和主要内容。第二章,对机械臂的空间运动进行分析研究,采用抽样求解数值法—蒙特卡洛方法,进行机械臂工作空间求解,同时在MATLAB中进行仿真,直观展示机械臂工作范围,为下一章的轨迹规划提供理论基础;

同时通过D-随着科技的发展,特别是航空飞机、机器人等的诞生得到了广泛的应用,空间机械臂作为在轨迹的支持、服务等以备受人们的关注。

基于A_算法的空间机械臂避障路径规划

机 械 工 程 学 报 JOURNAL OF MECHANICAL ENGINEERING 第46卷第13期 2010年7月 Vol.46 No.13 Jul. 2010 DOI :10.3901/JME.2010.13.109 基于A *算法的空间机械臂避障路径规划* 贾庆轩 陈 钢 孙汉旭 郑双奇 (北京邮电大学自动化学院 北京 100876) 摘要:针对空间机械臂在轨操作任务需求,提出一种基于A*算法的避障路径规划算法。根据机械臂和障碍物几何特征,对机械臂模型和障碍模型进行简化。通过研究机械臂本身所固有的几何特性,根据障碍物的位姿坐标,分析机械臂各杆件与障碍物发生碰撞的条件,进而求解空间机械臂的无碰撞自由工作空间。在此基础上,利用A*算法在空间机械臂的自由工作空间进行无碰撞路径搜索,实现了空间机械臂的避障路径规划。通过仿真试验验证了基于A*算法的空间机械臂避障路径规划算法的有效性与可行性。 关键词:空间机械臂 避障路径规划 A*算法 中图分类号:TP242 Path Planning for Space Manipulator to Avoid Obstacle Based on A * Algorithm JIA Qingxuan CHEN Gang SUN Hanxu ZHENG Shuangqi (Automation School , Beijing University of Posts and Telecommunications, Beijing 100876) Abstract :A novel path planning method to avoid obstacle based on A* algorithm is presented for space manipulator to accomplish the in-orbit mission. According to the geometric characteristics of manipulator and obstacle, the manipulator model and obstacle model are simplified. On the basis of the inherent geometric characteristic of manipulator, and according to the position and orientation coordinates of obstacle, the collision conditions of all links of manipulator are analyzed. And then, the collision-free workspace of space manipulator is obtained. On this basis, the collision-free path search in the free workspace of space manipulator is carried out by using A* algorithm, thereby, the obstacle avoidance path planning is achieved. The effectiveness and feasibility of the proposed path planning algorithm based on A* algorithm for space manipulator to avoid obstacle are verified by simulation and experiment. Key words :Space manipulator Obstacle avoidance path planning A* algorithm 0 前言 随着空间探索的不断深入,空间机械臂应用技 术已经成为空间技术的重要研究方向。空间机械臂代替宇航员完成空间作业任务,如组装与搭建空间站、释放与回收卫星、维护空间设备以及完成空间科学试验等,大大减小了宇航员舱外作业的风险,因此空间机械臂应用技术受到国内外专家的高度重视。在微重力环境下,空间机械臂系统处于自由漂 * 国家高技术研究发展计划资助项目(863计划,2009AA7041007)。 20100324收到初稿,20100504收到修改稿 浮状态,使得机械臂控制变量与非独立变量之间存在强烈的运动耦合,运动控制难度加大,从而空间机械臂的路径规划变得特别复杂[1]。此外,由于空间环境中的空间碎片,空间舱体外设试验装置等都有可能成为空间机械臂在轨操作过程中的障碍,因此为了顺利完成在轨操作任务,开展空间机械臂避障路径规划研究十分重要。 避障路径规划是指在给定的障碍条件以及起始和目标的位姿,选择一条从起始点到达目标点的路径,使运动物体能安全、无碰撞地通过所有的障碍[2]。目前,针对机械臂避障路径规划提出了许多方法,其中最为典型的包括基于自由空间法和人工

