矿井通风阻力计算方法

矿井通风阻力计算方法
矿井通风阻力计算方法

矿井通风阻力

第一节通风阻力产生的原因当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。

井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。

一、风流流态(以管道流为例)同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因)

(二)、巷道风速分布

由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。

巷壁愈光滑,断面上风速分布愈均匀。

第二节摩擦阻力与局部阻力的计算

一、摩擦阻力风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。

由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算:

2

H f =入x L/d Xpv /2 pa

入-- 摩擦阻力系数。

L ----- 风道长度,m

d――圆形风管直径,非圆形管用当量直径;

空气密度,kg/m3

断面平均风速,m/s;

1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。

2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为:

H f = a x LU/S3X Q =R f x Q pa

3

R f=ax LU/S3

a--- 摩擦阻力系数,单位kgf ? s7m4或N ? s7m4, kgf ? s7m4=9.8N ? s7m4

L、U――巷道长度、周长,单位m

S—巷道断面积,m

Q ---- 风量,单位m/s

R ——摩擦风阻,对于已给定的井巷,L,U S都为已知数,故可把上式中的

a , L, U, S归结为一个参数R,其单位为:kg/m7或N ? s7m8

3、井巷摩擦阻力计算方法

新建矿井:查表得a T h f T R f

生产矿井:已测定的h f T R f T a , 再由a T h f T R f

二、局部阻力

由于井巷断面,方向变化以及分岔或汇合等原因, 使均匀流动在局部地区受到影响而破坏, 从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。

1、几种常见的局部阻力产生的类型:

(1)、突变紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。

(2)、渐变

主要是由于沿流动方向出现减速增压现象, 在边壁附近产生涡漩。因为压差的作用方向与流动方向相反,使边壁附近,流速本来就小,趋于0,在这些地方主流与边壁面脱离,出现与主流相反的流动,面涡漩。

(3)、转弯处流体质点在转弯处受到离心力作用,在外侧出现减速增压,出现涡漩。

(4)、分岔与会合

上述的综合:局部阻力的产生主要是与涡漩区有关,涡漩区愈大,能量损失愈多,局部阻力愈大。

二、局部阻力的计算不同类型的局部阻力计算公式基本一致,但系数取值不一样,在实际设计计算中,局部阻力取巷道摩擦总阻力的20%。

第三节矿井通风阻力的计算步骤

一、阻力计算路线确定

1、根据矿井通风流程和风量大小,确定阻力最大和最小的路线。通风路线中,不得有人为增阻调风的通风设施。

2、依照确定的阻力计算的路线,对各节点进行编号。

二、数据收集

1、计算各用风地点需风量及矿井总需风量,然后确定计算路线中各巷道通过风量。

2、根据矿井实际情况,对计算路线中各巷道断面积、长度、周长、摩擦阻力系数进行取值。

三、计算矿井通风阻力

1、计算摩擦阻力

H f = a x LU/S3X Q =R f x Q pa

3

R f=ax LU/S3

a--- 摩擦阻力系数,单位kgf ? s7m4或N ? s2/m4, kgf ? s2/m4=9.8N ? s7

1、U――巷道长度、周长,单位m

S—巷道断面积,m

Q ---- 风量,单位m/s

Rf——摩擦风阻,对于已给定的井巷,L, U, S都为已知数,故可把上式中的

a , L,U, S归结为一个参数R,其单位为:kg/m7或N ? s2/m8

2、计算局部阻力

H L =0.2 H f

3、计算矿井总阻力

Ht = H f + H L + H Rat + H N

H^t ――扇风机附属装置(风峒、扩散器等)的阻力,一般取20mm

H N-- 矿井自然风压,我们公司矿井一般取10mm

4、计算矿井等积孔

A = 0.38Q/H t0。5

Q ---- 矿井总排风量,单位立方米/秒

Ht ——矿井总阻力,单位毫米水柱

第四节降低矿井通风阻力措施

降低矿井通风阻力,对保证矿井安全生产和提高经济效益都具有重要意义。

一、降低井巷摩擦阻力措施

1、减小摩擦阻力系数a 。

2、保证有足够大的井巷断面。在其它参数不变时,井巷断面扩大33%,Rf 值可减少50%。

3、选用周长较小的井巷。在井巷断面相同的条件下,圆形断面的周长最小,拱形断面次之,矩形,梯形断面的周长较大。

4、减少巷道长度。

5、避免巷道内风量过于集中。

二、降低局部阻力措施

局部阻力与E值成正比,与断面的平方成反比。因此,为降低局部阻力,应尽量避免井巷断面的突然扩大或突然缩小,断面大小悬殊的井巷,其连接处断面

应逐渐变化。尽可能避免井巷直角转弯或大于90°的转弯,主要巷道内不得随意停放车辆,堆积木料等。要加强矿井总回风道的维护和管理,对冒顶,片帮和积水处要及时处理。

矿井通风阻力计算

第三章 井巷通风阻力 本章重点和难点: 摩擦阻力和局部阻力产生的原因和测算 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 第一节 井巷断面上风速分布 一、风流流态 1、管道流 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。 (1)雷诺数-Re 式中:平均流速v 、管道直径d 和流体的运动粘性系数γ。 在实际工程计算中,为简便起见,通常以R e =2300作为管道流动流态的判定准数,即: R e ≤2300 层流, R e >2300 紊流 (2)当量直径 对于非圆形断面的井巷,Re 数中的管道直径d 应以井巷断面的当量直径de 来表示: 因此,非圆形断面井巷的雷诺数可用下式表示: γ d v e R ? =

