糖脂代谢通路主要代谢酶类及中间产物中英文对照

糖脂代谢通路主要代谢酶类及中间产物中英文对照
糖脂代谢通路主要代谢酶类及中间产物中英文对照

【附表2】糖脂代谢通路主要代谢酶类及中间产物

糖脂代谢病的发病机制多重打击学说

龙源期刊网 https://www.360docs.net/doc/5f11501277.html, 糖脂代谢病的发病机制:多重打击学说 作者:华爽吕明慧刘倩颖何兴祥荣向路叶得伟郭姣 来源:《世界中医药》2019年第03期 摘要;血糖異常、血脂异常、非酒精性脂肪肝、超重、高血压、动脉粥样硬化性心脑血管病等代谢性疾病发病率居高不下,是世界性难题。临床流行病学研究目前已证实,2型糖尿病、高脂血症等代谢性疾病常合并发生,但目前对导致上述代谢异常发生的分子机制尚未阐明,并制约了综合防控疗效优良的创新药物和诊疗手段的研发。郭姣教授率团队基于大样本临床流行病学、转化研究数据,提出“糖脂代谢病”创新理论,认为上述代谢异常以糖、脂代谢紊乱为特征,发病过程由遗传、环境、精神等多种因素参与,以神经-内分泌失调、胰岛素抵抗、氧化应激、炎性反应、肠道菌群失调为核心病理,以高血糖、血脂失调、非酒精性脂肪肝、超重、高血压及动脉粥样硬化等单一或合并出现为主要临床表现特点。本文综合神经-内分泌-免疫紊乱、胰岛素抵抗、氧化应激、炎性反应、肠道菌群失调等环节与糖脂代谢异常及其诱发多器官病变的病理机制的研究进展,提出糖脂代谢病发病机制的“多重打击学说”。该学说对于揭示多种代谢异常发生的核心、共性分子机制及从病证结合角度阐释中医证候的生物学本质具有重要意义。 关键词;糖脂代谢病;发病机制;神经-内分泌轴;胰岛素抵抗;氧化应激;代谢性炎性反应;肠道 菌群失调 The Multiple-hit Pathogenesis of Glucolipid Metabolic Disorders Hua Shuang1,2,3,Lyu Minghui1,2,3,Liu Qianying1,2,3,He Xingxiang2,Rong Xianglu1,2,3,Ye Dewei1,2,3,Guo jiao1,2,3 (1 Joint Laboratory between Guangdong and Hong Kong on Metabolic Diseases,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China; 2 Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China; 3 Institute of Traditional Chinese medicine,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China) Abstract;The high prevalence and incidence of hyperglycemia,dyslipidemia,nonalcoholic fatty liver disease,obesity,hypertension,atherosclerosis and its related cardiovascular diseases has emerged as one of leading causes of morbidity and mortality worldwide.Epidemiological data well established that two or several above-mentioned metabolic disorders usually co-exist in obese subjects.However,the mechanisms underlying the co-existence of these metabolic disorders have not been well characterized currently,exerting negative effect on the development of new drugs and therapeutic approaches for these diseases.Based on the data from epidemiological and translational

糖类代谢和脂肪代谢

第四章生命的物质变化和能量转换 第4节生物体内营养物质的转变 一、教学目标: 知识与技能:1、知道糖类、脂肪在生物体内的代谢过程。 2、知道糖类、脂肪之间的转变关系。 3、初步学会用所学知识解释日常生活中的营养物质转变实例。 过程与方法:通过分析日常生活中糖类、脂肪代谢及相互转变的实例,感受这两大类营养成分在体内的代谢过程。 情感态度与价值观:通过学习营养物质的相互转变,逐步养成科学合理的饮食习惯。 二、重点: 1、糖类的代谢 2、脂肪的代谢 三、难点: 糖类、脂肪之间的转变过程及途径 四、教学准备: 多媒体课件、学案 五、教学过程

附:生物体内营养物质的转变(学案) 学习目标: 1.知道糖类、脂肪在生物体内的代谢过程 2.知道糖类、脂肪之间的转变关系 3.通过学习营养物质转变,结合生活实际,养成健康的饮食与生活习惯 学习重点: 糖类、脂肪代谢过程 学习难点: 糖类、脂肪的相互转变 学习过程: 一.自主学习 1.知识回顾:人体消化系统组成、食物消化过程与消化酶;物质进出细胞的方式;生物体中能源物质的种类;细胞有氧呼吸的过程(三羧酸循环) (1)人体所需营养物质主要有_______________________________ _ ; 可以通过_____________途径获得。当我们吃了食物,实际上食物__________(是,不是)已经进入了人体,而是需要先经过___________________然后才能够被利用。 (2)三大主要营养物质分别是____________、______________、________________; 淀粉的消化过程是:___________________________________________________ _ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 蛋白质的消化过程是:_________________________________________________ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 脂肪的消化过程是:________________________________________ ____________;消化的最终产物是__________和_________,以______________方式被小肠上皮细胞吸收。2.阅读,思考,讨论: 糖类代谢 (1)生物体细胞主要以__________________方式利用葡萄糖获得能量。 (2)动物体内的___ 细胞和细胞可以以形式储存一定量的糖类物质。(3)北京填鸭在肥育期要填饲过量的糖类饲料,减少运动,从而使鸭在短期内变成肥鸭,这说明什么? () 脂类代谢 (1)为什么长期偏食高油、高脂食物的人更容易肥胖? (2)饮食中摄入脂肪就不能控制体重了吗?

