概率论与数理统计 答案 第七章

概率论与数理统计 答案 第七章
概率论与数理统计 答案 第七章

第七章 参数估计

1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2

的矩估计是 6

1

22

10

6)(1

?,002.74?-=?=-=

==∑n

i i

x X n

X σ

μ

621086.6-?=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)?

??>=+-其它,0,)()1(c

x x c θx f θθ

其中c >0为已知,θ>1,θ为未知参数。

(2)??

???≤≤=-.,01

0,)(1其它x x θx f θ

其中θ>0,θ为未知参数。

(5)()p p m x p p

x X P x

m x

m

x

,10,,,2,1,0,)

1()(<<=-==- 为未知参数。

解:(1)X θc θθc θc θc θdx x

c θdx x xf X E θθ

c

θ

θ=--=-==

=

+-∞+-∞+∞

-?

?

1

,11)()(1

令,得

c

X X θ-=

(2),1

)()(10

+=

=

=

?

?

∞+∞

-θθdx x θdx x xf X E θ

2

)1(

,1

X

X θX θθ-==+得令

(5)E (X ) = mp 令mp = X , 解得m

X

p

=? 3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数

1

211

)

()()(+-===

θn θ

n n n

i i x x x c

θx f θL

0ln ln )(ln ,

ln )

1(ln )ln()(ln 1

1

=-+=-++=∑∑==n

i i

n

i i

x

c n n

θ

θ

d θL d x

θc θn θn θL

∑=-=

n

i i

c

n x

n

θ1

ln ln ? (解唯一故为极大似然估计量)

(2)∑

∏=--

=-+-===n

i i θn n n

i i x θθn

θL x x x θ

x f θL 1

1

212

1

ln )1()ln(2)(ln ,)

()()(

∑∑====+

?-=n

i i

n

i i

x

n

θx

θ

θn θ

d θL d 1

2

1

)ln (?,

0ln 21

12)(ln 。

(解唯一)故为极大似然估计量。

(5)∑∑==-

=-???

? ?????? ??===∏

n

i n

i i

i

x mn x n

n

i i p p x m

x m x X P p L 1

1)

1(}{)(11 ,

()),1ln()(ln ln )(ln 1

1

1

p x

mn p x

p L n

i i

n

i i

n

i m x i

--

++=

∑∑∑===

01)

(ln 1

1

=---

=

∑∑==p

x

mn p

x

dp

p L d n

i i

n

i i

解得 m

X mn

x

p n

i i

=

=

∑=2

,(解唯一)故为极大似然估计量。 4.[四(2)] 设X 1,X 1,…,X n 是来自参数为λ的泊松分布总体的一个样本,试求λ的极大似然估计量及矩估计量。

解:(1)矩估计 X ~ π (λ ),E (X )= λ,故λ?=X 为矩估计量。

(2)极大似然估计λ

n n x n

i i e

x x x λλx P λL n

i i

-=∑==

=∏!

!!);()(211

1 , λ

n x λx

λL n

i i

n i i

--

=

∑∑==1

1

!ln ln )(ln

X λn λ

x

λ

d λL d n

i i

==-=

∑=?,0)(ln 1

解得为极大似然估计量。

(其中),1,0,!

}{);( ====-i λ

i x

i i x e x λx X P λx p i

5.[六] 一地质学家研究密歇根湖湖地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数。假设这100次观察相互独立,并由过去经验知,它们都服从参数为n =10,P 的二项分布。P 是该地区一块石

解:λ的极大似然估计值为λ?=X =0.499 [四(1)] 设总体X 具有分布律

其中θ(0<θ<1)为未知参数。已知取得了样本值x 1=1,x 2=2,x 3=1,试求θ的矩估计值和最大似然估计值。

解:(1)求θ的矩估计值

θ

θθθθθθθθ

X E 23)]1()][1(3[)

1(3)1(221)(2

2

-=-+-+=-+-?+?=

X θX E =-=23)(令 则得到θ的矩估计值为6

523

1

2132

3?=++-

=-=X

θ

(2)求θ的最大似然估计值

似然函数}1{}2{}1{}{)(3213

1

======∏=X P X P X P x X P θL i i i

)