对于不同形状的井巷断面,其周长U 与断面积S 的关系,可用下式表示: 式中:C —断面形状系数:梯形C =4.16;三心拱C =3.85;半圆拱C =3.90。(举例见P38) 2、孔隙介质流 在采空区和煤层等多孔介质中风流的流态判别准数为: 式中:K —冒落带渗流系数,m 2; l —滤流带粗糙度系数,m 。 层流,R e ≤0.25; 紊流,R e >2.5; 过渡流 0.252300,紊流 巷道条件同上,Re=2300层流临界风速: V=Re×U×ν/4S =2300×4.16×3×15×10-6/(4×9)=0.012m/s<0.15 二、井巷断面上风速分布 (1)紊流脉动 风流中各点的流速、压力等物理参数随时间作不规则变化。 (2)时均速度 瞬时速度 v x 随时间τ的变化。其值虽然不断变化,但在一足够长的时间段 T 内,流速 v x 总是围绕着某一平均值上下波动。 (3)巷道风速分布

矿井通风阻力测定方法

矿井通风阻力测定方法 2007/12/14/12:53 来源:国际能源网 MT/T440—1995 中华人民共和国煤炭工业部1996—03—08批准1996—08—01 实施 1.主题内容与适用范围 本标准规定了矿井通风阻力测定用仪器、测定步骤、测定结果 计算和处理。 本标准适用于煤矿井巷通风阻力测定。 2.术语 2.1主要路线 测定矿井通风阻力时,所选定的从入风井口(或井底车场),经入风大巷、采区、回风大巷,回风井至 风峒的通风路线。 2.2次要路线 测定矿井通风阻力时,所选定的除主要路线外的通风路线。 3.仪器 以下计量器具均应检定,并在有效期内使用。 a.普通型空盒气压计: 测量范围80~107kPa(相当于600~800mmHg),最小分度值50Pa; b.倾斜压差计: 测量范围0~3000Pa,最小分度值10Pa; c.精密气压计: 测量范围83.6~114kPa,最小分度值25Pa; d.通风干湿温度计: 测量范围-25~+50℃,最小分度值0.2℃;

e.皮托管: 校正系数0.998~1.004; f.低速风速表: 测量范围0.2~5m/s,启动风速≤0.2m/s; g.中速风速表: 测量范围0.4~10m/s,启动风速≤0.4m/s; h.高速风速表: 叶轮:测量范围0.8~25m/s,启动风速≤0.5m/s; 杯式:测量范围1.0~30m/s,启动风速≤0.8m/s; i.秒表: 最小分度值1s; j.钢卷尺: 2m钢卷尺:测量范围0~2m,最小分度值1.0mm; 30m钢卷尺:测量范围0~30m,最小分度值1.0mm; k.橡胶管(或塑胶管): 内径4~5mm; l.橡胶管接头: 内径3~4mm,外径5~6mm,长度50~80mm。 4.测定步骤 4.1测定路线选择 在通风系统图上选择测定的主要路线和次要路线。同时,要考虑一个工作班内将该路线测完;当测定 路线较长时,可分段、分组测定。 4.2测点选择 首先在通风系统图上按选定测定路线布置测点,并按顺序编号。然后再按井下实际情况确定测点位置, 并作标记。

