小容量晶闸管直流调速系统实训

小容量晶闸管直流调速系统实训
小容量晶闸管直流调速系统实训

第五节小容量晶闸管直流调速系统实训

一、实训目的

(1) 熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2) 掌握单结晶体管触发电路的调试步骤与方法。

(3) 熟悉与掌握单结晶体管触发电路及其主要点的波形测量与分析。

(4) 了解小容量晶闸管单闭环有静差直流调速系统的原理、组成及各主要单元的作用。

(5) 掌握小容量晶闸管直流调速系统的一般调试过程、调试步骤、方法及参数的整定。

(6) 熟悉小容量晶闸管直流调速系统故障的分析与处理。

二、实训所需设备

利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路。

小容量晶闸管直流调速系统面板上的V16为单结晶体管,其常用的型号有BT33和BT35两种。小容量晶闸管直流调速系统原理图如图5-4。

系统工作原理简述如下:

1.脉冲的形成

由变压器TC1副边输出约70V±10%的交流同步电压,经桥式全波整流,再由稳压管V10进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及V18组成的恒流源向电容C3充电,当充电电压达到单结晶体管V16的峰值电压U P 时,单结晶体管V16导通,同时由于放电时间常数很小,C3两端的电压很快下降到单结晶体管的谷点电压U v,使V16关断,C3再次充电,周而复始,在电容C3两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V16可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。然后脉冲经V15进行功率放大,再经过脉冲变压器TC2便可在TC2副边得到两组相位一致的脉冲。

2.移相控制

电容C3的充电时间常数由等效电阻V18等决定,改变恒流源的电流大小,可改变C3的充电时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。单结晶体管触发电路

的各点波形请参考图5-5。

图5-4小容量晶闸管直流调速系统原理图

触发电路的输入端串联了一个由C1、R2、C5组成的微分校正环节(又称超前校正环节),校正系统的动态性能,使调速系统稳定较快,也加快了系统的反应速度。

该电路中给定电压与电压负反馈和电流正反馈的偏差控制V22输出电压的大小,从而控制恒流源电流的大小,从而实现脉冲移相。

给定电位器RP2已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。

3.单闭环控制系统

为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标要求较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。

在本装置中采用的是单闭环系统。在单闭环中,反映电压变化的电压反馈信号Uu和反映电流变化的电流反馈信号Ui以触发电路的负端为公共端(面板上42点),此公共端为给定输出回路中的一点,因此由原理图可以看出Uu和Ui为串联在给定输出回路中的电压信号,所以加到V22的基极信号为Uu、Ui与给定电压Ug的电压和(约为Ug-Uu+Ui),此电压和信号经放大后,得到移相控制电压,控制触发脉冲的移相,来改变单相半控整流

桥电压的输出。

该电路中的放大电路为比例调节,对阶跃输入有稳态误差。当“给定”恒定时,闭环系统对电枢电压变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电压能稳定在一定的范围内变化。

①主电路

采用单相半控整流桥,串联滤波电抗器L是为了限制整流后的脉动成分,减少电机损耗,降低电机的温升等。由于单相半控整流桥的桥路是由两个晶闸管串联后再与两个整流二极管串并联而成,省掉了一个续留二极管,使线路较为简单而可靠。

图5-5 单结晶体管触发电路各点的电压波形(α=900)

②电流截止环节

当因启动或其他原因造成过电流时,在RP4上取得的电压值变大,使稳压管V21两端的电压也增大。若大到使稳压管V21击穿时,则使V20饱和,同时V16基极电位降低,于是输出触发脉冲减少,使晶闸管趋向关断,限制了电流的增大。

③电压负反馈

当电机加上负载时,电机的转速有所下降,电机两端的电压也因此下降,此时在RP6上所得的分压也随之减小,则在V22基极上所得的分压反而增大,V22趋向饱和,V18也趋向更加导通,最后使V16基极电位提高,于是输出触发脉冲增加,使晶闸管的导通角更大,使电机两端电压提高。

④电流正反馈

当电机加上负载时,电机的转速下降,用其他措施使其端电压维持不变,则此时所需的电流将增大,由于电流的增大,在RP5上所得的分压增大。这样也使RP6上所得的分压增加,与电压负反馈一样使V22的基极电位提高而导通,从而使输出脉冲增加导致晶闸管更加导通。

四、实训方法

1.小容量晶闸管直流调速系统故障的设置与分析请参考第二章有关内容

2.励磁电源及失磁保护的调试

(1)按下电源控制面板上的“启动”按钮,将直流调速系统面板上的QS拨向“开”,用万用表测试励磁输出为200V±10%。

(2)将电机的励磁线圈接到励磁电源的输出端,可听到励磁电源回路中的黑色继电器KA 有“啪”的声音,说明继电器已通电吸合。其在主电路中的常开触点闭合,为晶闸管主电路的启动做准备。

3.单结晶体管触发电路的调试与观测

用两根导线将电源控制面板上的“三相电源输出”的220V交流相电压接到小容量晶闸管直流调速系统面板上的“~220V”输入端,“励磁电源”输出端接直流电动机的励磁绕组回路。按下电源控制面板上的“启动”按钮,将小容量晶闸管直流调速系统面板上的QS拨向“开”,这时给定电路和触发电路都开始工作。