糖代谢百度百科

食物中的糖主要是淀粉,另外包括一些双糖及单糖。多糖及双糖都必须经过酶的催化水解成单糖才能被吸收。 食物中的淀粉经唾液中的α淀粉酶 作用,催化淀粉中α-1,4-糖苷键的水解,产物是葡萄糖、麦芽糖、麦芽寡糖及糊精。由于食物在口腔中停留时间短,淀粉的主要消化部位在小肠。小肠中含有胰腺分泌的α淀粉酶,催化淀粉水解成麦芽糖、麦芽三糖、α糊精和少量葡萄糖。在小肠黏膜刷状缘上,含有α糊精酶,此酶催化α极限糊精的α-1,4-糖苷键及α-1,6- 糖苷键水解,使α-糊精水解成葡萄糖;刷状缘上还有麦芽糖酶可将麦芽三糖及麦芽糖水解为葡萄糖。小肠黏膜还有蔗糖酶和乳糖酶,前者将蔗糖分解成葡萄糖和果糖,后者将乳糖分解成葡萄糖和半乳糖。 糖被消化成单糖后的主要吸收部位是小肠上段,己糖尤其是葡萄糖被小肠上皮细胞摄取是一个依赖Na+的

糖代谢 耗能的主动摄取过程,有特定的载体参与:在小肠上皮细胞刷状缘上,存在着与细胞膜结合的Na+-葡萄糖联合转运体,当Na+经转运体顺浓度梯度进入小肠上皮细胞时,葡萄糖随Na+一起被移入细胞内,这时对葡萄糖而言是逆浓度梯度转运。这个过程的能量是由Na+的浓度梯度(化学势能)提供的,它足以将葡萄糖从低浓度转运到高浓度。当小肠上皮细胞内的葡萄糖浓度增高到一定程度,葡萄糖经小肠上皮细胞基底面单向葡萄糖转运体(unidirectional glucose transporter)顺浓度梯度被动扩散到血液中。小肠上皮细胞内增多的Na+通过钠钾泵(Na+-K+ ATP 酶),利用ATP提供的能量,从基底面被泵

出小肠上皮细胞外,进入血液,从而降低小肠上皮细胞内Na+浓度,维持刷状缘两侧Na+的浓度梯度,使葡萄糖能不断地被转运。 编辑本段 血糖 血液中的葡萄糖,称为血糖(blood sugar)。体内血糖浓度是反映机体内糖代谢状况的一项重要指标。正常情况下,血糖浓度是相对恒定的。正常人空腹血浆葡萄糖糖浓度为3.9~6.1mmol/L(葡萄糖氧化酶法)。空腹血浆葡萄糖浓度高于7.0 mmol/L称为高血糖,低于3.9mmol/L 称为低血糖。要维持血糖浓度的相对恒定,必须保持血糖的来源和去路的动态平衡。 一、血糖的主要来源及去路 血糖的来源:①食物中的糖是血糖的主要来源;②肝糖原分解是空腹时血糖的直接来源;③非糖物质如甘油、乳酸及生糖氨基酸通过糖异生作用生成葡萄糖,在长期饥饿时作为血糖的来源。

糖脂代谢异常指导方案

一、保肝肝指导 (一)生活起居: 1、注意肝脏保护,禁烟限酒,合理用药,减少酒精性、药物性肝损伤。 2、保证良好睡眠,避免熬夜,夜间12-2点是肝脏排毒的最佳时间,熬夜会降低肝脏排毒效果,加重肝脏负担。 3、生活中注意避免各种化学物质对肝脏的慢性伤害如:烟尘、汽车尾气、家装材料及烟酒刺激等。 (二)饮食指导 1、低脂、适量高蛋白及高维生素饮食,高蛋白饮食可提高肝脏的免疫功能。 2、高维生素饮食,维生素有营养、保护、支持肝细胞作用,新鲜蔬菜、水果中含有丰富的维生素物质,应每天吃500克左右蔬菜,吃3~4种水果。少吃油炸、烧烤食物,不一次大量摄入鸡、肉、鱼、蛋、豆制食品,以免蛋白质摄入过多加重肝脏负担。 3、丹参有抗肝炎病毒,活血化淤,保肝护心作用,可用少量丹参、黄芪饮片泡水饮用,也可口服丹参片3片/次,每日三次。 4、合理膳食:宜高碳水化合物、高维生素、适量高蛋白质饮食。 5、适量饮水,以促进机体代谢及代谢废物的排泄。 6、多食富含甲硫氨基酸丰富的降脂食物,如小米、燕麦等粗粮、黑芝麻、黑木耳、油菜、菠菜、菜花、甜菜头、海米、海带、干贝、淡菜等食品可促进体内磷脂合成,协助肝细胞内脂肪的转变。 饮食禁忌:(1)绝对禁酒(2)忌食辛辣刺激食品。如尽量不食洋葱、蒜、姜、辣椒、胡椒、咖喱等;少食用肉汤、鸡汤、鱼汤等含氮浸出物高的食物。(3)控制食糖,各种甜食及高热量食物,如含糖量高的蔬菜、水果、粉条、巧克力、甜点心等。(4)少吃或不吃煎炸等油类含量高的食品。(5)忌食用动物油,少食植物油等,少吃动物内脏、肥肉等。(6)忌过量或不科学用保健食品 (二)糖代谢失调指导 (一)生活起居: 树立正确的进食观,热量摄入过多、营养过剩、肥胖、运动缺乏是导致糖尿病的重要原因。应注意合理膳食。 1、低糖饮食,限制食量,每日三餐以6~7分饱为宜,避免进食速度过快,不要吃的过饱。控制体重,加强运动,消耗体内过剩能量,每天做有氧运动40—60分钟,可分俩个阶段进行,参加适当体力劳动,适当的体力劳动及适量运动能促进糖吸收,减轻胰岛负担。 2、避免过度紧张、劳累,人体在紧张、劳累时,体内交感神经兴奋,胰岛α细胞分泌增加,