矿井通风阻力测定及对几个问题的分析

矿井通风阻力测定及对几个问题的分析 程绍仁1 ,程建军 2 (1 晋城市煤炭工业局,山西晋城048000; 2 晋城泽泰安全评价中心,山西晋城048000) [摘 要] 矿井通风阻力是衡量矿井通风状况的主要指标。影响矿井通风阻力大小的因素很多,而矿井通风阻力测定则是矿井通风技术管理的一项基础工作。介绍了矿井通风阻力的测定方法,对矿井通风阻力测定中的几个问题进行了分析,并提出了改进意见。 [关键词] 通风阻力;测定方法;问题分析[中图分类号]TD72 [文献标识码]B [文章编号]1006 6225(2006)01 0072 03 M ensuration ofM ine Ventilation Resistance and Analysis of Several Proble m s [收稿日期]2005-08-29 [作者简介]程绍仁(1945-),男,山西晋城人,高级工程师,现任晋城市煤炭工业局副总工程师。 矿井通风阻力是衡量矿井通风状况的主要指标,矿井通风阻力测定是矿井通风技术管理工作的主要内容。 煤矿安全规程 规定,!新矿井投产 前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定?。 晋城市500余个地方煤矿在近1年多的时间里,普遍进行了1次矿井通风阻力测定,由于测定单位的技术力量不等和技术水平不齐,测定中存在问题不少,测定结果误差很大。1 矿井通风阻力测定方法1 1 测定仪器 矿井通风阻力测定现已淘汰繁琐的、操作麻烦的、测量精度低的毕托管、倾斜压力(U 型压力计)加长距离软管的测量方法,而采用气压计法,使用精密气压计,配以通风干湿球温度计、风表、秒表、皮尺等测量计具。精密气压计具有体积小、重量轻,不需要拉软管,操作简便、快速、省人、省力、省时等特点,配以所测风速和空气的干湿球温度计算出的空气动压、位压值而求得通风阻力。但需要注意,在测定前要对同时使用2台或多台精密气压计、通风干湿球温度计、风表进行校正,修正其互相之间误差值。1 2 测定方法 (1)同步法 用2台同型号规格的气压计在测量风路的相邻两测点同时读数,由此测算出前后两测点风流的静压差,再用风表和通风干湿球温度计测算出两测点的动压、位压参数,从而计算出该 测段的通风阻力。逐段通风阻力相加,即为长距离的通风阻力;按风流路线从矿井的进风井口逐段测至矿井主要通风机的吸风口处的通风阻力之和,即为全矿井的通风阻力。 (2)基点法 用2台同型号规格的气压计,1台气压计放在基点(进风井口外10m 左右处),从计时钟表的整5m i n (或整10m in)的倍数开始,并以5m i n (或10m in)为间隔,记录气压计读数,用来测定地面大气压力的变化值,以便对井下的另1台气压计读数值进行校正。而另1台气压计沿预定的测定路线、测点进行测定、读数。井下气压计的读数一定要待指示数值稳定后再读数,如超过原设定整5m i n (或整10m i n )时限,可待下一整5m i n (或整10m i n )或其倍数时读数,以便和基点同时的气压值校正。 (3)基点 同步法 此法是上两种方法的结合法,用3台同型号规格的气压计,1台固定在进风井口外的基点上,作为大气压力变化的校正用,将另外2台气压计携至井下沿预定的测点,结合上两种方法按时钟的整5m i n (或整10m in)的倍数同时读数,以求得通风阻力。这种方法测定精度高,适用测定时间长、通风路线长的大型矿井。 在沿1条主风路测量通风阻力的同时,其他各条并联风路的风量也应测出,以便计算风阻和校核风量。 1 3 测定方法的选择 矿井通风阻力测定方法的选择,应根据矿井通风路线的长短、测点布置的多少而选用。当然第3种方法基点 同步法最好,测量精度高,适用各种 72 第11卷第1期(总第68期) 2006年2月煤 矿 开 采CoalM i n i ng T echno l ogy V o1 11N o 1(Ser i es N o 68) February 2006

第七章矿井通风

第七章矿井通风与安全技术 7.1概述 凤凰山铜矿III矿体是一个板状的大理岩矿床,SiO2含量低;矿脉含硫量少,达不到自然危害性,井下最多工人190人,因此,工作面的通风应保证排尘及排除炮烟的需要,以最大可能减少矿尘危害。 根据安全规程,对凤凰山铜III矿体的矿井下通风安全做如下要求:(1)有人工作或可能有人到达的井巷,其空气成份(按体积计算)应为O2≥20%,CO2≤0.5%。空气的温度不得高于25℃,总回风流中的CO2不得超过1%。 (2)井下空气需经常保持新鲜,空气中有害气体含量不得超过规定:CO2:0.2,SiO2:0.02,H2S:0.01(按重量计算mg/升) (3)所有矿井均应实行全面机械通风,在浅部矿井,也可采用自然通风,主扇要求连续运转。 7.2矿井通风条件 凤凰山铜矿Ⅲ号矿带30线至35线间,其年产矿量13万吨,服务年限14年;采用竖井开拓,有轨运输;阶段的开采顺序采用下行式,阶段中矿块的开采顺序采用双翼开采;主要的采矿方法为分段凿岩阶段矿房法,垂直方向中深孔凿岩,每个矿房配置1台YQ-80新型钻机,井下回采的矿块数为3个,每天井下工作人数共190多人。 7.3通风方式与通风系统 7.3.1通风系统确定的依据 (1)风路短、阻力小、通风网络简单、风流容易控制,在主要人行运输坑道和工作点上污风不串联; (2)风量分配满足生产需要,漏风少; (3)通风构筑物少,便于维护管理; (4)专用通风井巷工程量少,施工方便; (5)通风动力消耗少,通风费用低。 7.3.2风井位置的确定 风井布置方式有中央对角式,中央并列式以及侧翼对角式。 根据该矿山的的实际情况、确定其它井筒的原则及所选用的通风系统,这里选用二种方案。 方案一:中央对角式布置