4.给定电路的调试

交流70V经桥式整流稳压后的电压作为触发电路的给定电压。RP2为调速电位器。用双踪示波器观察单结晶体管触发电路经桥式整流和稳压管削波后“TP8”点的波形,顺时针缓慢调节移相电位器RP2,观察“TP4”点锯齿波的周期变化、“TP6”点的脉冲波形、经脉冲变压器后输出的“G、K”触发脉冲波形,最后观察脉冲能在30°~170°范围内移相。

5.单结晶体管触发电路各点波形的记录

当α=30o、60o、90o、120o时,将单结晶体管触发电路的各观测点波形描绘下来,并与图3-2的各波形进行比较。

6.小容量晶闸管直流调速系统的调试

触发脉冲正常后,将直流电机、直流电流表、直流电压表接进主电路,直流电机拖动校正直流测功机。

(1) 将调速电位器RP2逆时针旋到底,使给定输出为零。

(2) 按下SB2,调节RP2,观察电机能否平滑增速。

(3) 电流截止环节的测试

调节RP2使给定输出为零。调节RP2使给定输出为零。将DJ23输出接1980Ω(两只90Ω和两只900Ω串联)。

调节RP2逐渐增大“给定”电压,使电动机转速提升至一定值(如n=1000rpm),然后减小电阻阻值即增大直流电动机的负载,使主回路电流增大,当电流增大到一定值后,稳压管V21击穿,此时电动机的转速会明显降低,说明电流截止环节已经起作用。

(6) 主电路停止

按下SB1(停止按钮),断掉晶闸管主电路的电源。在晶闸管主电路中,“TP10”的KM的常闭触点闭合,电阻R17和R18与电枢并联形成能耗制动回路,加速直流电动机的制动。

4.小容量晶闸管直流调速系统的测试

(1) 将DJ23输出接1980Ω(两只90Ω和两只900Ω串联),并将其阻值调至最大,使直流电动机轻载。

(2) 缓慢顺时针调节给定电路中的电位器RP2,使电动机转速接近n=1200rpm,观察主

六、注意事项

在记录动态波形时,可先用双踪慢扫描示波器观察波形,以便找出系统动态特性较为理想的调节器参数,再用数字存储示波器或记忆示波器记录动态波形。

五、实训报告

1.画出α=60°时,单结晶体管触发电路各点输出的波形及其幅值。

2.对实验过程中出现的故障现象作出书面分析。

六、注意事项

1.技能实训时必须注意人身安全,杜绝触电事故发生。接线与拆线必须在断电的情况下进行。

2.技能实训时必须注意实训设备的安全,接线完成后必须进行检查,待接线正确之后方可进行实训。

3.双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

直流稳压电源知识题解答

第六章习题参考答案 6-1 在图6-23中,已知直流电压表V 2的读数为90V ,负载电阻Ω100=L R ,二极 管的正向压降忽略不计。试求:①直流电流表A 的读数;②交流电压表V 1的读数;③变压器二次侧电流有效值。 图6-23 习题6-1图 解 1)直流电流表A 的读数 A 9.0100 90 2= = =L A R U I 2)交流电压表1V 的读数 V 20045 .090 45.021=== U U 3)变压器二次侧电流有效值 A 245 .0==A I I 6-2 图6-24为变压器二次侧绕组有中心抽头的单相整流电路,二次侧电压有效值为U ,试分析: 1)标出负载电阻L R 上电压o u 和滤波电容C 的极性; 2)分别画出无滤波电容和有滤波电容两种情况下o u 的波形。整流电压平均值o U 与变压器二次侧电压有效值U 的数值关系如何? 3)有无滤波电容两种情况下,二极管上所承受的最高反向电压DRM U 各为多大? 4)如果二极管VD 2虚焊;极性接反;过载损坏造成短路,电路会出现什么问题? 5)如果变压器二次侧中心抽头虚焊;输出端短路两种情况下电路又会出现什么问题? 图6-24 习题6-2图 解 1)负载电阻L R 上电压o u 和滤波电容C 的极性如题6-2解图(a )所示。 2)无滤波电容和有滤波电容两种情况下o u 的波形分别如题6-2解图(b )和题6-2 图4-2 题4-2图

解图(c )所示。 无滤波电容时 U U o 9.0= 有滤波电容时 U U o 2.1= 3)有无滤波电容两种情况下,二极管上所承受的最高反向电压皆为U U DRM 22=。 4)二极管V 2虚焊时相当于开路,电路变为单相半波整流电路,输出电压将降为原来的一半。极性接反和过载损坏造成短路时,在输入电压正半周,1V 、2V 通路导通,由于二极管正向电阻很小,产生很大电流,将造成电源、变压器和二极管烧毁。 5)变压器二次侧中心抽头虚焊时相当于断路,无论是u 的正半周还是u 的负半周都不会构成电流的通路,因此负载电阻没有电压输出。输出端短路时,由于二极管电阻很小,会产生很大电流,使电源、变压器和二极管烧毁。 6-3 图6-25电路中,已知Ωk 5=1L R ,Ωk 3.0=2L R ,其他参数已标在图中。试求: ①VD 1、VD 2、VD 3各组成何种整流电路? ②计算1o U 、2o U ,及流过三只二极管电流的平均值各是多大? ③选择三只二极管的型号。 解 1)1V 单相半波整流电路;2V 、3V 组成单相桥式整流电路。 2) V 45)1090(45.01-=+?-=o U V 9109.02=?=o U mA 95 45 1==V I mA 303 .09 32 ===V V I I 图6-25 习题6-3图 3)1V 反向电压最大值 V 1411002=?=DRM U 2V 、3V 反向电压最大值 题6-2解图(b ) 题6-2解图(c )

