深水基础施工

深水基础施工
深水基础施工

水中基础施工工艺

水中基础有三种常用的施工方法,即:筑岛围堰、钢板桩围堰以及双壁钢围堰。下面逐一介绍:

一、筑岛围堰

一般来说,水深不大于2米,流速小于0.3m/s处的水中基础,适用土石筑岛围堰;水深不大于3米,流速小于1.5m/s处的水中基础,适用草袋筑岛围堰。

①土体围堰:水深较浅、流速比较缓慢,围堰底为不透水土层可用土堆筑成梯形截面的土堤,其迎水面的边坡不宜陡于1:2(竖横比,下同),基坑侧边坡不宜陡于1:1.5。为防止迎水面边坡受冲刷,常用片石、草皮或草袋填土围护。

②草袋围堰:围堰堰体采用草袋、麻袋或编织袋装以松散的粘质土,装土量为袋容量的1/2-2/3,袋口用麻袋线或细铁丝缝合,堆码土袋时,上下左右互相错缝,并尽可能堆码整齐。

若水流较大时可采用有粘土心墙的围堰,流速较大时,外圈土袋可装小卵石或粗砂,以防被水冲走,必要时抛片石防护,或者外圈改用竹篓或荆条筐内装砂石。

在内外圈土袋堆码至一定高度或出水面后,即可填筑粘土心墙,粘土心墙的填筑采取顺坡填筑,不得直接倾倒在水中。

为防止渗水,围堰底部采用砼封底。如下图:

编织袋粘土芯墙围堰横断图

二、钢板桩围堰

水深4m 以上、流速较大且地质情况较好(如砂层、碎石土、风化岩、熟性土等地层)的水中基础适用钢板桩围堰。钢板桩可以打入土中或连到物件上,组成承载及防水结构。

钢板桩是带有锁口的一种型钢,其截面有直板形、U 形、槽形及Z 形等,有各种大小尺寸及联锁形式。其优点为:强度高,容易打入坚硬土层;围堰内有纵横向支撑,必要时加斜支撑成为一个围笼。能按需要组成各种外形的围堰,防水性能好,并可多次重复使用。如下图:

直线型钢板桩

其高度底,接近于直线,所以对于开挖一些沟渠,特别是在两个建筑物中间空间不大,而又必须开挖的时候,比较适用,第一,他可以形成一道稳固的钢板桩墙,从而保证向下顺利开挖,而不受两侧踏方,地下水的影响,另外,还有助于稳定地基,从而保障的两侧建筑物的稳定

钻孔桩

H

1:0.5

水位

1.5m

0.8m 1:0

.51:0.5

编织袋围堰

封底砼(50cm厚)

粘土芯墙1:0

.50.8m 0.8m 0.8m 0.8m 0.8m

1.5m

承台

U型钢板桩

又叫拉尔森式钢板桩,规格型号丰富,可根据工程实际情况,选取最经济、合理的截面,实现工程设计上的最优化,比同性能热轧钢板桩节省材料10-15%,极大的降低了施工成本,比较常用。

槽型钢板桩

槽桩是一种轻型槽板,采用简易的搭连接法,设计用于低强度要求的快速重复使用。

1. 适用于浅埋暗挖或类似的开挖作业.

2. 成本效益高并且使用简易.

Z型钢板桩

锁口对称分布在中和轴两侧特定的位置

> 较高的抗弯强度

> 截面厚度有利于沉桩

> 与其他钢板桩相比,Z系列宽度增加有效地节省了吊装和打桩时间

> 截面宽度增加,减少了每延米墙体的锁口数量,直接提高了板桩墙的止水性能

钢板桩的插打方法可分为远块(组)插打、先插合拢后打和开始的一部分远块插打,后一部分先插合拢后再打。钢板桩施工完毕,待水下混凝土封底达到强度要求后,抽水筑承台及墩身。以开始的一部分逐块插打,后一部分先插合拢后再打为例,其施工工艺流程如下:

组桩的嵌缝用油灰及棉絮嵌紧密,组桩拼接后,每隔4~5m加一道夹板,使其固定以便插打。组桩及单块桩两侧锁口均在插打前涂以黄油或热的混合油膏,以减少插打时的摩阻力,并增加防渗性能。

(1)打设定位桩

在钢板桩围堰的四周分别打设定位钢管桩,钢管桩采用振动锤施打,并设导向架。

(2)挂装导向框及内导梁

在定位桩上挂装导框和内导梁,导框和内导梁用型钢加工制作,以使插打钢板桩时起导向作用,并作为围堰的内部立体支撑,直接承受钢板桩传来的水、土压力。

钢板桩打桩立面图

钢板桩起吊

钢板桩就位中下插

打桩锤卡上钢板桩准备振打

振打中的小型桩锤

钢板桩插打部位状况

(3)插打合拢

插打作业步骤如下:

在钢板桩锁口内涂黄油。在桩顶系钢丝绳一根,滑车组一付。在桩的下端系缆绳二根。

安绑主副吊点钢丝绳。其中副吊点(下端吊点)用钢丝绳捆扎,并垫以木块,以防滑移和损坏锁口。

用汽车吊起吊。当提升到一定高度时,放松、解除副吊点,使钢板桩接近垂直状态,并利用缆绳控制正反方向。

钢板桩就位下插。第一组钢板桩沿导向架围檩下插,它是整个围堰钢板桩的基准,要反复挂线检查,使其方向、垂直位置准确。其余各桩组,则以已插桩组为准,对好锁口后,利用自重下插。当自重不能迫使其下插时,进行加压。钢板桩插打方法为:开始的一部分逐块插打,后一部分则先插合拢后再打,插打次序为从上游开始,在下游合拢,每边由一角插至另一角。

安设沉桩锤,并进行锤击或震动,使钢板桩下沉到预定高程位置。

将已插好的钢板桩,点焊固定于围檩上。按上述步骤逐组下插钢板桩,直至完成。

(4)抽水堵漏

锁口不密的漏水在抽水发现后以板条、棉絮等在板桩内侧嵌塞,或在漏缝外侧水中撒入大量炉渣与木屑或谷糠等随水夹至漏缝处自行堵塞,漏缝处较深时,也可用炉渣装袋,到水下适当深度逐渐倒出炉渣,堰脚漏水严重用水下砼封底防渗。

(5)钢板桩插打质量要求

已插下的钢板桩,其倾斜度小于5‰;插入桩位的钢板桩须紧靠围檩,如不能紧靠时,其间隙应小于20mm;每组钢板桩必须按编号插入正确的

桩位,每组偏差应小于±15mm。

钢板桩围堰

三、双壁钢围堰

水深较深(10m以上),水流较急,覆盖层厚的深水基础适用双壁钢围堰。钢套箱围堰按形状可分为矩形(圆端形)和圆形,其中每种围堰又有单壁、双壁以及单双壁组合式钢围堰。

圆形围堰,由于在水压力作用下,只产生环向轴力,可不设内支撑,因此能够提供足够的施工空间,另外,由于其截面可以导流,因此抗水流能力强,它适用于流速较大的深水河流的低桩承台的施工中。但是,由于承台尺寸一般为矩形,因此,其封底的截面积较大,封底混凝土的量较大。

矩形或圆端形围堰,可按承台的尺寸形状设计,减少了围堰钢壁的用钢量以及封底混凝土的用量。但是由于该围堰需加设内支撑,给后续工程的施工带来诸多不便。另外,其抗水流冲击能力和整体性较差,不宜在流速较大的河流中使用。