糖类代谢和脂肪代谢

《生物体内营养物质的转变》第一课时说课稿 各位评委老师好! 我是来自成都市新都区升庵中学的生物教师李珍。我今天说课的题目是《生物体内营养物质的转变》,现行高中生物沪科版高中第一册(试用本)第四章第四节第一课时的内容。本节内容可以说是对生命的物质变化和能量转换的补充,是对本书主要知识的延伸和总结。根据前面的学习和初中的知识,并联系生活经验,学生对生物体内糖类、脂肪、蛋白质可以相互转变具有一定的认识,但是具体的代谢途径和转变过程却不甚了解。因此,我根据课程标准和学生情况,确定了本节的教学目标,并进一步确定了教学重难点。 接下来我将从四个方面来说一下这节课。 (一)教学环境设计 这节课我以学生的认知规律为基础,以问题探究为主线,以学生的“做”为核心,利用多媒体教学环境引导学生自主探究,合作讨论。利用多媒体课件、电子白板和投影等方式提高互动效率,同时与传统的板书优势互补,帮助学生构建知识体系。 (二)设计理念 本节的内容大多都是建立在学生已有知识基础上的,与学生生活实际紧密相关,且具有较大的思维空间。因此,我以陶行知先生的“教学做合一”为指导思想,以问题驱动为教学方法,引导学生主动探究,独立思考,合作讨论,在“做中错,错中学”。 (三)教学风格 以高中生物新课标为教学理念,坚持科学性和实效性相结合,培养能力和提高认知相结合。通过例举常见的生活实例,创造亲切愉悦的学习氛围。 接下来,我重点说一下教学流程及对课堂的设计。 (四)教学流程 首先是问题引入,我是通过一组图片来导入这堂课的。今年7月,湖北多地遭遇有史以来最强暴雨袭击。相关报道每天都会出现,可以说是今夏最受关注的国内新闻之一。学生应该有所耳闻,所以能积极主动开始本节的学习。然后展示救灾物资去向清单,紧接着提问:“从救灾物品的种类看,人体从食物中获得的主要营养物质有哪些呢?”这样学生通过思考各食物主要的营养成分,明确本节课的学习对象,开始本节的学习。 接下来,为了帮助学生更好的完成自主探究,在新课之前,我设置了知识铺垫环节。即以问题串的形式引导学生:1. 回忆三大营养物质的结构和功能;2. 联想生活中有关营养物质转变的现象;3. 联系已学知识总结物质代谢的基本规律。在思考讨论之后,学生在情感上能认同营养物质的转变,在认知上对物质代谢有总体的认识,为有效地进行自主探究奠定了基础。 知识铺垫之后,依次进行糖代谢和脂肪代谢的学习。首先是糖代谢途径,教材对于这部分知识的描述比较全面,需要补充说明的知识也比较少。因此,采用学生先自主学习后同桌讨论的模式进行,最后利用电子白板让学生展示代谢图解。这个时候我并不提供固定的格式,而是让学生根据自己的思维模式去自由发挥,在展示环节让学生通过比较、修正,提高处理和归纳信息的能力。当然,最后我会逐步引导学生以血糖为核心,绘制血糖的三来源和三去向图解,帮助他们更有条理地认识这部分知识。为了让学生更深刻地理解糖代谢,也让这节课更有趣,我设置了一系列的生活场景,让他们去分析可能发生的代谢途径。这样,他们在现实生活的背景下,能更充分地理解和应用知识,学以致用。 脂肪代谢部分需要补充的知识点稍微多一些,因此在小组讨论之前,我提醒学生参考糖代谢图解,鼓励他们在教材知识的基础上大胆猜测,最后通过激烈的讨论明确各途径。为了帮助学生理解和应用这部分知识,我设置了角色扮演环节,即让学生扮演营养师给出建议。比如,减肥能吃含脂肪的食物吗?要想减肥应该慢跑还是快跑?这样学生能更好的理解脂肪

糖脂代谢稳态调控的分子机制

项目名称:糖脂代谢稳态调控的分子机制首席科学家:林圣彩厦门大学 起止年限:2011.1至2015.8 依托部门:教育部

二、预期目标 1. 总体目标 确定机体和细胞在不同生理状况和环境因素下维持糖脂代谢稳态的分子机制,阐明在细胞生长和应激反应中起重要作用的调节因子调控细胞代谢的信号通路网络,为糖脂代谢紊乱造成的肥胖、脂肪肝、糖尿病和癌症的早期诊断和治疗提供理论依据。 2. 五年预期目标 (1) 建立对实验动物代谢相关的生理生化指标分析的技术平台,发现相关基因敲 除或转基因小鼠造成糖脂代谢紊乱的信号通路。 (2) 较系统地描述在逆境下机体和细胞调控糖脂代谢的分子网络以及调控过程 中关键蛋白质和蛋白质复合体的动态调控机制。 (3) 发现新的参与代谢调控的基因,为代谢性疾病和肿瘤的防治提供新的分子靶 标。 (4) 培养高质量博士研究生20-30名,培养3-5名享有国际知名度的专家和5-8名 中青年学术带头人。 (5) 在国际重要刊物发表SCI论文15-25篇,其中争取在Cell、Nature、Science或其 子刊等影响因子10以上杂志发表研究论文5-10篇,申请发明专利3-5项。

三、研究方案 1. 总体研究方案 细胞能量代谢是细胞最基本、最重要的活动之一,与细胞的繁殖、分化、凋亡、运动、信号转导及多种重要疾病的发生密切相关,是生命科学的一个重要领域。细胞要通过能量感应系统随时监测其能量水平状态,在不同的物质和能量状态下要不断地通过细胞内的代谢调控途径来调节其代谢水平以达到一种稳态。同时,细胞在面对内外界一些不良因素时也会做出相应的代谢变化,这些应激反应对细胞正常的生长和功能是极其重要的。如果这些应激反应失调,就会使细胞代谢发生异变,导致如前所述的多种人类重大疾病的发生。本项目的总体研究方案拟利用我们在蛋白质科学、细胞代谢、细胞信号转导等研究领域的研究优势和技术手段,结合细胞生物学、动物生理学等学科的研究方法,集中力量多层次、多角度地研究与细胞代谢调控相关的信号通路网络,分离和鉴定参与细胞代谢调控的新的基因和信号通路,探讨各个信号通路之间的动态调控机制,并研究细胞异常代谢的信号通路,揭示代谢异常与糖尿病、肿瘤等重大疾病的关系。项目总体研究方案如下图1:

生物化学学习心得和体会范文

生物化学学习心得和体会范文 生物化学学习心得和体会范文 我们在教学生学习生物和化学课程的时候,作为一名生化老师,在生化教学工作中,要学会自觉的进行认真的总结和探索,找出适合自己的方法。下面是为大家收集整理的生物化学学习心得体会,欢迎大家阅读。 生物化学学习心得体会篇1 什么是生物化学,相信这个问题对完全没有接触过这一领域的人来说是很陌生的,那么我们首先要来先了解和梳理一下自己的知识点吧。 生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。也是研究生命现象的重要手段。生物化学不但可以在生物体内研究各种生命现象,还可以在体外研究生命现象的某个过程。 首先来说说生物化学的静态部分。基础生物化学从第一章开始到第六章完,我们学习了细胞中各种组分的结构和功能,了解了小分子如何形成生物大分子,或进一步形成大分子聚集体。从了解蛋白质的元素组成开始,我们学习了核酸、酶、维生素、辅酶、生物膜。核酸作为生命的遗传物质,有DNA和RNA两种类型,对生命的延续以及新物种的诞生都提供了理论依据。新陈代谢是生物体进行一切生命活动的基础,而新陈代谢的进行又离不开酶的催化作用,因此,了解酶的作用和本质,为理解细胞中复杂的生命活动的顺利进行奠定了基

础。然而我们都知道单成分的催化活性依赖于酶活性中心三维结构上靠得很近的少数氨基酸残基,而双成分酶必须与辅基或辅酶等蛋白质的辅助因子成分结合才能表现出酶的全部活性,于是维生素就成了不可少的一种物质,比如当体内缺乏维生素B2时人体就会引起口角炎、皮肤炎等病症,可见学习基础生物化学对我们的身体健康都是有益的。 从第一章开始。我们就学习了基础生物化学的动态部分,当然这个部分与静态部分是离不开的,且是建立在静态部分上进行的。这部分讲得最多的就是代谢,代谢包括物质代谢与相传伴的能量代谢。在分解代谢过程中,营养物质蕴藏的化学能便释放出来,比如糖类代谢生成水和二氧化碳,在这个过程中释放出大量的能量,供机体进行一切生命活动。不管是糖类、蛋白质、脂肪,还是核酸代谢对我们生命活动来说都是非常重要的,他们之间也存在着联系,而且这些联系有着不可忽视的作用。这些都是要通过必要的生物化学手段才能够去认识清楚,进而对解释、揭示生命起着很大的作用。 第二章到第十三章,就介绍了DNA、RNA和蛋白质的合成。对这些物质合成所需要的原料、模板、酶以及生物合成的基本过程进行讲解。这对于我们去控制他们的合成,有了理论基础和可行性。当我们不需要他们合成时我们就可以通过一些手段来实现,比如我们可以用利福平、利福霉素去抑制RNA聚合酶的活性,对治疗结核等病症起了很大的作用。 基础生物化学与其他学科也有很多联系,我们大一是就已经学习

项目名称-糖脂代谢稳态调控的分子机制-首席科学家-林圣彩厦门大学-

项目名称-糖脂代谢稳态调控的分子机制-首席科学家-林圣 彩厦门大学- 项目名称: 糖脂代谢稳态调控的分子机制首席科学家: 林圣彩厦门大学 起止年限: 2011.1至2015.8 依托部门: 教育部 二、预期目标 1. 总体目标 确定机体和细胞在不同生理状况和环境因素下维持糖脂代谢稳态的分子机制~阐明在细胞生长和应激反应中起重要作用的调节因子调控细胞代谢的信号通路网络~为糖脂代谢紊乱造成的肥胖、脂肪肝、糖尿病和癌症的早期诊断和治疗提供理论依据。 2. 五年预期目标 (1) 建立对实验动物代谢相关的生理生化指标分析的技术平台~发现相关基因敲 除或转基因小鼠造成糖脂代谢紊乱的信号通路。 (2) 较系统地描述在逆境下机体和细胞调控糖脂代谢的分子网络以及调控过程 中关键蛋白质和蛋白质复合体的动态调控机制。 (3) 发现新的参与代谢调控的基因~为代谢性疾病和肿瘤的防治提供新的分子靶 标。 (4) 培养高质量博士研究生20-30名~培养3-5名享有国际知名度的专家和 5-8名 中青年学术带头人。

(5) 在国际重要刊物发表SCI论文15-25篇~其中争取在Cell、Nature、Science或其 子刊等影响因子10以上杂志发表研究论文5-10篇~申请发明专利3-5项。 三、研究方案 1. 总体研究方案 细胞能量代谢是细胞最基本、最重要的活动之一~与细胞的繁殖、分化、凋亡、运动、信号转导及多种重要疾病的发生密切相关~是生命科学的一个重要领域。细胞要通过能量感应系统随时监测其能量水平状态~在不同的物质和能量状态下要不断地通过细胞内的代谢调控途径来调节其代谢水平以达到一种稳态。同时~细胞在面对内外界一些不良因素时也会做出相应的代谢变化~这些应激反应对细胞正常的生长和功能是极其重要的。如果这些应激反应失调~就会使细胞代谢发生异变~导致如前所述的多种人类重大疾病的发生。本项目的总体研究方案拟利用我们在蛋白质科学、细胞代谢、细胞信号转导等研究领域的研究优势和技术手段~结合细胞生物学、动物生理学等学科的研究方法~集中力量多层次、多角度地研究与细胞代谢调控相关的信号通路网络~分离和鉴定参与细胞代谢调控的新的基因和信号通路~探讨各个信号通路之间的动态调控机制~并研究细胞异常代谢的信号通路~揭示代谢异常与糖尿病、肿瘤等重大疾病的关系。项目总体研究方案如下图1: 内外环境因素(缺氧、营养缺乏或过剩、癌基因突变等)内外环境因素(缺氧、营养缺乏或过剩、癌基因突变等)