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 学院班级信电工程学院13自动化 专业名称电气工程及其自动化 指导教师肖理庆 2016年6月14日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (2) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (3) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) .. 7 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13) 附录2 (13)

晶闸管直流调速系统参数和环节特性的测定

§5-1 晶闸管直流调速系统参数和环节特性的测定 一、 实验目的 (1) 熟悉晶闸管直流调速系统的组成及其基本结构 (2) 掌握晶闸管直流调速系统参数及反馈环节测定方法 二、 实验原理 晶闸管直流直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g 作为触发器的移相控制电压U ct ,改变U g 的大小α即可改变控制角,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图5-1所示。 1V L d 三 相 电 源 输 出A M A V G VT 4VT 1VT 3VT 5VT 6VT 2 I 1给定触发电路正桥功放U f G 1K 1G 2K 2G 3K 3G 4K 4G 5K 5G 6K 6励磁电源I 2U 2R U ct 图5-1 晶闸管直流调速实验系统原理图 三、 实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数Td 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性U d =f (U ct )。 (8) 测定测速发电机特性U TG =f (n )。 四、 实验仿真 晶闸管直流调速实验系统的原理如图5-1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图5-2是

直流稳压电源的设计

电力电子技术课程设计说明书 设计课题:直流稳压电源的设计 专业班级:13级电气一班 姓名:李建建 学号:1308441100 指导教师:张小莉 完成时间:2015年12月13日

前言 电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保等亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。 通过一学期的对《电力电子技术》的学习,我对电力电子中的基本电路如整流电路、逆变电路、DC/DC变换电路、交流电力控制电路等的工作原理及分析方法都有了比较深入的认识;对保护电路及电力电子器件的缓冲电路也了解了一些;也认识到了电力电子技术在当今社会各方面的广泛应用。但是,仅仅了解书本上的理论知识而不会把它们应用到实际中去,这不能叫真正掌握了一门技术。只有学以致用、在实践中检验理论的正确性,才是学习的好方法。

目录 一、设计任务及要求 (4) 二、主电路的设计及器件选择 (5) 2.1 三相全控桥的工作原理 (5) 2.2 参数计算 (7) 三、触发电路设计 (10) 3.1 集成触发电路 (10) 3.2 KJ004的工作原理 (10) 3.3 集成触发器电路图 (11) 四、保护电路的设计 (13) 4.1 晶闸管的保护电路 (13) 4.2 交流侧保护电路 (14) 4.3 直流侧阻容保护电路 (15) 五、MATLAB 建模与仿真 (16) 5.1 MATLAB建模 (16) 5.2 MATLAB 仿真 (18) 5.3 仿真结构分析 (19) 六、课程设计体会 (21) 参考文献 (21) 附录一元器件清单 (21) 附录二(触发电路与仿真原理图) (22)

晶闸管—直流电动机调速系统教学文稿

7.1 晶闸管—直流电动机调速系统 采用晶闸管可控整流电路给直流电动机供电,通过移相触发,改变直流电动机电枢电压,实现直流电动机的速度调节。这种晶闸管—直流电动机调速系统是电力驱动中的一种重要方式,更是可控整流电路的主要用途之一。可以图7-1所示三相半波晶闸管—直流电动机调速系统为例,说明其工作过程和系统特性。 直流电动机是一种反电势负载,晶闸管整流电路对反电势负载供电时,电流容易出现断续现象。如果调速系统开环运行,电流断续时机械特性将很软,无法负载;如果闭环控制,断流时会使控制系统参数失调,电机发生振荡。为此,常在直流电机电枢回路内串接平波电抗器Ld,以使电流Id尽可能连续。这样,晶闸管—直流电动机调速系统的运行分析及机械特性,必须按电流连续与否分别讨论。 8.1.1 电流连续时 如果平波电抗器Ld电感量足够大,晶闸管整流器输出电流连续,此时晶闸管—直流电动机系统可按直流等值电路来分析,如图7-2所示。图中,左半部代表电流连续时晶闸管整流器的等效电路,右半部为直流电动机的等效电路。由于电流连续,晶闸管整流器可等效为一个直流电源Ud与内阻的串联,Ud为输出整流电压平均值 (7-1) 式中U为电源相压有效值,为移相触发角。