机械臂的轨迹规划

机械臂运动的轨迹规划 摘要 空间机械臂是一个机、电、热、控一体化的高集成的空间机械系统。随着科技的发展,特别是航空飞机、机器人等的诞生得到了广泛的应用,空间机械臂作为在轨迹的支持、服务等以备受人们的关注。本文将以空间机械臂为研究对象,针对空间机械臂的直线运动、关节的规划、空间直线以及弧线的轨迹规划几个方面进行研究,对机械臂运动和工作空间进行了分析,同时对机械臂的轨迹规划进行了验证,利用MATLAB软件对机械臂的轨迹进行仿真,验证算法的正确性和可行性,同时此路径规划方法可以提高机械臂的作业效率,为机械臂操作提高理论指导,为机器人更复杂的运动仿真与路径规划打下基础。 本文一共分为四章: 第一章,首先总结了机械臂运动控制与轨迹规划问题的研究现状及研究方法,归纳了各种轨迹规划的算法及其优化方法,阐述了机械臂的研究背景和主要内容。 第二章,对机械臂的空间运动进行分析研究,采用抽样求解数值法—蒙特卡洛方法,进行机械臂工作空间求解,同时在MATLAB中进行仿真,直观展示机械臂工作范围,为下一章的轨迹规划提供理论基础;同时通过D-H参数法对机械臂的正、逆运动分析求解,分析两者的区别和联系。 第三章,主要针对轨迹规划的一般性问题进行分析,利用笛卡尔空间的轨迹规划方法对机械臂进行轨迹规划,同时利用MATLAB对空间直线和空间圆弧进行轨迹规划,通过仿真验证算法的正确性和可行性。 第四章,总结全文,分析本文应用到机械臂中的控制算法,通过MATLAB 结果可以得出本文所建立的算法正确性,能够对机械臂运动提供有效的路径,而且改进了其他应用于空间机械臂的路径规划问题。 【关键词】运动分析工作空间算法研究轨迹规划

(完整版)用平面二连杆机器人为例贯穿运动学、雅可比、动力学、轨迹规划甚至控制与编程

一、平面二连杆机器人手臂运动学 平面二连杆机械手臂如图1所示,连杆1长度1l ,连杆2长度2l 。建立如图1所示的坐标系,其中,),(00y x 为基础坐标系,固定在基座上,),(11y x 、),(22y x 为连体坐标系,分别固结在连杆1和连杆2上并随它们一起运动。关节角顺时针为负逆时针为正。 图1平面双连杆机器人示意图 1、用简单的平面几何关系建立运动学方程 连杆2末段与中线交点处一点P 在基础坐标系中的位置坐标: ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p (1) 2、用D-H 方法建立运动学方程 假定0z 、1z 、2z 垂直于纸面向里。从),,(000z y x 到),,(111z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 00sin cos 1 111 01θθ θθT (2) 从),,(111z y x 到),,(222z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 0sin cos 2 212212 θθ θθl T (3) 从),,(000z y x 到),,(222z y x 的齐次旋转变换矩阵为:

? ???? ???????+++-+=?? ??? ? ? ?? ???-?????????????-=?=10000100sin 0)cos()sin(cos 0)sin()cos( 1000010 000cos sin 0sin cos 1000 010000cos sin 00sin cos 1121211121212212 2111 1120102θθθθθθθθθθθθθθθθ θθl l l T T T (4) 那么,连杆2末段与中线交点处一点P 在基础坐标系中的位置矢量为: ? ?? ? ? ???????=????????????++++=? ? ? ?? ? ?????????????? ?? ???+++-+=?=110)sin(sin )cos( cos 10010000100sin 0)cos()sin(cos 0)sin()cos( 212112121121121211121212 020p p p z y x l l l l l l l P T P θθθθθθθθθθθθθθθθ (5) 即, ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p (6) 与用简单的平面几何关系建立运动学方程(1)相同。 建立以上运动学方程后,若已知个连杆的关节角21θθ、,就可以用运动学方程求出机械手臂末端位置坐标,这可以用于运动学仿真。 3、平面二连杆机器人手臂逆运动学 建立以上运动学方程后,若已知个机械臂的末端位置,可以用运动学方程求出机械手臂二连杆的关节角21θθ、,这叫机械臂的逆运动学。逆运动学可以用于对机械臂关节角和末端位置的控制。对于本例中平面二连杆机械臂,其逆运动学方程的建立就是已知末端位置 ),(p p y x 求相应关节角21θθ、的过程。推倒如下。 (1)问题 ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p 已知末端位置坐标),(p p y x ,求关节角21θθ、。 (2)求1θ

