高频变压器设计时选择磁芯的两种方法

高频变压器设计时选择磁芯的两种方法
高频变压器设计时选择磁芯的两种方法

高频变压器设计时选择磁芯的两种方法

通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。

1 面积乘积法

这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。

表示形式为WaAe,有些讲义和书本上简写为Ap,单位为

而电流有效值

I=Ip

即:

于是就有如下式:

由于:EδIp=Pi 又有:Pi=

双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。

全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。

在J=400A/

。变压器有两个绕组

这里为初级绕组电阻,为次级绕组电阻。

每个绕组各占一半窗口面积,全部绕组线圈的铜损的公式:

公式简化:

变换两个参数的位置,公式变成:

初级安匝与次级安匝相等的关系,以及电流有效值同峰值的关系。

上式进一步演化成:

同理(见面积乘积法)有:

将两个式子代入,得出公式:

与面积乘积法的形式相一致,公式成为如下形式:

此公式适合各种电路形式。Bm取值同面积乘积法。

3 实际举例

单端反激式电路。输出功率Po=34W,输入最小直流电压Vi(min)=230V,输入电流峰值1.18A,占空比

EI33磁芯的WaAe=1.47。

由此可见,两种方法的结果,选EI33磁芯较合适。

EI33磁芯的Wa=1.24。下面核算一下,几个绕组是否绕得下。

初级绕组Ip=1.18A,Irms=1.18×

来源:网络更新时间:2008-11-6 10:42:27点击数:17

的导线,其最大直径为

0.51mm=0.051cm。占有窗口面积为Wa=65×

。采用Aw=0.1257

=0.0317

次级绕组Io=2A,Irms=Io=2A。Aw=2/4=0.5的导线,其最大直径为0.63mm=0.063cm。两个绕组占有窗口面积为Wa=(11+5)×(2×0.063)2=0.254

的36.7%。

EI33磁芯的骨架,窗口高度16mm,宽度5.3mm。16mm高度要扣除两端各1.5mm,尚剩下13mm 长度。

初级绕组的导线最大直径为0.51mm,每层可绕13 /0.51=25.5匝,65匝要用3层。

反馈绕组的导线最大直径为0.46mm,每层可绕13/0.46=28匝,15匝只要用1层。

次级绕组的导线最大直径为0.63mm,每层可绕13/ 0.63=20匝,每层绕11+5匝要用2层。

绕组排列下图:

初级绕组分成3组绕,各组分别为22、22、21匝。每层厚度0.51mm。

次级绕组分成2组绕,每组均为11+5匝。每层厚度0.63mm。

反馈绕组只用1层,15匝,层厚度0.46mm。

绝缘胶带厚度为0.15mm,共7层。

绕组总厚度-1+0.51+0.63+0.51+0.63+0.51+0.46+0.15×7=5.3mm

现在核算铜损耗情况。采用同一的平均匝长,等于7.2cm。

Aw=0.159的导线,单位长度的电阻值分别为0.115Ω/cm和0.1463Ω/cm。而Aw=0.2467

绕组电阻值的确定,主要区别在于平均匝长的取值上。它采用分段取值的方法。

由于取值变化,导线重要新选择。

68KHz时,导线的穿透深度为:△=7.6/√(68×

采用Aw=0.03142

=0.0374

。四股并绕采用Aw=0.1257

=0.5417

。双股并绕采用Aw=0.1257

=0.127

。占总窗口面积 1.24

次级绕组的导线最大直径为0.46cm,每层可绕13/0.46=28匝,Ns1为5×4=20匝,要用1层。Ns2为11×4=44匝,要用2层。

绕组排列如下图:

来源:网络更新时间:2008-11-6 10:42:27点击数:18

绕组总厚度=1+0.24×2+0.46×5+0.15×6=3.68mm

下面我们进行各个绕组的平均匝长的计算。因为,EI33磁芯的中心柱等于10mm×13mm。因此,各个绕组的平均匝长为:

Np1匝长=2×(10+13)+4×(1+0.15+0.12)=51.08mm

Ns1匝长2×(10+13)+4×(1+0.15×2+0. 24+0.23)