电流连续情况下,晶闸管有换流重迭现象,产生出换流重迭压降,相当于整流电源内串有一个虚拟电阻,其中LB为换流电感。再考虑交流电源(整流变压器)的等效内电阻Ro,则整流电源内阻应为,如图所示。 电流连续时直流电动机可简单地等效为为反电势E与电枢及平波电抗器的电阻总和Ra 串联,而平波电抗器电感Ld在直流等效电路中是得不到反映的。 这样,根据图7-2等效电路,可以列写出电压平衡方程式为 (7-2) 式中,Ce为直流电机电势常数,φ为直流电机每极磁通。求出电机转速为 (7-3) 可以看出,在电枢电流连续的情况下,当整流器移相触发角固定时,电动机转速随 负载电流Id的增加而下降,下降斜率为。当角改变时,随着空载转速点no的变化,机械特性为一组斜率相同的平行线。 但是在一定的平波电抗器电感Ld下,当电流减小到一定程度时,Ld中储能将不足以维持电流连续,电流将出现断续现象,此时直流电动机机械特性会发生很大变化,不再是直线,图7-3中以虚线表示。这部分的机械特性要采用电流断续时的运行分析来确定。 二、电流断续时

开环直流调速控制系统方案

一、绪论 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型, Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始使用直流调速系统。它的发展过程是这样的:由最早的旋转变流机组控制发展为放大机、磁放大器控制;再进一步,用静止的晶闸管变流装置和模拟控制器实现直流调速;再后来,用可控整流和大功率晶体管组成的PWM控制电路实现数字化的直流调速,使系统快速性、可控性、经济性不断提高。调速性能的不断提高,使直流调速系统的应用非常广泛。

(完整版)晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

第6章 直流稳压电源 习题解答

第六章习题参考答案 6-1 在图6-23中,已知直流电压表V 2的读数为90V ,负载电阻Ω100=L R ,二极 管的正向压降忽略不计。试求:①直流电流表A 的读数;②交流电压表V 1的读数;③变压器二次侧电流有效值。 图6-23 习题6-1图 解 1)直流电流表A 的读数 A 9.0100 90 2===L A R U I 2)交流电压表1V 的读数 V 20045 .090 45.021=== U U 3)变压器二次侧电流有效值 A 245 .0==A I I 6-2 图6-24为变压器二次侧绕组有中心抽头的单相整流电路,二次侧电压有效值为 U ,试分析: 1)标出负载电阻L R 上电压o u 和滤波电容C 的极性; 2)分别画出无滤波电容和有滤波电容两种情况下o u 的波形。整流电压平均值o U 与变压器二次侧电压有效值U 的数值关系如何? 3)有无滤波电容两种情况下,二极管上所承受的最高反向电压DRM U 各为多大? 4)如果二极管VD 2虚焊;极性接反;过载损坏造成短路,电路会出现什么问题? 5)如果变压器二次侧中心抽头虚焊;输出端短路两种情况下电路又会出现什么问题? 图6-24 习题6-2图 解 1)负载电阻L R 上电压o u 和滤波电容C 的极性如题6-2解图(a )所示。 2)无滤波电容和有滤波电容两种情况下o u 的波形分别如题6-2解图(b )和题 6-2 图4-2 题4-2图

140 解图(c )所示。 无滤波电容时 U U o 9.0= 有滤波电容时 U U o 2.1= 3)有无滤波电容两种情况下,二极管上所承受的最高反向电压皆为U U DRM 22=。 4)二极管V 2虚焊时相当于开路,电路变为单相半波整流电路,输出电压将降为原来的一半。极性接反和过载损坏造成短路时,在输入电压正半周,1V 、2V 通路导通,由于二极管正向电阻很小,产生很大电流,将造成电源、变压器和二极管烧毁。 5)变压器二次侧中心抽头虚焊时相当于断路,无论是u 的正半周还是u 的负半周都不会构成电流的通路,因此负载电阻没有电压输出。输出端短路时,由于二极管电阻很小,会产生很大电流,使电源、变压器和二极管烧毁。 6-3 图6-25电路中,已知Ωk 5=1L R ,Ωk 3.0=2L R ,其他参数已标在图中。试求: ①VD 1、VD 2、VD 3各组成何种整流电路? ②计算1o U 、2o U ,及流过三只二极管电流的平均值各是多大? ③选择三只二极管的型号。 解 1)1V 单相半波整流电路;2V 、3V 组成单相桥式整流电路。 2) V 45)1090(45.01-=+?-=o U V 9109.02=?=o U mA 95 45 1==V I mA 303 .09 32 ===V V I I 图6-25 习题6-3图 3)1V 反向电压最大值 V 1411002=?=DRM U 2V 、3V 反向电压最大值 V 2.281022=?=DRM U 题6-2解图(b ) 题6-2解图(c )

直流调速

一、什么是直流调速器? 直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。 二、什么场合下要选择使用直流调速器? 下列场合需要使用直流调速器: 1.需要较宽的调速范围。 2. 需要较快的动态响应过程。 3. 加、减速时需要自动平滑的过渡过程。 4. 需要低速运转时力矩大。 5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。 以上五点也是直流调速器的应用特点。 三、直流调速器应用: 直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。 四、直流调速器工作原理简单介绍:

直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 五、直流电机的调速方案一般有下列3种方式: 1、改变电枢电压; 2、改变激磁绕组电压; 3、改变电枢回路电阻。 最常用的是调压调速系统,即1(改变电枢电压). 六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体, 采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID 适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 如何将交流电转换成直流电? 需要以下步骤: 1整流--即把交流调整成直流,换句话就是使交流的正玄波调整到的X轴上方。但是现在还只是脉冲的。主要元件是二极管。整流方式: 全波整流(桥式整流,