机械臂关节控制系统及轨迹规划研究

机械臂关节控制系统及轨迹规划研究 【摘要】关节是机械臂中相当核心的构成要素之一,其在整个机械臂的运动过程当中,需要完成的动作包括:动力产生、动力传递、运动精度控制、运动平稳性控制、以及运动安全性控制这几个方面。在当前技术条件支持下,机械臂关节部分的主要构成元素涉及到以下几个方面:其一为建立在电机基础之上的动力源,其二为行星齿轮或谐波齿轮所构成的传动装置,其三为位置传感器装置,其四为限速管理装置,其五为数据采集与处理电路,其六为驱动电路,其七为运动轴系部分。文章以机械臂关节控制作为研究视角,首先分析了在考虑柔性系统概念下的机械臂关节控制系统控制要点,进而简要分析了几类有关机械臂关节轨迹跟踪规划的技术方法,希望以上问题能够引起各方工作人员的高度关注与重视。 【关键词】机械臂;关节;控制系统;轨迹规划 本文在对柔性系统影响下,机械臂关节控制系统要点进行分析的同时,探讨了机械臂关节轨迹规划的主要方法,具体研究如下: 1.机械臂关节控制系统动力学建模分析 在本文针对机械臂关节控制系统数学模型进行构建与分析的过程当中,主要借助的技术方法有两个方面,其一为牛顿-欧拉分析方法,其二为拉格朗日分析方法。前者为作用力的平衡研究方法,需要从运动学的视角上入手,求解被分析对象在运动过程当中加速度水平,对内力作用予以消除。后者为建立在能量平衡基础之上的分析方法,仅需要完成对加速度的分析工作,省略对内力作用问题的分析。因此,在机械臂关节控制系统力学分析中更具优势。对于机械臂关节控制系统而言,在拉格朗日方法下所构建的方程主要与以下影响因素相关:其一为动能取值,其二为位能取值,其三为整个机械臂控制系统所对应的广义坐标,其四为整个机械臂控制系统所对应的广义速度;其五为与广义坐标相对应的广义力;其六为与广义坐标相对应的广义力矩取值。下图(见图1)即为双连杆刚性机械臂所对应的坐标示意图。 图1:双连杆刚性机械臂坐标示意图 结合图1来看,假定整个双连杆机械臂关节控制系统以正常状态运行,且运行期间所对应的转矩作用力为t1~2,质量为m1~2,以连杆末端点质量表示,长度取值为,l1~2。 根据动力学建模分析认为:整个机械臂关节传动系统的主要组成部分包括谐波齿轮减速器以及伺服电机两个方面。为了利用拉格朗日方法推定机械臂关节控制所对应的动力学方程,就需要结合机械臂关节控制系统的实际运行状态,明确

机械臂轨迹规划

位姿1分析(由最初始状态到折叠状态,图中粉色线表示) 1、运动学正解, 求齐次变换矩阵(Matlab 编程) syms a1a2a3b1b2b3 %各关节变量变化量 a1=—28*pi/180; a2=28*pi/180; a3=0*pi/180; %各z轴间夹角b1=0; b2=0; b3=-pi/2; %求齐次变换矩阵 由公式 1 i i T - = [ cos(a) -sin(a) 0 c ; sin(a)*cos(b) cos(a)*cos(b) -sin(b) -d*sin(b); sin(a)*sin(b) cos(a)*sin(b) cos(b) d*cos(b); 0 0 0 1 ] 0 3 T=0 1 T*1 2 T*2 3 T

=2*3 3 由此可求出各其次变换矩阵 T=[ 0.8829 0.4695 0 0 1 -0.4695 0.8829 0 0 0 0 1.0000 0 0 0 0 1.0000] 1 T= [ 0.8829 -0.4695 0 245.0000 2 0.4695 0.8829 0 0 0 0 1.0000 0 0 0 0 1.0000] 2 T=[ 1.0000 0 0 0 3 0 0.0000 1.0000 204.0000 0 -1.0000 0.0000 0.0000 0 0 0 1.0000] T=[ 1.0000 0 0 216.3222 3 0 0.0000 1.0000 88.9795 0 -1.0000 0.0000 0.0000 0 0 0 1.0000] T= [ 1.0000 0 0 216.3222; 2 0 1.0000 0 -115.0205; 0 0 1.0000 0; 0 0 0 1.0000] 1 T=[ 0.8829 -0.0000 -0.4695 149.2278; 3 0.4695 0.0000 0.8829 180.1213; 0 -1.0000 0.0000 0.0000; 0 0 0 1.0000] 2、求雅克比矩阵 由公式: z1 =[T10(1,3);T10(2,3);T10(3,3)]; z2 =[T20(1,3);T20(2,3);T20(3,3)]; z3 =[T30(1,3);T30(2,3);T30(3,3)]; p1=[T31(1,4);T31(2,4);T31(3,4)]; p2=[T32(1,4);T32(2,4);T32(3,4)]; r1=[T10(1,1) T10(1,2) T10(1,3); T10(2,1) T10(2,2) T10(2,3); T10(3,1) T10(3,2) T10(3,3)];