生物化学代谢复习之糖代谢脂质代谢

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 生物化学代谢复习之糖代谢脂质代谢 一、糖代谢 (一)糖的无氧氧化 1.基本概念糖酵解: 一分子葡萄糖在胞质中可裂解生成两分子丙酮酸的过程称之为糖酵解,是葡萄糖无氧氧化和有氧氧化的共同起始途径。 糖的无氧氧化: 在不能利用氧或氧供应不足时,机体分解葡萄糖生成乳酸的过程称为糖的无氧氧化,也称为乳酸发酵。 2.糖酵解的基本过程①葡萄糖在己糖激酶己糖激酶的催化下消耗 1 分子 ATP 生成葡糖-6-磷酸。 ②葡糖-6-磷酸异构为果糖-6-磷酸。 ③果糖-6-磷酸在磷酸果糖激酶-1 的催化下消耗 1 分子的ATP 生成果糖-1,6-二磷酸。 ④果糖-1,6-二磷酸在醛缩酶的催化下裂解为1分子磷酸二羟丙酮和1分子3-磷酸甘油醛。 ⑤磷酸二羟丙酮异构为 3-磷酸甘油醛。 (前面的步骤相当于 1 分子葡萄糖裂解产生了 2 分子 3-磷酸甘油醛) ⑥3-磷酸甘油醛在3-磷酸甘油醛脱氢酶的催化下与1分子无机磷酸结合,脱下的氢由 NAD + 携带,生成 1,3-二磷酸甘油酸(高能化合物)。 ⑦1,3-二磷酸甘油酸在磷酸甘油酸激酶的催化下水解高能磷酸键(底物水平磷酸化),产生ATP,生成 3-磷酸甘油酸。 1 / 13

⑧3-磷酸甘油酸变位为 2-磷酸甘油酸。 ⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(高能化合物) 。 ⑩磷酸烯醇式丙酮酸在丙酮酸激酶的催化下生成丙酮酸,产生1 分子 ATP(底物水平磷酸化)。 该过程需要关注的几点: (1)三个限速反应: ①③⑩,同时催化这三个反应的酶为关键酶(己糖激酶、磷酸果糖激酶-1、丙酮酸激酶) (2)该过程有两次底物水平磷酸化,包含了两个高能化合物 (3)调节糖酵解流量最关键的酶是磷酸果糖激酶-1 (4)能量的产生与消耗思考: 1.1 分子葡萄糖完全分解产生 2 分子丙酮酸可以产生多少个分子丙酮酸可以产生多少个 ATP ? 2. 糖原分子中葡萄糖酵解时可以净产生多少个产生多少个 ATP ? 3.丙酮酸在在乳酸脱氢酶的作用下,由NADH+H + 提供氢,使丙酮酸还原为乳酸 4.糖的无氧氧化的生理意义: ①迅速提供能量,这对肌肉收缩很重要②成熟红细胞没有线粒体,只能依赖无氧氧化③神经细胞、白细胞、骨髓细胞等代谢极为活跃,即使不缺氧也常由糖的无氧氧化提供部分能量 (二)糖的有氧氧化 1.基本概念糖的有氧氧化是指机体利用氧将葡萄糖彻底氧化为 CO 2 和 H 2 O 的反应过程。 这个过程是体内糖分解供能的主要方式。 2.糖的有氧氧化的三个阶段 (1)同糖酵解 (2)丙酮酸进入线

1糖代谢与脂类代谢的相互关系

1糖代谢与脂类代谢的相互关系 1.糖代谢与脂类代谢的相互关系解答:(1)糖转变为脂肪:糖酵解所产生的磷酸二羟丙同酮还原后形成甘油,丙酮酸氧化脱羧形成乙酰辅酶A是脂肪酸合成的原料,甘油和脂肪酸合成脂肪。(2)脂肪转变为糖:脂肪分解产生的甘油和脂肪酸,可沿不同的途径转变成糖。甘油经磷酸化作用转变成磷酸二羟丙酮,再异构化变成3-磷酸甘油醛,后者沿糖酵解逆反应生成糖;脂肪酸氧化产生乙酰辅酶A,在植物或微生物体内可经乙醛酸循环和糖异生作用生成糖,也可经糖代谢彻底氧化放出能量。(3)能量相互利用:磷酸戊糖途径产生的NADPH直接用于脂肪酸的合成,脂肪分解产生的能量也可用于糖的合成。2.糖代谢与蛋白质代谢的相互关系解答:(1)糖是蛋白质合成的碳源和能源:糖分解代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸、磷酸烯醇式丙酮酸、4-磷酸赤藓糖等是合成氨基酸的碳架。糖分解产生的能量被用于蛋白质的合成。(2)蛋白质分解产物进入糖代谢:蛋白质降解产生的氨基酸经脱氨后生成α-酮酸,α-酮酸进入糖代谢可进一步氧化放出能量,或经糖异生作用生成糖。3.蛋白质代谢与脂类代谢的相互关系解答:(1)脂肪转变为蛋白质:脂肪分解产生的甘油可进一步转变成丙酮酸、α-酮戊二酸、草酰乙酸等,再经过转氨基作用生成氨基酸。脂肪酸氧化产生乙酰辅酶A与草酰乙酸缩合进入三羧酸循环,能产生谷氨酸族和天冬氨酸族氨基酸。(2)蛋白质转变为脂肪:在蛋白质氨基酸中,生糖氨基酸通过丙酮酸转变成甘油,也可以氧化脱羧后转变成乙酰辅酶A,用于脂肪酸合成。生酮氨基酸在代谢反应中能生成乙酰乙酸,由乙酰乙酸缩合成脂肪酸。丝氨酸脱羧后形成胆氨,胆氨甲基化后变成胆碱,后者是合成磷脂的组成成分。4.代谢的区域化有何意义?解答:代谢的区域化是生物代谢的空间特点,该原则普遍适用,而且,越高等的生物,该特点越明显,其意义主要有以下几个方面:(1)消除酶促反应之间的干扰。(2)使代谢途径中的酶和辅因子得到浓缩,有利于酶促反应进行。(3)使细胞更好地适应环境条件的变化。(4)有利于调节能量的分配和转换。