晶闸管直流调速系统资料

4 -1 晶闸管直流调速系统主要单元调试 一、实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2.掌握直流调速系统主要单元部件的调试步骤和方法。 二、实验内容 1.调节器的调试 2.电平检测器的调试 3.反号器的调试 4.逻辑控制器的调试 三、实验设备及仪器 1 . DKSZ 一l 型实验装置主控制屏DK01 2 . DK02 、DK03、DK04挂箱 3 .二踪扫描示波器 4 .万用电表 四、实验方法 实验中所用的各控制单元的原理图见第二章有关内容。 1 .调节器(AsR 、ACR )的调试 合上低压直流电源开关,观察各指示灯指示是否正常。 ( l )调零.将调节器输入端接地,把串联反馈网络中的电容短接,使调节器变为P调节器,再调节面板上的调零电位器,使调节器的输出为零。 ( 2 )调整输出正、负限幅值. 将反馈电容短接线去掉,使调节器变为PI 调节器,加入一定的输入电压,调整正、负限幅电位器,使输出正负最大值为所需的数值。 ( 3 )测定输入输出特性.向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 ( 4 )观察PI 特性.突加给定电压UG,用示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 2 .电平检测器的调试 1)测定转矩极性鉴别器DPT的环宽,要求环宽为0.4-0.6V,记录高电平值,调节RP1使环宽对称纵坐标。 2)测定零电流检测器DPZ的环宽,要求环宽也为0.4-0.6V,调节RP1使回环向纵坐标右侧偏离0.1-0.2V。 3)按测得数据,画出两个电平检测器的回环。 3 .反号器(AR)的调试

晶闸管直流调速系统参数和环节特性的测定实验报告

晶闸管直流调速系统参数和环节特性的测定实验报告 一、实验目的 1.熟悉晶闸管直流调速系统的组成及其基本结构。 2.掌握晶闸管直流调速系统的参数测试及反馈环节测定方法和测试条件。 二、实验内容 1.测定晶闸管直流调速系统主电路总电阻 R。 2.测定晶闸管直流调速系统主电路总电感 L。 3.测定直流电动机 - 发电机 - 测速发电机飞轮惯量 GD2。 4.测定晶闸管直流调速系统主电路电磁时间常数 T d。 5.测定直流发电机电动势常数C e和转矩常数 C T。 6.测定晶闸管直流调速系统机电时间常数 T m。 7.测定晶闸管触发及整流装置特性 U d =?(U ct)。 8.测定测速发电机特性 U TG =?(n)。 三、实验设备

四、实验原理 五、实验步骤 (一)测定晶闸管直流调速系统主电路电阻。伏安比较法测量

1. 测量电枢回路总电阻R R=R a + R L + R n (电枢电阻R a、平波电抗器电阻R L 、整流装置内阻R n )(1)不加励磁、电机堵转 (2)合上S1和S2, 调节给定,使输出电压到30%-70%的额定电压 调节电阻,使枢电流80%-90%的额定电流 测定U1和I1。 (3)断开S2 测定U2和I2。 (4)计算电枢回路总电阻 R=(U2-U1)/( I1 - I2) 合上S1和S2测得U1=100V, I1=; 断开S2测得U2=103V,I2=;

R=(U2-U1)/( I1 - I2)=(103V-100V)/电枢电阻 R a (1)短接电机电枢 (2)不加励磁、电机堵转 (3)合上S1和S2, 调节给定,使输出电压到30%-70%的额定电压 调节电阻,使枢电流80%-90%的额定电流 测定U1’和I1’。 (4)断开S2 测定U2’和I2’。 (5)计算 平波电抗器电阻R L和整流装置内阻R n: R L + R n =(U2’-U1’)/(I2’-I1’) 电枢电阻R a :R a =R-(R L + R n) 合上S1和S2测得U1’=95V,I1’= 断开S2测得U2’=97V,I2’= R L + R n =(U2’-U1’)/(I2’-I1’)=(97V-95V)/=R-(R L + R n)=ΩΩ=Ω 3. 平波电抗器电阻 R L (1)短接电抗器两端 (2)不加励磁、电机堵转 (3)合上S1和S2,

直流调速控制系统方案设计毕业论文

直流调速控制系统方案设计毕业论文 目录 第一章绪论 (1) 第二章系统方案设计 (5) 2.1 设计思路 (5) 2.2 基本原理 (5) 2.3 总体设计框图 (6) 第三章系统硬件设计 (7) 3.1 单片机控制模块 (7) 3.1.1 AT89S51的简介 (7) 3.1.2 AT89S51最小系统 (14) 3.2 电机驱动模块 (17) 3.2.1电机驱动模块的电路设计 (17) 3.2.2 L298芯片 (19) 3.3 液晶显示模块 (22) 3.3.1 1602LCD引脚分布和接口信号说明 (22) 3.4 独立式键盘控制模块 (25) 3.4.1 外部中断设置 (25) 3.4.2 外部中断扩展方法 (26) 3.5 本章小结 (28) 第4章系统软件设计 (29) 4.1总电路图 (29) 4.2 总电路功能介绍 (29) 4.3 直流电机控制程序 (29) 第五章系统仿真 (39) 第六章结束语 (43) 参考文献 (44) 附录 (46)