=53.08mm

Np2匝长=2×(10+13)+4×(1+0.15×3+0.24+0.46+0.12

=55.08mm)

Np2匝长=2×(10+13)+4×(1+0.15×4+0.24×2+0.46×2)

=58.0mm)

Nf匝长=2×(10+13)+4×(1+0.15×5+0.24×2+0.46×4)

=62.28mm)

《电子变压器手册》求绕组电阻,不是根据导线表上的单位长度电阻值取得的。应用如下公式计算而得:

RNf=0.0172××1.1965×(62.28×15/(0.01257×2))=0.0765Ω

现在开始计算铜损耗:

PNp=(1.71+1.0823)×0.122=0.0402W

PNs1=0.0109×

=0.0783W

PNf=0.0765×=0.0574W

Pt=0.0402+0.0327+0.0783+0.0574=0.2086W≈0.21W

0.21W为0.34W的61.76%。

现在采用(电子变压器设计技术培训班)的《培训教材》第101~102页的方法。这里的要点是,要计算各个绕组的直流、交流有效值和电阻值,再分别取得直流、交流损耗,两者相加得总的损耗。

而计算有效值的次级为中值乘以√(1-δ),初级为中值乘以√δ。输出值要换算为中值后,再求得有效值。

次级绕组Io=2A,Ia=2/(1-0.25)=2.67A。Irms=Ia×√(1-0.25)=2.67×√(1-0.25)=2.31A。

反馈绕组If=1A,Ia=1/(1-0.25)=1.33A,Irms=a×√(1-0.25)=1.33×√(1-0.25)=1.15A。

初级绕组的峰值电流,由次级绕组和反馈绕组的峰值电流反馈到初级而求得。

计算公式和结果如下:

有效值:Irms=Ip√0.25=0.9641×√0.25=0.48A。

初级绕组:

Irms=0.48A。Aw=0.48/4=0.12

的导线,其最大直径为0.46mm=0.046cm。占有窗口面积为Wa=65×0.0462=0.1375

四股并绕采用Aw=0.159

=0.6659

双股并绕采用Aw=0.159

=0.1561

。占总窗口面积 1.24

Np1=2×(10+13)×4×(1+0.15+0.23)=51.052mm

Ns1=2×(10+13)×4×(1+0.15×2+0.46+0.255)=54.06mm

Np2=2×(10+13)×4×(1+0.15×3+0.46+0.51+0.23)=56.6mm

Ns2=2×(10+13)×4×(1+0.15×4+0.46×2+0.51×2)=60.16mm

Np3=2×(10+13)×4×(1+0.15×5+0.46×2+0.51×3+0.23)=63.72mm Nf=2×(10+13)×4×(1+0.15×6+0.46×3+0.51×4)=67.28mm

现在开始计算绕组电阻和铜损耗:

计算绕组电阻,先利用公式计算直流电阻:

Rdc=ρ1/Aw。ρ=2.3×

×(51.52×22/0.1257)=0.207Ω

Rdc(Ns1)=2.3×

×(56.6×22/0.1257)=0.228Ω

Rdc(Ns2)=2.3×

×(63.72×21/0.1257)=0.245Ω

Rdc(Nf)=2.3×

Np3层厚同Np1。Fr=Rac/Rdc=1.1。

Rac(Np3)=1.1×Rdc(Np3)=1.1×0.245=0.27Ω

Nf层厚同Ns2。也是二层Fr=Rac/Rdc=1.7。

Rac(Nf)=1.7×Rdc(Nf)=1.7×0.073=0.124Ω

现在计算直流和交流损耗,以及全部铜损;

PNp(dc)=(0.207+0.228+0.245)×

=0.172W PNs1(dc)=0.00977×

=0.064W

PNs2(dc)=0.0238×

=0.213W

PNf(dc)=0.0073×

=0.164W

Pt(dc)=0.157+0.052+0.127+0.097=0.433W

Pt(ac)=0.172+0.064+0.213+0.164=0.613W

Pt=0.433+0.613=1.46≈1.1W >0.34W。

以上三种方法,各有特点,实际上,选哪一种都满足实际应用。主要看你的设计和使用,强调哪个方面的要求了。如:损耗、尺寸或者功率等

EE型变压器参数及高频变压器计算Word版

我们知道,与一般的电流电压测量不同,磁场强度和磁感应强度的测量都是间接测量。磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。 在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,并可推算叠片系数Sx,这是另外一种计算方法,与标准有点差别,但计算结果与标准比较接近。 第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。 不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

高频变压器的分析与设计.