一般情况下,当水深大于15米(若采用矩形围堰,需加设多层内支撑,施工空间难以保证)或承台长宽比小于1.5时,采用圆形围堰较为合适。

单、双壁的构造主要是考虑钢围堰下沉的需要而设计,由于钢围堰重量轻,在围堰下沉较深的情况下仅靠自重难以下沉,需灌注配重混凝土,因此必须设置双壁结构;如果下沉较浅,借自重可以下沉,可设计为单壁结构;如在满足下沉需要的前提下,又要节省材料,可设计成单、双壁组合式结构。

以新南港大桥为例,进行说明。

(1)桥址区情况

新南港大桥跨越大樟溪,大樟溪河床全断面宽约640m,水深约1.5~13.0米,水流较急。下游为较强潮河口,潮型为正规半日潮,潮波近似驻波,一般每天两涨两落,涨潮历时5小时,落潮历时7小时15分,一个涨落潮周期为12小时50分。受闽江口涨落潮的影响,大樟溪水位日变化较大,勘察期水位变化为3.5m左右。

施工区处于径流和潮流的过渡段,既受径流的影响,又受潮流的影响。汛期洪水对桥址影响显著,非汛期则以潮汐性水流出现,汛期一般发生在4-9月,较大洪水多出现在5月至7月。

大樟溪河底淤泥覆盖层较厚。河面有通航要求。

(2)围堰选型

草袋围堰适用水深为3米及以下,大樟溪水位较深,且水流较急,明显不适合;

钢板桩围堰适合水深4m以上,其优点是施工简单、快捷、成本较低;缺点有三:其一,由于是组拼式结构,整体刚度较小,因此其抗水流及冲刷能力差,不宜于在流速较大的情况下使用;其二,由于其本身强度、刚度局限,在承台较深时,需设置强而密的支撑,对后续的承台及墩身施工干扰很大,因此,不宜于在水位较高的情况下使用;其三,因为要重复使用,不宜灌注封底混凝土,因此,在既要满足底部支撑力,又要满足较小渗流的情况下,对河床提出了较高的要求,适用于地质情况较好(如砂层、碎石土、风化岩、熟性土等地层)的水中基础。而大樟溪河底淤泥覆盖层较厚,且水位变化较大,对围堰的强度、刚度要求较高,故钢板桩围堰不适合;

钢围堰稳定性较好,适用水深更深,抗冲击能力强,有利于抗击潮水,而大樟溪河底覆盖层较厚,围堰入土较深,故选用双壁钢围堰进行施工。

(3)钻孔灌注桩

①临时工作平台

钻孔桩行施工必须先搭设临时工作平台,临时工作平台分为固定工作平台和浮动工作平台2种。

固定工作平台按构造形式分支架工作平台和围堰工作平台,支架工作平台分木桩工作平台、钢筋砼工作平台、钢管桩和型钢工作平台等;围堰工作平台包括钢套箱工作平台、钢板桩工作平台以及浮运薄壳沉井工作平台。

1)支架工作平台

在受潮水和台风影响的深水基础施工中,河床覆盖层较厚时,在水中墩、台位置,用振动或锤击方法沉入若干木桩、钢筋砼桩、型钢或钢管桩作为支架桩(钢管桩打入河床深度8-15米),将各支架桩连接起来,并在桩顶设置纵、横梁,铺上木板或薄钢板做成工作平台,工作平台一般高于水面0.5以上。

按工作平台的构造可分为型钢工作平台、桁架工作平台及型钢与桁架组合工作平台。常用的桁架有万能杠杆、贝雷梁、六四式军用桁架,可根据钻孔设备和已有设备情况选用,一般的,桁架和型钢组合平台应用较多。

贝雷梁

六四式军用梁

型钢

2)钢围堰工作平台

一般在河床覆盖层较厚、底桩承台的深水基础施工中,先进行钢围堰,待钢围堰下沉至岩面后,安放钢护筒钻孔桩平台、钢护筒导向架, 然后灌注水下封底混凝土, 再进行钻孔桩施工, 之后抽水施工承台和墩身。