第一章绪论 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用,无论是在工农业生产、交通运输、国防、航天航空、医疗卫生、商务与办公设备、还是在日常生活中的家用电器都大量使用着各式各样的电气传动系统,其中许多系统有调速的要求:如车辆、电梯、机床、造纸机械等等。为了满足运行、生产、工艺的要求往往需要对另一类设备如风机、水泵等进行控制:为了减少运行损耗,节约电能也需要对电机进行调速[1]。电机调速系统由控制部分、功率部分和电动机三大要素组成一个有机整体。各部分之间的不同组合,可构成多种多样的电机调速系统。 三十多年来,直流电机传动经历了重大的变革。首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[2]。 随着微控制器尤其是脉宽调制 PWM 专门控制芯片的飞速发展,其对电机控制方面的应用起了很重要的作用,为设计性能更高的直流控制系统提供了基础。本文对基于PIC单片机的直流电机 PWM 调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了单闭环直流 PWM调速系统的数学模型。用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件

晶闸管直流调速完整系统参数和环节特性的测定实验

《功率电子学课程设计》 设计报告 设计时间:2012.06.05 班级:10应用电子及技术(1)班 姓名: 报告页数:15

广东工业大学课程设计报告 设计题目晶闸管直流调速系统参数和环节特性的测定实验学院信息工程专业应用电子技术班(1) 学号姓名 成绩评定_______ 教师签名_______

晶闸管直流调速系统参数和环节特性的测定实验 1、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 2、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机—发电机住等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图1所示。矚慫润厲钐瘗睞枥庑赖。 图1 晶闸管直流调速实验系统原理图 3、实验内容 (1)测定晶闸管直流调速系统主电路总电阻值R。 (2)测定晶闸管直流调速系统住电感值L。 (3)测定直流电机—直流发电机—测速发电机组的飞轮惯量GD2。

(4)测定晶闸管直流调速系统主电路电磁时间常数T d。 (5)测定直流电动机电势常数C e和转矩常数C M。 (6)测定晶闸管直流调速系统机电时间常数T M。 (7)测定晶闸管出发及整流装置特性U d=?(U ct)。 (8)测定测速发电机特性U TG=?(n)。 4、实验仿真 晶闸管直流调速实验系统的原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分建模与常数设置过程。聞創沟燴鐺險爱氇谴净。 图2 晶闸管开环直流调速系统的仿真模型 4.1系统的建模和模型参数设置 系统的建模包括主电路的建模和控制电路的建模两部分。 (1)主电路的建模和参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路

晶闸管实验报告

实验报告 实验室用直流可控电源实验人员:xxxxx xxxx xx

1 一 设计任务 1.1设计目的 目前,电子系统的应用越来越广泛,种类也越来越丰富。 电子设备己成为人设备提供所需要的能量,起着至关重要的作用。然而在通信、航天、汽车、计算机、办公和家用电器等行业,直流稳压电源起着重要作用。研究实验室用直流可调电源,解决实验室存在的直流电源调压问题,进一步加深对直流可调稳压电源的了解,提高自己的动手制作能力和设计能力,加强对电力电子电路的认识,从而为以后从事相关工作做准备。 1.2设计内容 从实验室直流电源存在的问题出发,设计实验室用直流可调电源,主要是用于实验室直流控制电机调速。 1.3设计意义 通过此次直流可调电源设计,解决实验室直流电源工作问题,为以后研究高质量使用性能和电气性能的直流稳压电源,做了一个可行性前期实验准备工作,有利于了解直流电源在生产生活中的作用,特别是在设备稳定运行方面表现出的电气特性;从实验室直流电源入手研究,有助于积累解决生产生活中的碰到的问题;从实验团队中相互合作共同进行相关工作,培养了我们的合作意识,为以后我们参加相应工作提供了一个简单模型;研究过程中的分析和改进,增加了我们对相关知识的把握,补充自身的不足;从需求-分析-设计-实验过程中,培养了我们对以后解决相关问题的认识。 1.4设计过程 二 器件选择 变压器: 220V/220V/38V 二极管: 稳压二极管 、发光二极管、普通二极管4007、5108 晶体管: 普通三极管9015、可控硅TNY816、单结晶体管BT33F 电 容: 电解电容 整流桥: KBPC1510整流桥堆 电 阻: 18个大小不等电阻

直流电机调速控制系统设计

电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 学院班级信电工程学院13自动化 专业名称电气工程及其自动化 指导教师肖理庆 2016年6月14日

目录 1 ×× (1) 1.1 ×××××× (1) 1.1.1 ××××..................................................................................... 错误!未定义书签。 1.1.2 ×××× (1) …… 1.2 ×××××× (1) 1.2.1 ×××× (8) …… 2 ××××× (8) 2.1 ×××××× (10) 2.1.1 ×××× (10) …… 3 ××××× (12) 3.1 ×××××× (12) 3.1.1 ×××× (12) …… 参考文献 (13) 附录 (14) 附录1 (14) 附录2 (14)