高频链中高频变压器的分析与设计 文章作者:四川成都西南交通大学龙海峰郭世明江苏南京国电南京自动化股份有限公司呙道静文章类型:设计应用文章加入时间:2004年9月6日14:54 文章出处:电源技术应用 摘要:高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体 积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。叙述了高频变压器的设计过程。 实验结果证明该设计满足要求。 关键词:高频链;高频变压器;逆变器 引言 MESPELAGE于1977年提出了高频链逆变技术的新概念[1]。高频链逆变技术与常规的逆变技术最 大的不同,在于利用高频变压器实现了输入与输出的电气隔离,减小了变压器的体积和重量。近年来, 高频链技术引起人们越来越多的兴趣。 1 概述 图1是传统的逆变器框图。其缺点是采用了笨重庞大的工频变压器和滤波电感,导致效率低,噪 音大,可靠性差。另外,谐波含量大,波形畸变严重,与要求的优质正弦波相差甚远。

图2所示为电压源高频链逆变器的框图,该方案是当今研究的最先进方案[2],也是本文中采用的方案。采用此方案有其一系列的优点,诸如,以小型的高频变压器替代工频变压器;只有两级功率变换;正弦波质量高;控制灵活等。高频变压器是高频链的核心部件,肩负着隔离和传输功率的重任,其性能好坏直接决定逆变器的性能好坏。不合格的变压器温升高,效率低,漏感严重,输出波形畸变大,直接影响电路的稳定性和可靠性,甚至损坏开关器件,导致实验失败。 2 高频变压器的设计 设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。各种磁芯物理性能及价格比如表1所列。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。本文采用的就是铁氧体材料。 表1 各种磁芯特性比较表

高频逆变器中高频变压器的绕制方法

高频逆变器中高频变压器的绕制方法 用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的

单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是: ①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半. ②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组

高频变压器的设计

高频变压器的设计 高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。 设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。 高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。 注意: 1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。 2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。 单片开关电源高频变压器的设计要点 高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。 单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。 高频变压器是开关电源中进行能量储存与传输的重要部件,单片开关电源中高频变压器性能的优劣,不仅对电源效率有较大的影响,而且直接关系到电源的其它技术指标和电磁兼容性(EMC)。为此,一个高效率高频变压器应具备直流损耗和交流损耗低、漏感小、绕组本身的分布电容及各绕组之间的耦合电容要小等条件。 高频变压器的直流损耗是由线圈的铜损耗造成的。为提高效率,应尽量选择较粗的导线,并取电流密度J=4~10A/mm2。 高频变压器的交流损耗是由高频电流的趋肤效应以及磁芯的损耗引起的。高频电流通过导线时总是趋向于从表面流过,这会使导线的有效流通面积减小,并使导线的交流等效阻抗远高于铜电阻。高频电流对导体的穿透能力与开关频率的平方根成反比,为减小交流铜阻抗,导线半径不得超过高频电流可达深度的2倍。可供选用的导线线径与开关频率的关系曲线如图1所示。举例说明,当f=100kHz时,导线直径理论上可取φ0.4mm。但为了减小趋肤效应,实际可用更细的导线多股并绕,而不用一根粗导线绕制。 在设计高频变压器时必须把漏感减至最小。因为漏感愈大,产生的尖峰电压幅度愈高,漏极钳位电路的损耗就愈大,这必然导致电源效率降低。对于一个符合绝缘及安全性标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%。要想达到1%以下的指标,在制造工艺上将难于实现。减小漏感时可采取以下措施:o减小初级绕组的匝数NP; o增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b);