煤矿常用计算公式汇总

煤矿巷道及通风计算公式 一、常见断面面积计算: 1、半圆拱形面积=巷宽×(巷高+0.39×巷宽) 2、三心拱形面积=巷宽×(巷高+0.26×巷宽) 3、梯形面积=(上底+下底)×巷高÷2 4、矩形面积=巷宽×巷高 二、风速测定计算: V 表=n/t (m/s) (一般为侧身法测风速) 式中:V 表:计算出的表速; n :见表读数; t :测风时间(s ) V 真=a+ b ×V 表 式中:V 真:真风速(扣除风表误差后的风速); a 、 b :为校正见表常数。 V 平=K V 真=(S-0.4)×V 真÷S 式中:K 为校正系数(侧身法测风时K=(S-0.4)/S ,迎面测风时取1.14); S 为测风地点的井巷断面积 三、风量的测定: Q=SV 式中Q :井巷中的风量(m 3/s );S :测风地点的井巷断面积(m 2); V :井巷中的平均风速(m/s ) 例1:某半圆拱巷道宽2m,巷道壁高1m,风速1m/s ,问此巷道风量是多少。 例2:某煤巷掘进断面积3m 2,风量36 m 3/min ,风速超限吗? 四、矿井瓦斯涌出量的计算: 1、矿井绝对瓦斯涌出量计算(Q 瓦) Q 瓦=QC (m 3/min ) 式中Q :为工作面的风量;C :为工作面的瓦斯浓度(回风流瓦斯浓度-进风流中瓦斯浓度) 例:某矿井瓦斯涌出量3 m 3/min ,按总回风巷瓦斯浓度不超限计算矿井供风量不得小于多少。 2、相对瓦斯涌出量(q 瓦) q 瓦=1440Q 瓦*N T (m 3/t )

式中Q 瓦 :矿井绝对瓦斯涌出量;1440:为每天1440分钟; N:工作的天数(当月);T:当月的产量 五、全矿井风量计算: 1、按井下同时工作最多人为数计算 Q矿=4NK (m3/min) 式中4:为《规程》第103条规定每人在井下每分钟供给风量不得少于4立方米;N:井下最多人数;K:系数(1.2~1.5) 2、按独立通风的采煤、掘进、硐室及其他地点实际需要风量的总和计算 Q矿=(∑Q采+∑Q掘+∑Q硐…+∑Q其他)×K 式中K:校正系数(取1.2~1.8) 六、采煤工作面需风量 1、按瓦斯涌出量计算 Q 采=100×q 采 ×K CH4 (m3/min) 式中100:为系数;q 采 :采煤工作面瓦斯涌出量(相对); K CH4:瓦斯涌出不均衡系数(取1.4 ~ 2.0) 2、按采面气温计算: Q 采 =60×V×S (m3/min) 式中60:为系数; V:采面的风速(温度为18~20℃时取0.8~1.0m/s,温度为20~23℃时取1.0~1.5 m/s); S:采面平均断面积。 3、按采面人数计算: Q采=4N (m3/min) 4、按炸药量计算: Q采=25A (m3/min) 式中25:为系数;A:为一次性爆破的最多炸药量 5、按风速进行校验: 15≤Q采≤240 (m/min)或0.25≤Q采≤4 (m/s) 式中15与0.25:为工作面最低风速(m/min)(m/s) 240与4:为工作面最高风速(m/min)(m/s) 例:某采面工作人数15人,一次性爆破炸药5kg,温度20度,瓦斯涌出量为1 m3/min,请问采面需风量是多少。 七:掘进工作面需风量的计算

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。 在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: H f =λ×L/d×ρν2/2pa λ——摩擦阻力系数。 L——风道长度,m

d——圆形风管直径,非圆形管用当量直径; ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H f =α×LU/S3×Q2 =R f×Q2pa R f=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9.8N·s2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s R f——摩擦风阻,对于已给定的井巷,L,U,S都为已知数,故可把上式中的α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→h f→R f 生产矿井:已测定的h f→R f→α,再由α→h f→R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。