糖代谢线图

葡萄糖 6-磷酸葡萄糖 6-磷酸果糖 己糖激酶 A TP 葡糖-6磷酸酶 1,6-双磷酸果糖 6-磷酸果糖激酶 A TP 果糖双磷酸酶-1 磷酸二羟丙酮 3-磷酸甘油 甘油 NADH 甘油激酶 A TP 6-磷酸葡萄糖内酯 6-磷酸葡萄糖脱氢酶 NADPH+H + 6-磷酸葡萄糖酸 5-磷酸核酮糖 NADPH+H + 6-磷酸果糖 3-磷酸甘油醛 5-磷酸核糖 1-磷酸葡萄糖 尿苷二磷酸葡萄糖UDPG UTP 糖原n+1 UDP 葡萄糖 脱支酶 磷酸化酶 糖原合酶 2,6-双磷酸果糖 胰高血糖素 生糖氨基酸 丙酮酸 天冬氨酸 苹果酸 磷酸烯醇式 丙酮酸 丙酮酸 丙酮酸 丙酮酸羧化酶 ATP 草酰乙酸 丙酮酸脱氢酶 NADH+H + 黄素蛋白铁硫蛋白 辅酶Q Cytb Fe-S 蛋白 CytC1 Cyt C NADH+H + FADH+H + 黄素蛋白铁硫蛋白 Cytb Cyt aa3 DNP 解偶联蛋白 A TP 合酶 A TP ADP 热能 寡霉素 粉蝶霉素 异戊巴比妥 抗霉素A 二巯基丙醇 CO,H 2S NADH 草酰乙酸 苹果酸 苹果酸 +谷氨酸 ←→ α-酮戊二酸+天冬门氨酸 NADH 磷酸二羟丙酮 α-磷酸甘油 NADH GTP 磷酸烯醇式丙酮酸羧激酶 3-磷酸甘油醛 1,3-二磷酸甘油酸 NADH ATP 乳酸 NADH 3-磷酸甘油酸 2-磷酸甘油酸 磷酸烯醇式丙酮酸 丙酮酸 丙酮酸激酶 1,6-双磷酸果糖为激活剂 A TP 丙酮酸 肝、心肌 脑、骨骼肌 糖原的合成与分解 磷酸戊糖途径 糖异生关键步骤 1. 肝中己糖激酶Km 值较高,故肝中糖分解代谢不活跃。外周组织Km 值较低,反之。 2. 体内可以葡萄糖经戊糖途径生成核糖,亦可逆向生成核糖。人类以前者为主,但及组织 因缺乏脱氢酶,故以后种方式生成核糖。 3. 乙酰CoA 草酰乙酸 乙酰CoA 琥珀酸 延胡索酸 苹果酸 草酰乙酸 柠檬酸合酶 顺乌头酸 异柠檬酸 琥珀酰CoA 琥珀酸脱氢酶 异柠檬酸脱氢酶 α-酮戊二酸脱氢酶复合体 NADH+H + FADH+H + 柠檬酸 α-酮戊二酸 乳酸 甘氨酸 ALA 胆色素原 粪卟啉原 血红素 胆绿素 胆红素 结合胆红素 胆红素 胆素原 胆素 加氧酶 还原酶 细菌 氧化 Hb 的合成 血红素的降解 2,3-BPG 缺O2时激活 脂肪大量动员是丙酮酸沿此分解为草酰乙酸以供与乙酰辅酶A 迅速反应,否则可造成血酮体升高

核酸代谢和糖代谢名词解释

核酸代谢和糖代谢名词解释参考答案 1.分解代谢反应(catabolic reaction):降解复杂分子为生物体提供小的构件分子和能量 的代谢反应。 2.合成代谢反应(anablic reaction):合成用于细胞维持和生长所需分子的代谢反应。 3.反馈抑制(feedback inbition):催化一个代谢途径中前面反应的酶受到同一途径终产物 抑制的现象 4.前馈激活(feed-forward activition):代谢途径中一个酶被该途径中前面产生的代谢物 激活的现象。 5.标准自由能变化(△GO):相应于在一系列标准条件(温度298K,压力1atm (=101.325KPa),所有溶质的浓度都是不是mol/L)下发生的反应自由能变化。△GO′表示pH7.0条件下的标准自由能变化。 6.标准还原电动势(EO′):25℃和pH 7.0条件下,还原剂和它的氧化形式在1mol/L浓 度下表现出的电动势. 7.酵解(glycolysis):由10步酶促反应组成的糖分解代谢途径。通过该途径,一分子葡 萄糖转化为两分子丙酮酸,同时净生成两分子ATP和两分子NADH。 8.发酵(fermentation):营养分子(Eg葡萄糖)产能的厌氧降解。在乙醇发酵中,丙酮 酸转化为乙醇和CO2。 9.巴斯德效应(Pasteur effect):氧存在下,酵解速度放慢的现象。 10.底物水平磷酸化(substrate phosphorlation):ADP或某些其它的核苷-5′—二磷酸的 磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子的转递链无关。 11.柠檬酸循环(citric acid cycle):也称为三羧酸循环(TAC),Krebs循环。是用于乙酰 CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA 经草酰乙酸缩合形成柠檬酸。 12.回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应, 例如由丙酮酸羧化酶生成草酰乙酸的反应。 13.乙醛酸循环(glyoxylate cycle):是某些植物,细菌和酵母中柠檬酸循环的修改形式, 通过该循环可以收乙乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤 14.戊糖磷酸途径(pentose phosphare parhway):那称为磷酸已糖支路。是一个葡萄糖-6- 磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解的两用人才个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。 15.糖醛酸途径(glucuronate pathway):从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP- 葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。但只有在植物和那些可以合成抗坏血酸的动物体内,才可以通过该途径合成维生素C。 16.无效循环(futile cycle):也称为底物循环。一对酶催化的循环反应,该循环通过ATP 的水解导致热能的释放。Eg葡萄糖+ATP=葡萄糖6-磷酸+ADP与葡萄糖6-磷酸+H2O=葡萄糖+Pi反应组成的循环反应,其净反应实际上是ATP+H2O=ADP+Pi。 17.磷酸解(phosphorolysis)作用::通过在分子内引入一个无机磷酸,形成磷酸脂键而使 原来键断裂的方式。实际上引入了一个磷酰基。