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

如何计算高频变压器参数

如何计算高频变压器参数 一. 电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N ⑷ EL = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)

3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二. 根据上面公式计算变压器参数: 1. 高频变压器输入输出要求: 输入直流电压: 200--- 340 V 输出直流电压: 23.5V 输出电流: 2.5A * 2 输出总功率: 117.5W 2. 确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = VIN(max) / (VRRM * k / 2) ⑾ N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.6 3. 计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1 ⑿ Vin(max) ----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

单级PFC高频变压器设计及参数计算详解

单级PFC高频变压器设计及参数计算详解 由于LED照明电源要求:民用照明PF值必需大于0.7,商业照明必需大于0.9。对于10~70W的LED驱动电源,一般采用单级PFC来设计。即节省空间又节约成本。接下来我们来探讨一下单级PFC高频变压器设计。 以一个60W的实例来进行讲解: 输入条件: 电压范围:176~265Vac 50/60Hz PF>0.95 THD<25% 效率ef〉0.87 输出条件: 输出电压:48V 输出电流:1.28A 第一步:选择ic 和磁芯: Ic用士兰的SA7527,输出带准谐振,效率做到0.87应该没有问题。 按功率来选择磁芯,根据以下公式: Po=100*Fs*Ve Po:输出功率;100:常数;Fs:开关频率;Ve:磁芯体积。 在这里,Po=Vo*Io=48*1.28=61.44;工作频率选择:50000Hz;则: Ve=Po/(100*50000) =61.4/(100*50000)=12280 mmm PQ3230的Ve值为:11970.00mmm,这里由于是调频方式工作。完全可以满足需求。可以代入公式去看看实际 需要的工作频率为:51295Hz。 第二步:计算初级电感量。 最小直流输入电压:VDmin=176*1.414=249V。 最大直流输入电压:VDmax=265*1.414=375V。 最大输入功率:Pinmax=Po/ef=61.4/0.9=68.3W(设计变压器时稍微取得比总效率高一点)。 最大占空比的选择: 宽电压一般选择小于0.5,窄电压一般选择在0.3左右。考虑到MOS管的耐压,一般不要 选择大于0.5 ,220V供电时选择0.3比较合适。在这里选择:Dmax=0.327。 最大输入电流: Iinmax=Pin/Vinmin=68.3/176=0.39 A 最大输入峰值电流:Iinmaxp=Iin*1.414=0.39*1.414=0.55A MOS管最大峰值电流:Imosmax=2*Iinmaxp/Dmax=2*0.55/0.327=3.36A 初级电感量:Lp= Dmax^2*Vin_min/(2*Iin_max*fs_min)*10^3 =0.327*0.327*176/(2*0.39*50000)*1000 =482.55 uH 取500uH。 第三步:计算初级匝数NP: 查磁芯资料,PQ3230的AL值为:5140nH/N^2,在设计反激变压器时,要留一定的气息。选择0.6倍的AL值比较合适。在这里AL我们取:

高频变压器设计的五个步骤

变压器的设计过程包括五个步骤: ①确定原副边匝数比; 为了提高高频变压器的利用率,减小开关管的电流,降低输出整流二极管的反向电压,减小损耗和降低成本,高频变压器的原副边变比应尽量大一些. 为了在任意输入电压时能够得到所要求的电压,变压器的变比应按最低输入电压选择.选择副边的最大占空比为 ,则可计算出副边电压最小值为: ,式中, 为输出电压最大值, 为输出整流二极管的通态压降, 为滤波电感上的直流压降.原副边的变比为: ②确定原边和副边的匝数; 首先选择磁芯.为了减小铁损,根据开关频率 ,参考磁芯材料手册,可确定最高工作磁密、磁芯的有效导磁截面积、窗口面积 .则变压器副边匝数为: .根据副边匝数和变比,可计算原边匝数为 ③确定绕组的导线线径; 在选用导线线径时,要考虑导线的集肤效应.所谓集肤效应,是指当导线中流过交流电流时,导线横截面上的电流分布不均匀,中间部分电流密度小,边缘部分电流密度大,使导线的有效导电面积减小,电阻增加.在工频条件下,集肤效应影响较小,而在高频时影响较大.导线有效导电面积的减小一般采用穿透深度来表示.所谓穿透深度,是指电流密度下降到导线表面电流密度的0.368(即: )时的径向深度. ,式中, , 为导线的磁导率,铜的相对磁导率为 ,即:铜的磁导率为真空中的磁导率 , 为导线的电导率,铜的电导率为 . 为了有效地利用导线,减小集肤效应的影响,一般要求导线的线径小于两倍的穿透深度,即 .如果要求绕组的线径大于由穿透深度所决定的最大线径时,可采用小线径的导线多股并绕或采用扁而宽的铜皮来绕制,铜皮的厚度要小于两倍的穿透深度 (4)确定绕组的导线股数 绕组的导线股数决定于绕组中流过的最大有效值电流和导线线径.在考虑集肤效应确定导线的线径后,我们来计算绕组中流过的最大有效值电流. 原边绕组的导线股数:变压器原边电流有效值最大值 ,那么原边绕组的导线股数 (式中,J 为导线的电流密度,一般取J=3~5 , 为每根导线的导电面积.). 副边绕组的导电股数:①全桥方式:变压器只有一个副边绕组,根据变压器原副边电流关系,副边的电流有效值最大值为: ;②半波方式:变压器有两个副边绕组,每个负载绕组分别提供半个周期的负载电流,因此其有效值为 ( 为输出电流最大值).因此副边绕组的导线股数为(5)核算窗口面积 在计算出变压器的原副边匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下或是否窗口过大.如果窗口面积太小,说明磁芯太小,要选择大一点的磁芯;如果窗口面积

高频变压器匝数计算

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)

高频变压器设计原理

摘要:阐述了高频开关电源热设计的一般原则,着重分析了开关电源散热器的热结构设计。 关键词:高频开关电源;热设计;散热器 1 引言 电子产品对工作温度一般均有严格的要求。电源设备内部过高的温升将会导致对温度敏感的半导体器件、电解电容等元器件的失效。当温度超过一定值时,失效率呈指数规律增加。有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升为25℃时的1/6。所以电子设备均会遇到控制整个机箱及内部元器件温升的要求,这就是电子设备的热设计。而高频开关电源这一类拥有大功率发热器件的设备,温度更是影响其可靠性的最重要的因素,为此对整体的热设计有严格要求。完整的热设计包括两方面:如何控制热源的发热量;如何将热源产生的热量散出去。最终目的是如何将达到热平衡后的电子设备温度控制在允许范围以内。 2 发热控制设计 开关电源中主要的发热元器件为半导体开关管(如MOSFET、IGBT、GTR、SCR等),大功率二极管(如超快恢复二极管、肖特基二极管等),高频变压器、滤波电感等磁性元件以及假负载等。针对每一种发热元器件均有不同的控制发热量的方法。 2.1 减少功率开关的发热量 开关管是高频开关电源中发热量较大的器件之一,减少它的发热量,不仅可以提高开关管自身的可靠性,而且也可以降低整机温度,提高整机效率和平均无故障时间(MTBF)。开关管在正常工作时,呈开通、关断两种状态,所产生的损耗可细分成两种临界状态产生的损耗和导通状态产生的损耗。其中导通状态的损耗由开关管本身的通态电阻决定。可以通过选择低通态电阻的开关管来减少这种损耗。MOSFET的通态电阻较IGBT的大,但它的工作频率高,因此仍是开关电源设计的首选器件。现在IR公司新推出的IRL3713系列HEXFET(六角形场效应晶体管)功率MOSFET已将通态电阻做到3mΩ,从而使这些器件具有更低的传导损失、栅电荷和开关损耗。美国APT公司也有类似的产品。开通和关断两种临界状态的损耗也可通过选择开关速度更快、恢复时间更短的器件来减少。但更为重要的则是通过设计更优的控制方式和缓冲技术来减少损耗,这种方法在开关频率越高时越能体现出优势来。如各种软开关技术,能让开关管在零电压、零电流状态下开通或关断,从而大大减少了这两种状态产生的损耗。而一些生产厂家从成本上考虑仍采用硬开关技术,则可以通过各种类型的缓冲技术来减少开关管的损耗,提高其可靠性。 2.2 减少功率二极管的发热量 高频开关电源中,功率二极管的应用有多处,所选用的种类也不同。对于将输入50Hz交流电整流成直流电的功率二极管以及缓冲电路中的快恢复二极管,一般情况下均不会有更优的控制技术来减少损耗,只能通过选择高品质的器件,如采用导通压降更低的肖特基二极管或关断速度更快且软恢复的超快恢复二极管,来减少损耗,降低发热量。高频变压器二次侧的整流电路还可以采用同步整流方式,进一步减少整流压降损耗和发热量,但它们均会增加成本。所以生产厂家如何掌握性能与成本之间的平衡,达到性价比最高是个很值得研究的问题。 2.3 减少高频变压器与滤波电感等磁性元件的发热