1(2)1(25

2

2

θθθ

θθθ

-=?-?=

ln L (θ )=ln2+5ln θ+ln(1-θ) 求导

011

65)(ln =--=

θ

θ

d θL d 得到唯一解为6

5?=

θ

8.[九(1)] 设总体X ~N (μ,σ 2),X 1,X 1,…,X n 是来自X 的一个样本。试确定常

数c 使21

1

21)(σX X c n i i i 为∑-=+-的无偏估计。

解:由于

∑∑∑-=++-=+-=+-+-=-=-1

1

2

12

11

1

2

11

1

2

1]

))(()(])([])([n i i i i i n i i i n i i i X X E X X D c X X E c X X c E

=∑∑-=-=++-=+=-++1

1

1

1

2

22

2

11

1)12()02(])()()([n i n i i i i σ

n c σ

c

EX EX

X D X D c

当的无偏估计

为时2

1

1

21)(,)

1(21σ∑-=+--=n i i i X X c n c 。

[十] 设X 1,X 2, X 3, X 4是来自均值为θ的指数分布总体的样本,其中θ未知,设有估计量

)(3

1

)(6143211X X X X T +++=

5)432(43212X X X X T +++= 4

)

(432

13X X X

X T +++=

(1)指出T 1,T 2, T 3哪几个是θ的无偏估计量; (2)在上述θ的无偏估计中指出哪一个较为有效。 解:(1)由于X i 服从均值为θ的指数分布,所以

E (X i )= θ,

D (X i )= θ 2

,

i=1,2,3,4

由数学期望的性质2°,3°有

θX E X E X E X E T E =+++=)]()([31

)]()([61)(43211 θX E X E X E X E T E 2)](4)(3)(2)([5

1

)(43212=+++= θX E X E X E X E T E =+++=

)]()()()([4

1

)(43213 即T 1,T 2是θ的无偏估计量

(2)由方差的性质2°,3°并注意到X 1,X 2, X 3, X 4独立,知

2

43211185)]()([91)]()([361)(θX D X D X D X D T D =+++=

2

432124

1)]()()()([161)(θX D X D X D X D T D =+++=

D (T 1)> D (T 2) 所以T 2较为有效。

14.[十四] 设某种清漆的9个样品,其干燥时间(以小时计)分别为6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0。设干燥时间总体服从正态分布N ~(μ,σ2),求μ的置信度为0.95的置信区间。(1)若由以往经验知σ=0.6(小时)(2)若σ为未知。

解:(1)μ的置信度为0.95的置信区间为(2

αz n

σX ±

, 计算得)392.6,608.5()96.19

6.00.6(,6.0,96.1,0.6025.0=?±===即为查表σz X

(2)μ的置信度为0.95的置信区间为()1(2

-±n t n

S X α)

,计算得0.6=X ,查表t 0.025(8)=2.3060.

)

442.6,558.5()3060.23

33.00.6(.33.064.28

1)(8

1

9

1

2

2

=?±

=?=

-=

∑=故为i i x x S

16.[十六] 随机地取某种炮弹9发做试验,得炮弹口速度的样本标准差为s=11(m/s)。设炮口速度服从正态分布。求这种炮弹的炮口速度的标准差σ的置信度为0.95的置信区间。

解:σ的置信度为0.95的置信区间为 )1.21,4.7()18

.2118,

535

.17118(

))

1()1(,

)

1()1((

22

12

22

2

=??=-----

n S

n n S

n α

αχ

χ

其中α=0.05, n=9 查表知 180.2)8(,535.17)8(2975

.02025

.0==χ

χ

19.[十九] 研究两种固体燃料火箭推进器的燃烧率。设两者都服从正态分布,并且已知燃烧率的标准差均近似地为0.05cm/s ,取样本容量为n 1=n 2=20.得燃烧率的样本均值分别为./24,/1821s cm x s cm x ==设两样本独立,求两燃烧率总体均值差μ1-μ2的置信度为0.99的置信区间。

解:μ1-μ2的置信度为0.99的置信区间为

).96.5,04.6()220

05.058

.22418()(2

2

2

2

1

2

1

2

2

1--=?+-=+

±-n n z X

X σσα

其中α=0.01,z 0.005=2.58,

n 1=n 2=20, 24,18,05.0212

2221====X X σσ

20.[二十] 设两位化验员A ,B 独立地对某中聚合物含氯两用同样的方法各做10次

测定,其测定值的样本方差依次为2

222,.6065.0,5419.0B A B A σσS S 设==分别为A ,B 所测

定的测定值总体的方差,设总体均为正态的。设两样本独立,求方差比22B

A

σ

σ的置信度

为0.95的置信区间。

解:22

B

A

σ

σ

的置信度为0.95的置信区间

))

1,1(,

)

1,1((

212

122

212

22

-----n n F

S S n n F S S αB

A

αB

A

)6065

.003

.45419.0,03.46065.05419.0(

??== (0.222, 3.601).