1 直流电机调速控制系统模型 1.1 直流调速系统的主导调速方法 根据直流电动机的基础知识可知,直流电动机的电枢电压的平衡方程为: R I E U a += 式(1.1) 公式中:U 为电枢电压;E 为电枢电动势;R I a 为电枢电流与电阻乘积。 由于电枢反电势为电路感应电动势,故: n C E φe = 式(1.2) 式中:e C 为电动势常数;φ为磁通势;n 为转速。 由此得到转速特性方程如下: φe a C R I U /)(n -= 式(1.3) 由式(1.3)可以看出,调节直流电动机的转速有以下三种方法: 1.改变电枢回路的电阻R ——电枢回路串电阻调速。属于有级调速,且不易构成自动调速系统,当电机低速运行时,电枢外串电阻上的功耗大,系统效率低,故一般不予采用。 2.减弱励磁磁通φ——弱磁调速。可以构成无极调速,但只能在电动机额定转速以上做小范围的升速,不能作为主导调速方法。 3.调节电枢电压U——降压调速。可以构成无极调速,且调速范围大、控制性能好。而且,现代电力电子技术的发展,使得直流电源输出电压能够非常容易地实现连续可调。 因此,降压调速是直流电机调速系统的主导调速方法。 1.2 直流电机调速控制的传递函数 在直流电机调速系统中通常是以他励式直流电动机为控制对象,其等效控制 电路如图1-1所示。 图1-1他励直流电机等效控制电路

晶闸管的基本检测方法

晶闸管的基本检测方法 1.判别单向晶闸管的阳极、阴极和控制极 脱开电路板的单向晶闸管,阳极、阴极和控制极3个引脚一般没有特殊的标注,识别各个脚主要是通过检测各个引脚之间的正、负电阻值来进行的。晶闸管各个引脚之间的阻值都较大,当检测出现唯一一个小阻值时,此时黑表笔接的是控制极(G),红表笔接的是阴极(K),另外一个引脚就是阳极(A)。 2.判别单向晶闸管的好坏 脱开电路板的单向晶闸管,阳极(A)、阴极(K)和控制极(G)明确标示;正常的单向闸管,阳极(A)、阴极(K)两个引脚之间的正、反向电阻,阳极(A)、控制极(G)两个引脚之间的正、反向电阻的阻值应该都很大,阴极(K)、控制极(G)两个引脚之间的正向电阻应该远小于反向电阻。并且阳极(A)、阴极(K)两个引脚之间的正向电阻越大,单向晶闸管阳极的正向阻断特性越好;反向电阻越大,单向晶闸管阳极的反向阻断特性越好。 3.判别双向晶闸管的好坏 脱开电路板的双向晶闸管,第一电极(T1)、第二电极(T2)、控制极(G)明确。判断双向晶闸管的好坏,主要是看短路前第二电极(T2)和第一电极(T1)之间阻值接近无穷大,第二电极(T2)与控制极(G)引脚短路,短路后晶闸管触发导通,第二电极(T2)·和第一电极(T1)之间的电阻变小,有固定值。可以断定该双向晶闸管具备双向触发能力,性能基本良好。 4.晶闸管的代换原则 晶闸管的品种繁多,不同的电子设备与不同的电子电路,采用不同类型的晶闸管。选用与代换晶闸管时,主要应考虑其额定峰值电压、额定电流、正向压降、门极触发电流及触发电压、开关速度等参数,额定峰值电压和额定电流均应高于工作电路的最大工作电压和最大工作电流1.5~2倍,代换时最好选用同类型、同特性、同外形的晶闸管替换。 普通晶闸管一般被用于交直流电压控制、可控整流、交流调压、逆变电源,开关电源保护等电路。 双向晶闸管一般被用于交流开关、交流调压、交流电动机线性凋速、灯具线性调光及固态继电器、固态接触器等电路。 逆导晶闸管一般被用于电磁灶、电子镇流器、超声波电路、超导磁能贮存系统及开关电源等电路。 光控晶闸管一般被用于光电耀合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路等。 BTC晶体管一般被用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等。 门极关断晶闸管一般被用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等。

直流稳压电源的设计与仿真

淮海工学院课程设计报告书 课程名称:通信电子线路课程设计题目:直流稳压电源的设计系(院):东港学院 学期:2010-2011-1 专业班级:D通信081 姓名:宗淙 学号:510822114