高频变压器设计和计算方法RCC变压器设计

高频变压器设计和计算方法【公式套用】RCC变压器设计2008-07-11 09:08 RCC变压器设计 50-70VAC f=30KHz Dmax=0.5 η=0.95 d=3.5A/mm2 Bmax=2800mT 输出:12V 1.5A 采用EF20 Ae=0.66cm2 f=30KHz → T=33us → Ton=T*Dmax=16.7us 算直流电压 Vinmin=50*√2*0.95=67V Vs=Vout+VD+VL=12+0.7+0.2=12.9≈13V 匝比:n= 13/67 =0.194 按三倍电流计算 Pout=3*Iout*Vs=3*1.5*13=58.5W 输入峰值电流Ip Ip= 2*Pout*T = 2*58.5*33 Vinmin*Ton*η 67*16.7*0.95 Ip=3.6A 初级电感量计算: Lp= Vinmin*Ton = 67*16.7 Ip*103 3.6*103 Lp=0.3mH (可取0.3-0.4) 副边匝数Ns Ns= n*Ip*10′7 = 67*16.7 Ae*Bmax 66*2800 Ns=13.2≈13\14匝 原边匝数 Np= Ns/n Np=14/0.194 =72 取70匝 辅助绕组 Ns1 = VD*Np = 7*72 Vinmin 67 Ns1 =7.5取8匝 线径和90-265一样 Pout=Iout*Vs=1.5*13=19.5W 则Ip、= 2*Pout*T = 2*19.5*33 Η*Vinmin*Ton 0.95*67*16.7 Ip、=1.21A Ip的有效值为 Irms= Ip、 √6 Irms=0.494A 三倍的Ip为 I3p= Iout = 1.5 Dmax 0.5

高频变压器参数计算

铁芯截面积A=1.25*√P(功率)。 铁芯取8500高斯。 每伏匝数取:T=450000/8500*S(截面积) 漆包线载流量取2.5A-3.5A/mm2 小型变压器的绕制: 小型变压器铁心匝数绕制 随着电子元件大量应用在电厂控制、监测和自动回路中,小型变压器的应用日益广泛。因小型变压器损坏,市场上一时又难以买到,引起设备不能正常运行的事故较多。因此,除加强小型变压器的运行维护外,还应掌握小型变压器的绕制。 1 小型变压器的设计 设计小型变压器,主要有以下几个步骤:(1)计算变压器的功率;(2)计算变压器的铁心;(3 )计算变压器线圈匝数;(4)计算变压器绕组导线的截面积;(5)计算变压器铁心窗口容纳绕组的导线及绝缘物。 1.1 功率的计算 变压器的功率可根据下式计算,即 P=IV (1) 式中P——电功率; I——电流; V——电压。 先算出次级功率,然后再算初级功率。线圈总功率(即变压器功率)的计算方法与硅钢片的种类有关,将次级功率加上消耗功率即得初级功率,一般来说,铁心消耗功率约为15%,即初级功率算式如下 P1=1.18 P2 (2)