其中n 1=n 2=10,α=0.05,F 0.025(9,9)=4.03, 03

.41

)9,9(1)9,9(025.0975.0==F F 。

第八章 假设检验

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。

设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.

解:设测定值总体X ~N (μ,σ 2),μ,σ 2

均未知

步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25

.3--=

n t n

S

X t

(3)H 0的拒绝域为| t |≥).1(2

-n t α

(4)n=5, α = 0.01,由计算知01304.0)

(1

1,252.35

1

2

=--=

=∑=i i

X X

n S x

查表t 0.005(4)=4.6041, )1(343.05

01304.025

.3252.3||2

-<=-=

n t t α

(5)故在α = 0.01下,接受假设H 0

2.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(2

1

≈-=

l ω,这样的矩形称为黄金矩形。这种尺寸的矩形使人们看上去有良好的感觉。现代建筑构件(如窗架)、 工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)

H 0:μ = 0.618

H 1:μ≠0.618

0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618

.0--=

n t n

S

X t

(3)H 0的拒绝域为| t |≥).1(2

-n t α

(4)n=20 α = 0.05,计算知

0925.0)

(1

1,6605.011

2

1

=--=

==

∑∑==n

i i

n

i i

x x

n S x

n

x ,

)1(055.220

0925

.0618.06605.0||,0930.2)1(2

2

-<=-=

=-n t t n t αα

(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.618 3.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。试在显著水平α = 0.05下确定这批元件是否合格?设总体均值为μ。即需检验假设H 0:μ≥1000,H 1:μ<1000。

解:步骤:(1):0H μ≥1000;H 1:μ<1000;(σ =100已知)

(2)H 0的拒绝域为

αz n

σ

x -≤-1000

(3)n =25,α = 0.05,950=x , 计算知

645.15.225

100

1000

05.0=-<-=-z x

(4)故在α = 0.05下,拒绝H 0,即认为这批元件不合格。

12.[十一] 一个小学校长在报纸上看到这样的报导:“这一城市的初中学生平均每周看8小时电视”。她认为她所领导的学校,学生看电视的时间明显小于该数字。为此她向100个学生作了调查,得知平均每周看电视的时间5.6=x 小时,样本标准差为s =2小时。问是否可以认为这位校长的看法是对的?取α = 0.05。(注:这是大样本检验问题。由中心极限定理和斯鲁茨基定理知道不管总体服从什么分布,只要方差存在,当n 充分 大时

n

s

μx -近似地服从正态分布。)

解:(1)提出假设H 0:μ≤8;H 1:μ>8 (2)当n 充分大时,

n s

μx -近似地服从N (0,1)分布

(3)H 0的拒绝域近似为n

s

μx -≥z α

(4)n =100,α = 0.05,5.6=x ,S =2,由计算知

645.15.7100

2

8

5.6||05.0=>=-=

z t

(5)故在α = 0.05下,拒绝H 0,即认为校长的看法是不对的。

14.[十三] 某种导线,要求其电阻的标准差不得超过0.005(欧姆)。今在生产的一批导线中取样品9根,测得s =0.007(欧姆),设总体为正态分布。问在水平α = 0.05能否认为这批导线的标准差显著地偏大?

解:(1)提出H 0:σ ≤0.005;H 1:σ >0.005 (2)H 0的拒绝域为

)1(005

.0)1(22

2

-≥-n χ

S

n α

(3)n =9,α = 0.05,S =0.007,由计算知

)1(68.15005

.0007.08005

.0)1(22

2

2

2

->=?=

-n χ

S

n α

查表507.15)8(205

.0=χ

(4)故在α = 0.05下,拒绝H 0,认为这批导线的标准差显著地偏大。 15.[十四] 在题2中记总体的标准差为σ。试检验假设(取α = 0.05)

H 0:σ 2 =0.112, H 1:σ 2 ≠0.112

。 解:步骤(1)H 0:σ 2 =0.112; H 1:σ 2 ≠0.112 (2)选取检验统计量为)1(~11

.0)1(2

2

2

2

--=

n χ

S n χ

(3)H 0的拒绝域为)1()1(2

2

12

22

2

-≤-≥-

n χ

χn χ

χ

αα或

(4)n =20,α = 0.05,由计算知S 2=0.0925 2

437.1311

.0)1(2

2

=-S n

查表知907.8)19(,852.32)19(2

975.02

025.0==χχ

(5)故在α = 0.05,接受H 0,认为总体的标准差σ为0.11.