直流稳压电源 1引言 近些年来,随着微机,小型计算机的普及和航空数据的通信,交通邮电事业的讯速发展,和对各种自动化仪器、仪表和设备配套的供求,当代对电源的需求量不断增大,而且对电源的性能、效率、重量、尺寸和可靠性以及诸如程序控制、电源通/断、远距离操作和信息保护等功能提出了更高的要求。人们对于这些要求,传统的线性稳压电源[1]已不能满足我们的日常要求,和线性稳压电源相比,稳压电源具有以下的一些优越性: 1.工作效率高 2.稳压效果好 3.体积小质量小 4.安全性能好 1.1 设计目的 1.通过本次课程设计课题的设计,较好掌握电子线路系统的设计方案和设计步骤。 2.学会直流稳压电源的设计方法和PCB板的制作 3.培养操作Protel的技能以及分析和解决实际问题的能力。 1. 2 设计意义 1.通过本次的课程设计,进一步加强理解了所学的理论专业知识和实践技能 2.在本次的课程设计过程中着重培养独立工作、独立思考并运用已所学的专业知识解决实际问题的能力,同时还培养了独立获取新知识的能力; 3.通过本次课程设计加强对调研调查、资料获取、实验方法、数据资料的综合处理、计算机应用等最基本的工作实践和科研能力的培养。 1.3 设计的内容要求 1.设计并制作一个连续可调直流稳压电源,主要技术指标要求 (1)输出电压可调:U =+3V~+15V o =800mA (2)最大输出电流:I omax ≤15mV (3)输出电压变化量:ΔU o ≤0.003 (4)稳压系数[2]:S V 2.设计电路原理图结构,运用Protel画出相应的原理电路图,通过计算确定元件参数,选择电路元件。 3.自拟实验方法、步骤及数据表格,制出电路原理图的PCB板

晶闸管直流电动机不可逆调速系统设计说明

摘要 直流电动机具有良好的起、制动性能,宜于在大围平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到应用。晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管—电动机调速系统(简称V-M系统),和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。 本文首先明确了设计的任务和要求,在了解了转速电流双闭环直流调速系统的调速原理后依次对晶闸管相控整流调速系统的主电路,保护电路,检测电路和触发电路进行了设计,并且计算了相关参数。 最后给出了这次设计的心得体会,参考文献和系统的电气总图。 目录 设计任务及要求 (Ⅰ) 摘要 (Ⅲ) 第二章系统主电路原理分析 (4) 第一节晶闸管直流电动机不可逆调速系统原理 (4) 第二节总体方案 (5) 第三节三相桥式全控整流电路 (7) 第三章系统参数计 (8) 第一节整流变压器参数计算 (8) 第二节晶闸管参数计算 (9)

第三节其他参数计算 (10) 第四章保护电路 (11) 第一节过电压保护 (11) 第二节过电流保护 (14) 第五章系统控制电路设计 (16) 第一节信号检测电路设计 (16) 第二节系统调节器 (16) 第三节触发电路 (17) 后记 (20) 参考文献 (21) 附录:电气原理总图 (22)

第二章系统主电路原理分析 第一节晶闸管直流电动机不可逆调速系统原理 晶闸管相控整流直流电动机调速系统原理框图如图3.1所示:

图3.1 晶闸管相控整流直流电动机调速系统原理框图 系统采用转速、电流双闭环的控制结构。两个调节器分别调节转速和电流,两者之间实行串行连接,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管的触发电路。从闭环反馈的结构上看,电流调节环是环,按典型I型系统设计;速度调节环为外环,按典型Ⅱ型系统设计。为了获得良好的静、动态性能,双闭环调速系统的两个调节器都采用

转速﹑电流双闭环直流调速系统

双闭环控制的直流调速系统简介 1.1V—M系统简介 晶闸管—电动机调速系统(简称V—M系统),其简单原理图如图1。图中VT是晶闸管的可控整流器,它可以是单相、三相或更多相数,半波、全波、半控、全控等类型。 优点:通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变整流电压从而实现平滑调速。 缺点: 1.由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。 2.元件对过电压、过电流以及过高的du/dt和di/dt都十分敏感,其中任一指标超过允许值都可能在很短时间内损坏元件。 因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应有足够的余量。 图1 V—M系统 1.2转速控制的要求和调速指标 任何一台需要控制转速的设备,其生产工艺对调速性能都有一定的要求。归纳起来,对于调速系统的转速控制要求有以下三个方面: 1)调速——在一定的最高转速和最低转速范围内,分档地(有级)或平滑地(无级)调节转速; 2)稳速——以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量; 3)加、减速——频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起﹑制动尽量平稳。

1.3 直流调速系统的性能指标 根据各类典型生产机械对调速系统提出的要求,一般可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在 某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响[1,6]。 一、静态性能指标 1).调速范围 生产机械要求电动机在额定负载运行时,提供的最高转速m ax n 与最低转速m in n 之比,称为调速范围,用符号D 表示 m in m ax n n D = (2—2) 2).静差率 静差率是用来表示负载转矩变化时,转速变化的程度,用系数s 来表示。具体是指电动机稳定工作时,在一条机械特性线上,电动机的负载由理想空载增加到额定值时,对应的转速降落 ed n ?与理想空载转速 n 之比,用百分数表示为 %100%1000 00?-=??= n n n n n s ed ed (2—3) 显然,机械特性硬度越大,机械特性硬度越大,ed n ?越小,静差率就越小,转速 的稳定度就越高。 然而静差率和机械特性硬度又是有区别的。两条相互平行的直线性机械特性的静差率是不同的。对于图2—1中的线1和线2,它们有相同的转速降落1ed n ?=2 ed n ?, 但由于 01 02n n <,因此12s s >。这表明平行机械特性低速时静差率较大,转速的相对 稳定性就越差。在1000r/min 时降落10r/min ,只占1%;在100r/min 时也降落10r/min ,就占10%;如果 n 只有10r/min ,再降落10r/min 时,电动机就停止转动,转速全都 降落完了。 由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s ,那么,其它转速的静差率也必然都能满足。

相关文档
最新文档