如何降低矿井通风阻力

如何降低矿井通风阻力 降低矿井通风阻力措施 根据我国对617对井口和1023个风井的调查和统计,有40 % 的矿井通风阻力属于中阻力和大阻力矿井,个别矿井的通风电耗甚至占到了矿井总电耗的50%。所以,无论是新矿井通风设计还是生产矿井通风管理工作,都要做到尽可能降低矿井通风阻力。降低矿井通风阻力,特别是降低井巷的摩擦阻力对减少风压损失、减低通风电耗、减少通风费用和保证矿井安全生产、追求最大经济效益都具有特别的实际意义。 降低矿井通风阻力是一项非常庞大的系统工程,要综合考虑诸多方面因素。首先要保证通风系统运行安全可靠,矿井主要通风机要在经济、合理、高效区运转,及时调节矿井总风量,尽量避免通风机风量过剩和不足;通风网络要合理、简单、稳定;通风方法和通风方式要适应降阻的要求(如抽出式通风要比压入式的通风阻力大,中央并列式通风路线要长);减少局部风量调节(主要是增阻调节法)的地点和数量,使调节后的总风阻接近不加调节风窗时的风阻,调节幅度要小、质量要高。降低矿井通风阻力的重点在最大阻力路线上的公共段通风阻力。由于矿井通风系统的总阻力等于该系统最大阻力路线上的各分支的摩擦阻力和局部阻力之和,因此在降阻之前首先要确定通风系统的最大阻力路线,通过阻力测定,了解最大阻力路线上的阻力分布状况,找出阻力较大的分支,对其实施降阻措施。具体方法如下: 一、降低摩擦阻力的措施 摩擦阻力是矿井通风阻力的主要部分,因此降低井巷摩擦阻力是通风技术管理的重要工作。由公式可知,降低摩擦阻力的措施有: 1.减少摩擦阻力系数 矿井通风设计时尽量选用值小的支护方式,如锚喷、砌碹、锚杆、锚锁、钢带等,尤其是服务年限长的主要井巷,一定要选用摩擦阻力较小的支护方式,如砌碹巷道的值仅有支架巷道的30%~40%。施工时一定要保证施工质量,应尽量采用光面爆破技术,尽可能使井巷壁面平整光滑,使井巷壁面的凹凸度不大于 50mm。对于支架巷道,要注意支护质量,支架不仅要整齐一致,有时还要刹帮背顶,并且要注意支护密度。及时修复被破坏的支架,失修率不大于7%。在不设支架的巷道,一定注意把顶板、两帮和底板修整好,以减少摩擦阻力。 2.井巷风量要合理 因为摩擦阻力与风量的平方成正比,因此在通风设计和技术管理过程中,不能随意增大风量,各用风地点的风量在保证安全生产要求的条件下,应尽量减少。掘进初期用局部通风机通风时,要对风量加以控制。及时调节主通风机的工况,减

矿井通风阻力参数及其计算复习思考题

第四章矿井通风阻力参数及其计算复习思考题 1、矿井风流以层流为主还是以紊流为主?为什么? 2、阻力和风阻是不是一回事? 3、尼古拉茨实验研究提示了井巷粗糙度、雷诺数与λ系数之间的什么关系? 4、由测定得知,某梯形巷道断面5m2,长500m,当通过的风量为25m2/s时,压差为3.75mmH2O,分别按工程单位制和法定单位制,求算譔巷道的摩擦阻力系数。 5、影响摩擦的因素有哪些? 6、假若井筒直径D=4m,摩擦阻力系数α=0.04N?s2/m4,深度L=325m,通过的风量为3000m3/min,问井筒的风阻有多大?压差有多大? 7、风流以240m/min的速度从断面为10m2的巷道突然进入断面为4m2巷道,问引起的能量损失为多少? 8、某通风巷道的断面由2m2,突然扩大到10m2,若巷道中渡过的风量为20m3/s,巷道的摩擦阻力系数为0.016N?s2/m4,示巷道突然扩大处的通风阻力。 9、为什么要降低矿井风阻?用什么方法? 10、何谓矿井等积孔? 11、矿井风阻特性曲线表示什么?作风阻为1.962N?S2/m8的风阻特性曲线。 12、对某巷道经过实测获得如下资料:

(1)如图3-1,两支皮托管间距为200m,倾斜压差计的倾斜系数为0.4,在压差计上的读数为第一次16.5mm、第二次16.2mm、第三次16.3mm。 (2)巷道断面如图3-2,a=3m、b=3.5m、c=2.4m、d=2.3。 图3-1用倾斜压差计测压差图3-2巷道断面 表3-1测风记录 顺序风表顺序读数(格)风表测风时间 零点读数6039 - 1 6545 1min55s 2 7130 2min10s 3 7590 1min40s (3)用翼式风表测风(侧身法)记录如表3-1。 (4)风表按图3-3校正。 (5)该巷道的气温为150C,气 压750mmHg,相对湿度80%。根据 以上数据,求标准状况下该巷道的 摩擦阻力系数、摩擦风阻、等积孔, 并作出风阻特性曲线。图3-5

矿井通风总阻力计算

华蓥市老岩湾煤业有限公司 矿井通风总阻力计算 沿着矿井通风容易时期和矿井通风困难时期的通风路线计算矿井通风总阻力。 通风摩擦阻力计算公式如下: h= 2 3 Q S P L a ??? 式中:h —— 通风摩擦阻力,Pa ; α—— 井巷摩擦阻力系数,N.S 2/m 4; L —— 井巷长度,m ; P —— 井巷净断面周长,m ; Q —— 通风井巷的风量,m 3/s ; S —— 井巷净断面面积,m 2; 通风局部阻力取同时期摩擦阻力的15%。 经计算,矿井通风容易时期采用中央分列式通风系统,其总阻力h 为573.99Pa ;矿井通风困难时期采用两翼对角式通风系统,其北风井和南平硐风井阻力分别为489.42Pa 、401.51Pa 。(详见矿井通风阻力计算表5-2-2、表5-2-3、表5-2-4)。 五、对矿井通风状况的评价 计算矿井的风阻和通风等积孔 a 、矿井通风容易时期采用中央分列式通风系统,矿井的总风阻R 易和矿井通风等积孔A 易 为: R 易 =h 易/ Q 易2 =573.99÷30.42 =0.62N 2S 2/m 8 A 易 =易易h Q /19.1 =1.19330.4÷99.573 =1.51m 2