16.[十五] 测定某种溶液中的水份,它的10个测定值给出s=0.037%,设测定值总体为正态分布,σ 2

为总体方差。试在水平α = 0.05下检验假设H 0:σ ≥0.04%;H 1:σ <0.04%。

解:(1)H 0:σ 2 ≥(0.04%)2;H 1:σ 2 < (0.04%)2

(2)H 0的拒绝域为

)1(%)

04.0()1(212

2

-≤--n χ

S

n α (3)n =10,α = 0.05,S =0.037%,查表知325.3)9(2

95

.0=χ

由计算知

).9(701.7%)

04.0()037.09%)

04.0()1(295

.02

2

2

S n >=?=

-

(4)故在α = 0.05下,接受H 0,认为σ大于0.04%

17.[十六] 在第6[五]题中分别记两个总体的方差为2221σσ和。试检验假设(取α =

0.05)H 0:2

221σσ和以说在第6[五]题中我们假设2221σσ=是合理的。

解:(1)H 0:2

221122

21:,σσH σσ≠= (2)选取检验统计量为 )1,1(~212

2

2

1--=

n n F S

S F

(3)H 0的拒绝域为)1,1()1,1(212

1212

--≤--≥-

n n F

F n n F F αα或

(4)n 1=8,n 2=10,α = 0.05,查表知F 0.025(7,9)= 4.20

298.000084.000025

.0,207.082.41)7,9(1)9,7(22

2

1025.0975

.0==

====S S F F F

F 0.975(7,9)

(5)故在α = 0.05下,接受H 0,认为2221σσ=

18.[十七] 在第8题[七]中分别记两个总体的方差为2

221σσ和。试检验假设(取α = 0.05)H 0:2

22112221:,σσH σσ≠=以说明在第8[七]题中我们假设2221σσ=是合理的。

解:(1)H 0:2

22112221:,σσH σσ≠=

(2)选取检验统计量 2

2

2

1S

S F =

(3)n 1=n 2=12,α = 0.05,查表知

F 0.025(11,11)= 3.34,299.034.31

)11,11(1)11,11(025.0975.0===F F

由计算知

34.3932.0299.0,1,932.02

2

2

1

2

2

21

<=<

==S S S

S

(4)故在α = 0.05下,接受H 0,认为2221σσ=

24.[

问能否认为一页的印刷错误个数服从泊松分布(取α = 0.05)。 解:(1)H 0:总体X ~π(λ );H 1:X 不服从泊松布;(λ未知) (2)当H 0成立时,λ的最大似然估计为.1?==x λ (3)H 0的拒绝域为∑

-->-=

)1(??2

22

γk χn p

n f χαi i

(4)n =100

3679.0!0}0{?10

====-e X P P 3679.0!

11}1{?11

1

====-e X P P

18397.0!21}2{?1

22

====-e X P P 06132.0!

31}3{?1

3

3

====-e X P P

01533.0!41}4{?1

44

====-e X P P 003066.0!

51}5{?1

5

5

====-e X P P

000511.0!61}6{?1

66

====-e X P P

000083

.0?

1}7{?6

7

=-===∑=i i

P

X P P

对于j >3,5?