机械手轨迹规划与仿真

摘要 机器人的轨迹规划在机器人的控制中具有重要的地位。良好的轨迹规划是机械手平稳、安全地避开障碍物,完成作业任务的保证。本文根据机器人学的相关理论,以PUMA560为研究对象,建立的D-H坐标系,在关节空间内,运用推广的三次多项式插值法进行了过路径点以满足避障要求的机械手轨迹规划,并且采用MATLAB 软件对具体的规划实例进行了运动仿真,主要绘出了机械手各关节的角位移、角速度和角加速度曲线。结果显示,每条曲线都是连续而光滑的,保证了各关节的运动平稳性,说明此次规划完全符合要求。 由此可以得出结论,过路径点的三次多项式插值法不仅能满足机械手速度和加速度的连续性要求,而且能通过主动选择路径点以满足避障要求。这种轨迹规划方法可以很好解决机械臂在工作过程中的平稳性、实时性等问题,而且简单易行。 关键词:轨迹规划;多项式插值;避障;MA TLAB仿真

Abstract Robot’s path planning plays an important role in controlling the robot.Good trajectory planning can guarantee manipulator avoid obstacles and finish the tasks smoothly and safely. Based on the theory of robot kinematics,this article use PUMA560 type mechanical arm to detablish D-H coordinate system and make trajectory planning by using extent cubic polynomial interpolation in joint space to meet the requirements of avoiding obstacles,and then use MA TLAB software example for the planning,and mainly draw angular displacement,velocity and angle acceleration curve of each joint.The result show that every curve is continuous and smooth so it can guarantee the stability of each joint movement.So this trajectory planning fully meet the requirements. So it comes to a conclusion that the cubic polynomial interpolation method can not only satisfy the requirements of continuitiy of the robot velocity and acceleration,but also can avoid obstacles by choosing path piont actively. This method of the path planning can make sure the manipulator working steadily in the course of its work well and can also solve the problem of the accuracy and the real-time characteristic,and it is easy to perform. Key words:Path planning;Polynomial interpolation; avoid obstacles;Matlab simulation

机械手圆周运动的轨迹规划与实现

机械手圆周运动的轨迹规划与实现 陈国良 黄心汉 王 敏 (华中科技大学控制科学与工程系,湖北武汉430074) 摘要:研究机器人跟踪由任意不共线空问三点所决定的外接圆曲线,提出了机器人圆周运动的一种笛卡尔空间的轨迹规划方法.该方法通过坐标变化将三维空间内的圆周轨迹规划问题简化到二维平面上进行研究,由此简化了轨迹规划问题;为了保证机器人圆周运动较好的插补精度和圆周轮廓,提出了一种可控插补精度的圆周插补算法.根据坐标变化以及插补算法给出了轨迹规划的算法步骤,将该规划方法用于微操作机械手,完成了机械手的圆周涂胶作业,实际应用表明该方法能够满足实时性和精度指标要求.关键词:机械手;圆周运动;轨迹规划;微操作 中图分类号:TP241 文献标识码:A 文章编号:1671-4512(2005)11-0063-04 Trajectory planning for the circular motion of manipulator and its implementation Chen Guoliang l-Iuang Xinhan Wang Min Abstract: Arc motion is stereotype in the point to point motion of manipulator. The tracking of a manipula-tor curves determined by the circumscribed circle of three non-co[linear arbitrary points was studied, and atrajectory planning for the circular motions of manipulators in the Cartesian space was proposed, where theproblem in three-dimensional space could be simplified to the one in two-dimensional plane by transforma-tion of coordinates. An interpolation algorithm with a controllable precision was proposed to obtain a prefer-able interpolation accuracy, circular profile, and its algorithm steps, presented according to the transforma-tion of coordinates and the interpolation algorithm. The planning and algorithm were employed to accom-plish the task of circular sizing of micromanipulator. Practical Uses showed that the planning is capable ofmeeting the requirements of real-time utility and precision. Key words: manipulator; circular motion; trajectory planning; micromanipulationChert Guoliang Doctoral Candidate; Dept. of Control Sci. & Eng,, Huazhong Univ. of Sci. & Tech., Wuhan 430074, China.

相关文档
最新文档