b 、矿井通风困难时期采用两翼对角式通风系统,其北风井的风阻R 1、通风等级孔A 1和南平硐风井的风阻R 2、通风等级孔A 2以及矿井的通风等积孔A 难为: R 1 =h 1/ Q 12 =489.42÷15.952 =1.92N 2S 2/m 8 A 1 =11/19.1h Q =1.19315.95÷42.489 =0.86m 2 R 2 =h 2/ Q 22 =401.51÷12.552 =2.55N 2S 2/m 8 A 2 =22/19.1h Q =1.19312.55÷51.401 =0.75 m 2 A 难= () 111 11121)(19.1Q Q h Q h Q Q Q +++? = () 55.1295.1551 .40155.1242.48995.15)55.1295.15(19.1+?+?+? =1.6(m 2) 式中: R 易-为矿井通风容易时期的矿井风阻,N 2S 2/m 8; A 易-为矿井通风容易时期的矿井通风等积孔,m 2; h 易―为通风容易时期的矿井通风阻力,Pa ; R 1-为北风井通风困难时期的矿井风阻,N 2S 2/m 8; A 1-为北风井通风困难时期的通风等积孔,m 2;

一、矿井通风设计的内容和要求

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1) 每一矿井必须有完整的独立通风系统。 2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。 3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一)、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二)矿井需风量的计算 1、采煤工作面需风量的计算 采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1)按瓦斯涌出量计算: 式中:Qwi——第i个采煤工作面需要风量,m3/min Qgwi——第i个采煤工作面瓦斯绝对涌出量,m3/min kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0 (2)按工作面进风流温度计算:

通风计算题

五、计算题 1、 在某一通风井巷中,测得1、2两断面的绝对静压分别为101324.7 Pa 和101858 Pa ,若S 1=S 2,两断面间的高差Z 1-Z 2=100米,巷道中ρm12=1.2kg/m 3,求:1、2两断面间的通风阻力,并判断风流方向。 解:假设风流方向从1到2,列能量方程: H r12=(P 1-P 2)+(v 12ρ1/2- v 22ρ2/2)+(Z 1-Z 2) ρg =(101324.7-101858)+0+100×1.2×9.81 =643.9J/m 3 由于其阻力值为正,所以原假设风流方向正确。从1到2。 2、 某矿井为中央式通风系统,测得矿井通风总阻力h Rm =2800Pa ,矿井总风量Q =70m 3/s ,求矿井总风阻R m 和等积孔A ,评价其通风难易程度。 解:Rm=h Rm /Q 2=2800/702=0.571Ns 2/m 8 A= m R 19.1= 571 .019.1=1.57m 2 由于1

矿井通风阻力及风机静压负压全压

矿井通风压力、通风阻力及风机静压、全压、负压 一、矿井通风压力 (mine ventilation pressure) 指矿井风流的压强,包括静压、动压与全压。 静压 空气分子之间或空气分子对风道壁施加的压力,不随方向而异。静止的空气与流动的空气均有静压。井巷或风筒中某点风流的静压与该点在深度上所处的位置与扇风机造成的压力有关。按度量静压所选择的计量基准不同,有绝对静压与相对静压之分。绝对静压就是以真空状态的绝对零压为基准计量空气的静压,恒为正值。相对静压就是以当地大气压力为基准计量的空气静压,当其高于大气压时为正值,称正压;反之为负值,称负压。 动压 空气流动而产生的压力,恒为正值。风流动压的计算式 , 式中H u 为动压,Pa;u 为风速,m /s;p 为空气密度,kg /m 3。 全压 静压与动压之与,有绝对全压与相对全压之分。风流中任一点的绝对全压P t 等于该点绝对静压P s 与动压H u 相加,即P t =P s +H u 。风流中任一点的相对全 压H e 等于该点相对静压H s 与动压H u 的代数与,即H t =H s +H u 。抽出式通风风流的相 对静压H s 为负值。 压力测定 绝对静压用水银气压计或空盒气压计测量。相对全压、相对静压与动压用U 形压差计、单管倾斜压差计或补偿式微压计与皮托管配合测量。恒温压差计可测两点间的相对静压。数字式精密气压计能测绝对静压与相对静压。 二、矿井通风阻力 矿井通风阻力就是指风流从进风井进入井下、通过井下巷道后从风井出来、再从风机排出沿途所遇到的阻力(也即需要风机克服的阻力),其值由下式计算: N v s j H h h h +-=阻 式中:h 阻j —矿井通风阻力,Pa;

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例)同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: 2 H = λ×L/d ×ρν/2 Pa λ——摩擦阻力系数。 L ---- 风道长度,m d――圆形风管直径,非圆形管用当量直径;