P n 将其合并得

023.8?7

3=∑=j j

P

n

合并后,K =4,Y =1 查表知991.5)114(205

.0=--χ

由计算知444.1100023

.85397.181979.364079.36362

2222

=-+++=χ

(5)故在α = 0.05下,接受H 0,认为一页的印刷错误个数服从泊松分布。

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计练习题练习题及参考答案(东师)

《 概率论与数理统计》练习题一 一、判断正误,在括号内打√或× 1.n X X X ,,,21 是取自总体),(2 N 的样本,则 n i i X n X 1 1 服从)1,0(N 分布; 2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ; 3.(√)设 <<x x |, 20|<x x A , 31|<x x B ,则B A 表示 10|<<x x ; 4.若事件A 与B 互斥,则A 与B 一定相互独立; 5.对于任意两个事件B A 、,必有 B A B A ; 6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 7.(√)B A 、为两个事件,则A B A AB ; 8.(√)已知随机变量X 与Y 相互独立,4)(, 8)( Y D X D ,则4)( Y X D ; 9.(√)设总体)1,(~ N X , 1X ,2X ,3X 是来自于总体的样本,则3216 3 6161?X X X 是 的无偏估计量; 10.(√)回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。 二、填空题 1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示为C AB 2.设随机变量X 服从二项分布),(p n B ,则 EX DX p 1: 3. ,, , 0,1)(其他b x a a b x f 是 均匀 分布的密度函数; 4.若事件C B A 、、相互独立,且25.0)( A P ,5.0)( B P ,4.0)( C P ,则)(C B A P =分布函数; 5.设随机变量X 的概率分布为 则 a )()(Y D X D ; 6.设随机变量X 的概率分布为

概率论与数理统计习题及答案

概率论与数理统计习题及答案 习题一 1.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C (1)A发生,B,C都不发生; (2)A与B发生,C (3)A,B,C都发生; (4)A,B,C (5)A,B,C都不发生; (6)A,B,C (7)A,B,C至多有2个发生; (8)A,B,C至少有2个发生. 【解】(1)A BC(2)AB C(3)ABC (4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC (5) ABC=A B C(6) ABC (7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC 3.. 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 5.设A,B是两事件,且P(A)=0.6,P(B)=0.7, (1)在什么条件下P(AB (2)在什么条件下P(AB) 【解】(1)当AB=A时,P(AB)取到最大值为0.6. (2)当A∪B=Ω时,P(AB)取到最小值为0.3. 6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率. 【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

= 14+14+13-112=34 7. 52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】 p =5332 131313131352C C C C /C 8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)= 517=(17 )5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567 =(67)5 (3) 设A 3={五个人的生日不都在星期日} P (A 3)=1-P (A 1)=1-( 17 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计练习册题目

第一章 概率论的基本概念 习题一 随机试验、随机事件 一、判断题 1.()A B B A =?- ( ) 2.C B A C B A =? ( ) 3.()φ=B A AB ( ) 4.若C B C A ?=?,则B A = ( ) 5.若B A ?,则AB A = ( ) 6.若A C AB ?=,φ,则φ=BC ( ) 7.袋中有1个白球,3个红球,今随机取出3个,则 (1)事件“含有红球”为必然事件; ( ) (2)事件“不含白球”为不可能事件; ( ) (3)事件“含有白球”为随机事件; ( ) 8.互斥事件必为互逆事件 ( ) 二、填空题 1. 一次掷两颗骰子, (1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ; (2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。 2.化简事件()()() =???B A B A B A 。 3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件: (1)A 不发生,B 与C 都发生可表示为 ; (2)A 与B 都不发生,而C 发生可表示为 ; (3)A 发生,但B 与C 可能发生也可能不发生可表示为 ; (4)A,B,C 都发生或不发生可表示为 ; (5)A,B,C 中至少有一个发生可表示为 ; (6)A,B,C 中至多有一个发生可表示为 ; (7)A,B,C 中恰有一个发生可表示为 ; (8)A,B,C 中至少有两个发生可表示为 ; (9)A,B,C 中至多有两个发生可表示为 ; (10)A,B,C 中恰有两个发生可表示为 ; 三、选择题 1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。 A 、A 与D 是互不相容的 B 、A 与 C 是相容的 C 、B 与C 是相容的 D 、B 与D 是相互对应的事件 2.下列关系中能导出“A 发生则B 与C 同时发生”的有( ) A 、A ABC =; B 、A C B A =??; C 、A BC ? ; D 、C B A ??