科学“补”肾!科学家发现人体糖代谢重编程机制

今天要说的是正儿八经的补肾,修补的补。 其实啊,需要修补肾脏损伤的人,可能一点儿也不比需要“肾虚补肾”的人少。据了解,美国有3000万人的肾(西医的)不太好[1],占到他们成年人数量的15%左右。其中有不少人的肾损伤需要修补。 为了美国人的肾健康,他们的科学家没少努力。近日,来自美国凯斯西储大学医学院的Jonathan Stamler团队,在国际顶级期刊《自然》杂志上发表了一篇重要研究成果[2]。 Jonathan Stamler 他们揭示了重编程人体能量代谢的关键机制,发现了一氧化氮(NO)不仅有扩张血管,治疗心脏病和ED的功能;它还能关闭一些蛋白的功能,将葡萄糖的代谢从能量消耗性代谢转换成保护和修复性代谢。

他们还找到了其中两个关键的基因,敲除这两个基因中的任何一个,都可以提升肾损伤小鼠的存活率。这个研究为肾损伤,以及心脏和脑损伤的治疗,提供了两个重点的药物靶点。 急性肾损伤(AKI)是住院患者中常见的疾病,但是在不同的国家和地区之间发生差异较大,从不到1%,到66%都有分布,主要原因可能是各国的诊断标准还不统一[3]。 不过,可别小看这个病。一旦肾损伤发生,几乎不可能完全恢复了,导致患者长期暴露于发病和死亡风险之中[3]。 可别以为这个病离我们很远,导致肾损伤的一个重要诱因就是水污染[3]。而这个问题在发展中国家中是非常普遍的。 患者住院期间AKI发生率[3]

其实啊,生命作为一个有机体它是具备自我保护和修复能力的。不过,在正常情况下,这个保护和修复的通路没有开通,或者马力开的不够。如果能够找到让机体启动保护和修复通路的办法,就有望阻止甚至逆转肾损伤。 遗憾的是,一直以来科学家并不知道细胞内的能量消耗性代谢通路与保护修复通路之间的切换是如何发生的。 Jonathan Stamler是蛋白质巯基亚硝基化(S-nitrosylation,SNO)领域的先驱。他查阅资料发现内皮型一氧化氮合酶(eNOS)对肾损伤具有保护作用[4,5],但这种保护作用的分子机制尚不清楚。 不过,他知道的是,eNOS可促使辅酶A(CoA)巯基亚硝基化,转化为SNO-CoA,而SNO-CoA在细胞内的多寡又由SNO-CoA还原酶(SCoR)控制[6]。尽管如此,SCoR到底对生命活动起到啥作用,科学家并不知晓。不过现在看来,SCoR可能与eNOS一道儿影响到肾损伤的修复。 eNOS将CoA转化为SNO-CoA

糖代谢名词解释

糖代谢名词解释参考答案 1.分解代谢反应(catabolic reaction):降解复杂分子为生物体提供小的构件分子和能量 的代谢反应。 2.合成代谢反应(anablic reaction):合成用于细胞维持和生长所需分子的代谢反应。 3.酵解(glycolysis):由10步酶促反应组成的糖分解代谢途径。通过该途径,一分子葡 萄糖转化为两分子丙酮酸,同时净生成两分子ATP和两分子NADH。 4.发酵(fermentation):营养分子(Eg葡萄糖)产能的厌氧降解。在乙醇发酵中,丙酮 酸转化为乙醇和CO2。 5.巴斯德效应(Pasteur effect):氧存在下,酵解速度放慢的现象。 6.底物水平磷酸化(substrate phosphorlation):ADP或某些其它的核苷-5′—二磷酸的 磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子的转递链无关。 7.柠檬酸循环(citric acid cycle):也称为三羧酸循环(TAC),Krebs循环。是用于乙酰 CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA 经草酰乙酸缩合形成柠檬酸。 8.回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应, 例如由丙酮酸羧化酶生成草酰乙酸的反应。 9.乙醛酸循环(glyoxylate cycle):是某些植物,细菌和酵母中柠檬酸循环的修改形式, 通过该循环可以收乙乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤 10.戊糖磷酸途径(pentose phosphare parhway):那称为磷酸已糖支路。是一个葡萄糖-6- 磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解的两用人才个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。 11.磷酸解(phosphorolysis)作用::通过在分子内引入一个无机磷酸,形成磷酸脂键而使 原来键断裂的方式。实际上引入了一个磷酰基。 12.尾部生长(tailward growth):一种聚合反应机理经过私有化的单体的头部结合到聚合 的尾部,连接到聚合物尾部的单体的尾部又生成了接下一个单体的受体。 13.糖异生作用(gluconenogenesis):由简单的非糖前体转变为糖的过程。糖异生不是糖 酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。 14.呼吸电子传递链(respiratory electron-transport chain):由一系列可作为电子载体的酶 复合体和辅助因子构成,可将来自还原型辅酶或底物的电子传递给有氧代谢的最终的电子受体分子氧(O2) 15.氧化磷酸化(oxidative phosphorylation):电子从一个底物传递给分子氧的氧化与酶催 化的由ADP和Pi生成ATP与磷酸化相偶联的过程。 16.化学渗透理论(chemiosnotic theory):一种学说,主要论点是底物氧化期间建立的质 子浓度梯度提供了驱动ADP和ATP和Pi形成ATP的能量。 17.解偶联剂(uncoupling agent):一种使电子传递与ADP磷酸化之间的的紧密偶联关 系解除的化合物,Eg2,4-二硝基苯酚。 18.P/O比(P/O ratio):在氧化磷酸化中,每1/2O2被还原成ADP的摩尔数。电子从NADH