式中P1——初级功率; P2——次级功率。 1.2 铁心的计算 变压器的功率求出后,可用下式求出铁心有效截面积,即 (3) 式中A为铁心有效截面积(cm2),数字1.2是根据铁片的不同种类通过经验公式取得的,一般变压器硅钢片采用磁通密度1~1.2 T,用公式(3);如电动机硅钢片采用磁通密度0.8~1 T,可将公式(3)中的1.2改成1.6;如普通黑铁片采用磁通密度0.6~ 0.7 T,可将公式(3)中的1.2改成2。 以上是已知电功率后选铁心时使用的方法,如有现成的铁心,则可以用下式来求可绕制的功率。 (4) 式中铁心有效截面积A=铁心宽(cm)×铁心迭厚(cm)。 1.3 匝数的计算 求出了铁心有效截面积就可求出每伏应绕制的匝数,计算公式如下 (5) 式中T为每伏匝数,B为铁心磁通密度(T),A为铁心有效截面积(c m2)。铁心磁通密度可根据前面铁心的计算选用,求出每伏匝数就可根据变压器初级电压算出各绕组的总匝数。初级总匝数的计算公式如下 T1=TV1 (6) 式中T1——初级总匝数; V1——初级电压。 因次级电压由初级感应而得,故在铁心内有一定损耗,而且次级绕组的导线有一定的阻抗,

开关电源高频变压器AP法计算方法

AP表示磁心有效截面积与窗口面积的乘积。 计算公式为 AP=AwAe 式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。根据计算出的AP值,即可查表找出所需磁心型号。下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。 1 高频变压器电路的波形参数分析 开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。 1)波形系数Kf 为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。正弦波的电压有效值为

在开关电源中定义正弦波的波形系数Kf=

√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。 2)波形因数kf 为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压 压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式 以正弦波为例, 这表明,Kf=4kf,二者相差4倍。 开关电源6种常见波形的参数见表1。因方波和梯形波的平均值为零,故改用电压均绝值来代替。对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。

集成电路高频变压器的设计与制作性能参数

集成电路高频变压器的设计与制作性能参数 脉冲变压器也可称作开关变压器,或简单地称作高频变压器。在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。 随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。 开关变压器与普通变压器的区别大致有以下几点: (1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。 (2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。 (3)绕组线路比较复杂,多半都有中心抽头。这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。

图1 开关电源原理图 本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。 2变压器磁芯的选择与工作点的确定 2.1 磁芯材料的选择 从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度B s也不是很高,且加工工艺复杂。考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几

详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.360docs.net/doc/5f13913466.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

高频变压器设计解读

高频变压器设计解读 高频变压器是现在电子变压器行业关注的热点,想来很多工程师对高频变压器的设计方法应该都挺感兴趣的,今天和大家分享高频变压器设计方法的详解,希望对大家有用。 高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。 高频变压器线圈参数的计算与选择 高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。 原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。副绕组匝数由输出电压决定。导线截面(直径)决定于绕组的电流密度。还要注意的是导线截面(直径)的大小还与漏感有关。 高频变压器的绕组排列形式有: ①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排 ②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。 另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。 对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。 高频变压器磁芯材料的选择 高频变压器磁芯一般使用软磁材料。软磁材料有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此在输出功率一定的情况下,可减轻磁芯体积。磁芯矫顽力低,磁滞回环面积小,则铁耗也少。电阻率高则涡流小,铁耗也小。 铁氧体材料是复合氧化物烧结体,和其它软磁磁芯材料一样,软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯,缺点是工作磁通密度低、磁导率不高、磁致伸缩大、对温度变化比较敏感。它适合高频下使用,因此高频变压器一般采用铁氧体材料作为磁芯。 高频变压器磁芯结构的选择 磁芯基本结构有: ①叠片,通常由硅钢或镍钢薄片冲剪成E、I、F、O等形状,叠成一个铁芯。 ②环形铁芯,由O型薄片叠成,也可由窄长的硅钢、合金钢带卷绕而成。

相关文档
最新文档