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题 一、单项选择题 1、设事件 A 与 B 互不相容,且 P (A )> 0, P (B )> 0,则一定有( ) (A ) P(A) 1 P(B) ; (B )P(A|B) P(A) ; (C ) P(A| B) 1; (D ) P(A|B) 1。 2、设事件 A 与 B 相互独立,且 P (A )> 0, P (B )> 0,则( )一定成立 (A ) P(A|B) 1 P(A); ( B ) (C ) P( A) 1 P(B) ; ( D ) P(A|B) 0; P(A|B) P(B)。 3、设事件 A 与 B 满足 P (A )> 0, P ( B )> 0,下面条件( )成立时,事件 A 与 B 一定独立 ( A ) ( C ) P( AB) P( A)P(B) ; (B ) P( A B) P( A)P(B) ; P(A|B) P(B) ; (D ) P(A|B) P(A)。 4、设事件 A 和 B 有关系 B A ,则下列等式中正确的是( ) ( A ) ( C ) P( AB) P( A) ; (B ) P(B|A) P(B); (D ) P(A B) P(A); P(B A) P(B) P( A) 。 5、设 A 与 B 是两个概率不为 0 的互不相容的事件,则下列结论中肯定正确的是( ) (A ) A 与 B 互不相容; (B ) A 与 B 相容; (C ) P(AB) P(A)P(B); (D ) P(A B) P(A)。 6、设 A 、B 为两个对立事件,且 P (A ) ≠0, P (B ) ≠0,则下面关系成立的是( ) (A ) P( A B) P( A) P( B); (B ) P( A B) P(A) P(B); (C ) P( AB ) P( A) P( B) ; (D ) P(AB) P(A)P(B)。 7、对于任意两个事件 A 与 B , P( A B) 等于( ) (A ) P( A) P( B) (B ) P( A) P(B) P( AB) ; (C ) P( A) P( AB) ; (D ) P(A) P(B) P(AB) 。 二、填空题 1、若 A B , A C ,P (A )=0.9, P(B C) 0.8,则 P( A BC ) =__________。 2、设 P (A )=0.3,P ( B )=0.4,P (A|B )=0.5,则 P (B|A )=_______ , P( B | A B ) =_______。 、已知 P( A) 0.7 , P(A B) 0.3 ,则 P(AB) 。 3 4、已知事件 A 、 B 满足 P( AB) P( A B) ,且 P( A) p ,则 P( B) = 。 5、一批产品,其中 10 件正品, 2 件次品,任意抽取 2 次,每次抽 1 件,抽出后不再放回,则第 2 次抽出

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计课本_百度文库

第二章随机变量及其分布第一节随机变量及其分布函数 一、随机变量 随机试验的结果是事件,就“事件”这一概念而言,它是定性的。要定量地研究随机现象,事件的数量化是一个基本前提。很自然的想法是,既然试验的所有可能的结果是知道的,我们就可以对每一个结果赋予一个相应的值,在结果(本事件)数值之间建立起一定的对应关系,从而对一个随机试验进行定量的描述。 例2-1 将一枚硬币掷一次,观察出现正面H、反面T的情况。这一试验有两个结果:“出现H”或“出现T”。为了便于研究,我们将每一个结果用一个实数来代表。比如,用数“1”代表“出现H”,用数“0”代表“出现T”。这样,当我们讨论试验结果时,就可以简单地说成结果是1或0。建立这种数量化的关系,实际上就相当于引入一个变量X,对于试验的两个结果,将X的值分别规定为1或0。如果与样本空间 { } {H,T}联系起来,那么,对于样本空间的不同元素,变量X可以取不同的值。因此,X是定义在样本空间上的函数,具体地说是 1,当 H X X( ) 0,当 T 由于试验结果的出现是随机的,因而X(ω)的取值也是随机的,为此我们称 X( )X(ω)为随机变量。 例2-2 在一批灯泡中任意取一只,测试它的寿命。这一试验的结果(寿命)本身就是用数值描述的。我们以X记灯泡的寿命,它的取值由试验的结果所确定,随着试验结果的不同而取不同的值,X是定义在样本空间 {t|t 0}上的函数 X X(t) t,t 因此X也是一个随机变量。一般地有 定义2-1 设 为一个随机试验的样本空间,如果对于 中的每一个元素 ,都有一个实数X( )与之相对应,则称X为随机变量。 一旦定义了随机变量X后,就可以用它来描述事件。通常,对于任意实数集合L,X在 L上的取值,记为{X L},它表示事件{ |X( ) L},即 。 {X L} { |X( ) L} 例2-3 将一枚硬币掷三次,观察出现正、反面的情况。设X为“正面出现”的次数,则X是一个随机变量。显然,X的取值为0,1,2,3。X的取值与样本点之间的对应关系如表2-1所示。 表2-1 表2-1

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

相关文档
最新文档