生物化学代谢复习之糖代谢、脂质代谢

一、糖代谢 (一)糖的无氧氧化 1.基本概念糖酵解:一分子葡萄糖在胞质中可裂解生成两分子丙酮酸的过程称之为糖酵解,是葡萄糖无氧氧化和有氧氧化的共同起始途径。 糖的无氧氧化:在不能利用氧或氧供应不足时,机体分解葡萄糖生成乳酸的过程称为糖的无氧氧化,也称为乳酸发酵。 2.糖酵解的基本过程①葡萄糖在己糖激酶的催化下消耗1分子ATP生成葡糖-6-磷酸。②葡糖-6-磷酸异构为果糖-6-磷酸。 ③果糖-6-磷酸在磷酸果糖激酶-1的催化下消耗1分子的ATP生成果糖-1,6-二磷酸。 ④果糖-1,6-二磷酸在醛缩酶的催化下裂解为1分子磷酸二羟丙酮和1分子3-磷酸甘油醛。⑤磷酸二羟丙酮异构为3-磷酸甘油醛。(前面的步骤相当于1分子葡萄糖裂解产生了2分子3-磷酸甘油醛) ⑥3-磷酸甘油醛在3-磷酸甘油醛脱氢酶的催化下与1分子无机磷酸结合,脱下的氢由NAD+携带,生成1,3-二磷酸甘油酸(高能化合物)。⑦1,3-二磷酸甘油酸在磷酸甘油酸激酶的催化下水解高能磷酸键(底物水平磷酸化),产生ATP,生成3-磷酸甘油酸。⑧3-磷酸甘油酸变位为2-磷酸甘油酸。⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(高能化合物) 。⑩磷酸烯醇式丙酮酸在丙酮酸激酶的催化下生成丙酮酸,产生1分子A TP(底物水平磷酸化)。 该过程需要关注的几点:(1)三个限速反应:①③⑩,同时催化这三个反应的酶为关键酶(己糖激酶、磷酸果糖激酶-1、丙酮酸激酶) (2)该过程有两次底物水平磷酸化,包含了两个高能化合物(3)调节糖酵解流量最关键的酶是磷酸果糖激酶-1 (4)能量的产生与消耗 思考:1.1分子葡萄糖完全分解产生2分子丙酮酸可以产生多少个ATP? 2.糖原分子中葡萄糖酵解时可以净产生多少个ATP? 3.丙酮酸在在乳酸脱氢酶的作用下,由NADH+H+提供氢,使丙酮酸还原为乳酸 4.糖的无氧氧化的生理意义:①迅速提供能量,这对肌肉收缩很重要②成熟红细胞没有线粒体,只能依赖无氧氧化③神经细胞、白细胞、骨髓细胞等代谢极为活跃,即使不缺氧也常由糖的无氧氧化提供部分能量 (二)糖的有氧氧化 1.基本概念糖的有氧氧化是指机体利用氧将葡萄糖彻底氧化为CO2和H2O的反应过程。这个过程是体内糖分解供能的主要方式。 2.糖的有氧氧化的三个阶段 (1)同糖酵解(2)丙酮酸进入线粒体,丙酮酸在丙酮酸脱氢酶复合体(由转乙酰酶、二氢硫辛酸胺脱氢酶、丙酮酸脱氢酶组成)的催化下与辅酶A反应氧化脱羧,脱下的氢由NAD+携带,生成乙酰CoA和CO2。(参与的辅酶有TPP、硫辛酸、FAD、NAD+、CoA) (3)三羧酸循环(柠檬酸循环) ①乙酰CoA与草酰乙酸在柠檬酸合酶的催化下生成柠檬酸,反应所需的能量来自乙酰CoA。 ②柠檬酸经酶-顺乌头酸复合体异构为异柠檬酸。③异柠檬酸在异柠檬酸脱氢酶的催化下氧化脱羧,脱下的氢由NAD+携带,反应生成α-酮戊二酸及CO2。 ④α-酮戊二酸在α-酮戊二酸脱氢酶复合体的催化下与辅酶A反应氧化脱羧,脱下的氢由NAD+携带,反应生成琥珀酰CoA及CO2。 ⑤琥珀酰CoA在琥珀酰CoA合成酶的催化下水解掉高能硫酯键,与GDP磷酸化偶联,生成琥珀酸、GTP及CoA。 ⑥琥珀酸在琥珀酸脱氢酶的催化下生成延胡索酸,脱下的氢由FAD携带。 ⑦延胡索酸加水生成苹果酸。 ⑧苹果酸在苹果酸脱氢酶的催化下生成草酰乙酸,脱下的氢由NAD+携带。 该过程需要关注的几点:(1)三个限速反应:①③④,同时催化这三个反应的酶为关键酶(柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体)丙酮酸脱氢酶复合体也是关键酶(2)该过程只有一步水平磷酸化,只有一个高能化合物(当然乙酰CoA也是高能化合物) (3)生成三个NADH+H+和一个FADH2 (4)两次氧化脱羧(5)能量的产生与消耗 思考:1分子葡萄糖完全分解生成CO2和H2O可以产生多少ATP?(两种情况均思考)

相关文档
最新文档