空气密度,kg/m3 断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H = α ×LU∕S3×Q2 =R f ×Q2 Pa 3 R f=α× LU∕S3 α --- 摩擦阻力系数,单位kgf ?s2∕m4或N ? s7m4, kgf ?s7m4=9.8N ? s7m4 L、U――巷道长度、周长,单位m S—巷道断面积,m Q ---- 风量,单位m/s R ——摩擦风阻,对于已给定的井巷,L,U S都为已知数,故可把上式中的α, L, U, S归结为一个参数R,其单位为:kg∕m7或N ?s7m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→ h f → R f 生产矿井:已测定的h f → R f → α, 再由α→ h f → R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因, 使均匀流动在局部地区受到影响而破坏, 从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。 (2)、渐变 主要是由于沿流动方向出现减速增压现象, 在边壁附近产生涡漩。因为压差

通风阻力_计算公式汇总 2

1、 巷道几何参数的测算 (1)梯形: 断面积 SL=H L *B L 周长 U L (2) 半圆拱: 断面积 S L =(H L -0.1073B L )*B L 周长 U L =3.84* (3)三心拱: 断面积 S L =(HL-0.0867B L )*B L 周长 U L (4)圆形: 断面积 S L =π*R 2 周长 U L =2*π*R (5)矩形: 断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2 U L —巷道断面周长,m ; H L —巷道断面全高,m ; B L —巷道断面宽度或腰线宽度,m ; R —巷道断面圆半径,m ; π—圆周率,取3.14159。 以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。 2、 巷道内风量的计算 (1)两测点之间巷道通过的风量按如下原则确定: Q=(Q i +Q i+1)/2 , m 3/min (2)井巷内风量、风速按以下公式计算: Q L =S L *V L , m 3/min V L =((S-0.4)/S )*(a X+ b ) , m 3/min 式中: Q L --井巷内通过的风量,m 3/min ; S L (S )--井巷断面面积,m 2 V L --井巷内平均风速,m/min X —表风速,m/min a 、 b —风表校正系数 3 井巷内空气密度的计算 湿空气密度用下列公式计算: i b i=d 0.0348(Pi 0.379P )273.15+t ?-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ?≠0), kg/ m 3 Pi --测点i 处空气的绝对静压(大气压力),Pa ; d t --测点i 处空气的干温度,℃; i ?--测点i 处空气的相对湿度,%; P b —测点i 处d t 空气温度下的饱和水蒸气压力,Pa 。

通风计算公式

矿井通风参数计算手册 2005年九月 前言 在通风、瓦斯抽放与利用、综合防尘的设计及报表填报过程中,经常需要进行一些计算,计算过程中经常要查找设计手册、规程、细则、文件等资料,由于资料少,给工作带来不便,为加强通风管理工作,增强“一通三防”理论水平,提高工作效率;根据现场部分技术管理人员提出的要求,结合日常工作需要,参考了《采矿设计手册》,《瓦斯抽放细则》、《防治煤与瓦斯突出细则》、《瓦斯抽放手册》,矿井通风与安全,煤矿安全读本等资料,编写了通风计算手册,以便于通风技术管理人员查阅参考,由于时间伧促,错误之处在所难免,请各位给预批评指证。 2005年9月

编者

目录 一、通风阻力测定计算公式 (1) 二、通风报表常用计算公式 (7) 三、矿井通风风量计算公式 (10) 四、矿井通风网路解算 (24) 五、抽放参数测定 (16) 六、瓦斯抽放设计 (24) 七、瓦期泵参数计算 (26) 八、瓦斯利用 (27) 九、综合防尘计算公式 (28) 十、其它 (30) 通风计算公式 一、通风阻力测定计算公式 1、空气比重(密度)ρ A:当空气湿度大于60%时 P(kg/m3) ρ=0. 461 T 当空气湿度小于60%时

ρ =0. 465T P (1-0.378 P P 饱 ?) (kg/m 3) P~大气压力(mmHg) T~空气的绝对温度 (K) ?~空气相对湿度 (%) P 饱~水蒸气的饱和蒸气压(mmHg ) B : 当空气湿度大于60%时 ρ =0. 003484 T P (kg/m 3) 当空气湿度小于60%时 ρ =0. 003484 T P (1-0.378P P 饱?) (kg/m 3) P~大气压力(pa) T~空气的绝对温度 (K) ?~空气相对湿度 (%) P 饱~水蒸气的饱和蒸气压(pa ) 2、井巷断面(S ) A :梯形及矩形断面 S=H ×b (m 2) B :三心拱 S= b ×(h+0.26b) (m 2) C :半圆形 S= b ×(h+0.39b) (m 2) 式中

通风阻力计算公式汇总

通风阻力计算公式汇总

————————————————————————————————作者:————————————————————————————————日期:

1、 巷道几何参数的测算 (1)梯形: 断面积 SL=H L *B L 周长 U L =4.16*L S (2) 半圆拱: 断面积 S L =(H L -0.1073B L )*B L 周长 U L =3.84*L S (3)三心拱: 断面积 S L =(HL-0.0867B L )*B L 周长 U L =4.10*L S (4)圆形: 断面积 S L =π*R 2 周长 U L =2*π*R (5)矩形: 断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2 U L —巷道断面周长,m ; H L —巷道断面全高,m ; B L —巷道断面宽度或腰线宽度,m ; R —巷道断面圆半径,m ; π—圆周率,取3.14159。 以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。 2、 巷道内风量的计算 (1)两测点之间巷道通过的风量按如下原则确定: Q=(Q i +Q i+1)/2 , m 3/min (2)井巷内风量、风速按以下公式计算: Q L =S L *V L , m 3/min V L =((S-0.4)/S )*(a X+ b ) , m 3/min 式中: Q L --井巷内通过的风量,m 3/min ; S L (S )--井巷断面面积,m 2 V L --井巷内平均风速,m/min X —表风速,m/min a 、 b —风表校正系数 3 井巷内空气密度的计算 湿空气密度用下列公式计算: i b i=d 0.0348(Pi 0.379P )273.15+t ?-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ?≠0), kg/ m 3 Pi --测点i 处空气的绝对静压(大气压力),Pa ; d t --测点i 处空气的干温度,℃;

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生得原因 当空气沿井巷运动时,由于风流得粘滞性与惯性以及井巷壁面等对风流得阻滞、扰动作用而形成通风阻力,它就是造成风流能量损失得原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)与局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同得流速,会形成不同得流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行得方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点得运动速度在大小与方向上都随时发生变化,成为互相混杂得紊乱流动,称为紊流(或湍流)。(降低风速得原因) (二)、巷道风速分布 由于空气得粘性与井巷壁面摩擦影响,井巷断面上风速分布就是不均匀得。 在同一巷道断面上存在层流区与紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力得计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间得摩擦与流体与井巷壁面之间得摩擦所形成得阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还就是紊流,以风流压能损失(能量损失)来反映得摩擦阻力可用下式来计算: H f=λ×L/d×ρν2/2 pa λ——摩擦阻力系数。 L——风道长度,m d——圆形风管直径,非圆形管用当量直径;

ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中得平均流速得一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷得摩擦阻力计算式为: Hf =α×LU/S3×Q2 =R f×Q2pa Rf=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9、8N·s 2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s Rf——摩擦风阻,对于已给定得井巷,L,U,S都为已知数,故可把上式中得α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或 N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→hf→R f 生产矿井:已测定得hf→R f→α, 再由α→h f→Rf 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化与产生涡流等,造成风流得能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布得变化比较复杂性,对局部阻力得计算一般采用经验公式。 1、几种常见得局部阻力产生得类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离得现象,在主流与边壁之间形成涡漩区,从而增加能量损失。 (2)、渐变

矿井通风习题集

《矿井通风》习题集 绪论 思考题 1、矿井通风的任务主要有哪些? 2、我国煤矿安全生产的指导方针是什么? 第一章矿井空气 思考题 1-1 地面空气的主要成分是什么?矿井空气与地面空气有何不同? 1-2 什么是矿井空气的新鲜风流?污风风流? 1-3 氧气有哪些性质?造成矿井空气中氧气减少的原因有哪些? 1-4 矿井空气中常见的有害气体有哪些?它们的来源和对人体的影响如何?《规程》对这些有害气体的最高允许浓度是如何规定的? 1-5 用比长式检测管法检测有害气体浓度的原理是什么?可用来检测哪些气体? 1-6 防止有害气体危害的措施有哪些? 1-7 什么叫矿井气候条件?气候条件对人体热平衡有何影响? 1-8 什么叫空气的绝对湿度和相对湿度?矿井空气的湿度一般有何变化规律? 1-9 为什么在矿井的进风路线中冬暖夏凉、冬干夏湿?

1-10 《规程》对矿井气候条件的安全标准有何规定? 1-11 矿井的预热和降温主要有哪些方面的措施? 1-12 风表按原理和测风范围分为几类?机械叶轮式风表的优缺点各是什么? 1-13 风表测风时为什么要校正其读数?迎面法与侧身法测风的校正系数为何不同? 1-14 风表校正曲线的含义是什么?为什么风表要定期校正? 1-15 对测风站有哪些要求? 1-16 测风的步骤有哪些?应注意哪些问题? 习题 1-1 井下某采煤工作面的回风巷道中,已知CO2的绝对涌出量为6.5m3/min,回风量为520 m3/min,问该工作面回风流中的CO2浓度是多少?是否符合安全浓度标准?(1.25%;符合标准)1-2 测得井下某一工作面风流的干球温度为22℃,湿球温度为20℃,风速为1.5m/s,求其相对湿度和等效温度分别是多少?(83%;14℃) 1-3 井下某测风地点为半圆拱型断面,净高2.8m,净宽3m,用侧身法测得三次的风表读数分别为286、282、288,测定时间均为1min,该风表的校正曲线表达式为v真=0.23+1.002v表(m/s),试求该处的风速和通过的风量各为多少?(4.74 m/s;35.12 m3/s)

相关文档
最新文档