围堰后的钻孔桩平台

围堰后的挖孔桩平台

3)浮运薄壳钢筋砼沉井工作平台

在河床基岩裸露,无法使用钢板桩及钢套箱围堰时,采用钢筋砼薄壳沉井。将几个桩孔围在沉井内,井顶设工作平台钻孔逐个钻孔,代替单个安设护筒的做法,沉井可重复利用,进行多个桥墩施工。沉井体积大,比较稳定,适合水流较急、河床无覆盖层的钻孔灌注桩施工,缺点是需用材料较多,技术比较复杂。

沉井工作平台

4)浮动工作平台

在风浪、水和流速较小的深水基础中,采用船体、六四式标准舟节、浮箱木排等浮体构成浮动工作平台,就位后锚定,插打钢护筒,在平台上安装钻机进行钻孔施工,浮体的大小根据水流大小、工作平台尺寸和载重的大小决定,浮动工作平台可充分利用制式器材,节省大量材料。

②工作平台选型

根据闽侯新南港大桥大樟溪河床底部覆盖层厚,水流较急,并受闽江涨落潮影响的特点,选用固定工作平台较适宜。

据上所述,固定工作平台分为支架工作平台和围堰工作平台(沉井围堰工作平台,体积大,适合水流较急、河床无覆盖层的钻孔灌注桩施工,其需用材料较多,技术复杂;闽侯新南港大桥仅有3个墩在深水中,河床地质情况也不适宜沉井围堰,故不选用薄壳钢筋混凝土沉井工作平台),即:方案一:先搭设水中临时工作平台,下放钢护筒施工钻孔桩,然后在工作平台上拼接钢围堰,施工承台;方案二:先进行钢围堰,待钢围堰下沉至岩面后,安放钢护筒钻孔桩平台、钢护筒导向架, 然后灌注水下封底混凝土, 再进行钻孔桩施工, 之后抽水施工承台和墩身。下面就上述两种方法进行对比:方案二钻孔平台搭设于钢围堰上,钻孔施工历时较长,钻孔平台高度不能太低,钢围堰高度增加;而方案一可选择洪水期钻孔,枯水期封底施工平台,围堰高度能适当降低,节约了围堰钢材,但增加了钢管桩的用钢量和钢护筒长度及厚度。

方案二在钢围堰下沉过程中需要定位船、导向船及浮吊等大型船机设备,且使用时间较长,还需购买锚碇系统;方案一只需使用打桩船,且使用期短,钢围堰下沉时利用钻孔桩平台钢护筒及钢管桩作位定位装置,不需要

使用定位船和导向船等大型设备,节省设备租赁费。

方案二钢护筒定位时不受水流影响,干扰因素小,可准确定位,入土深度浅,避免了方案一中打钢护筒易发生卷口的现象。

方案一封底混凝土时,考虑到封底混凝土与钢管桩及护筒的握裹力,封底混凝土厚度可以适当减小,减小混凝土用量。

方案二下沉时间较长,开钻时间短,但成桩后抽水清渣后即可进行承台施工;方案二开钻时间早,但成桩后需下钢围堰封底,再进行承台施工,两个方案在工期上差别不大。

根据闽侯新南港大桥桥址大樟溪汛期一般发生在4-9月,较大洪水多出现在5月至7月的情况。通过上述比较,相对而言,方案一即先搭设临时工作平台,再进行围堰施工承台的方法较为合适,其一是避免洪水期间施工围堰,从而增加钢材和封底砼的使用量;其二是节约了定位船、导向船及浮吊等大型设备的租赁费。

③钻孔桩平台施工工艺

1)钢管桩打设

在岸边设置测量控制点,利用全站仪和经纬仪对钢管桩定位,指挥打桩船大概就位,然后在打桩船的定位架中心设置1台反光棱镜,用岸上的全站仪对桩位中心进行放样,打桩船根据测量情况调整到位,然后立即固定桩船,钢管桩顺打桩船定位架慢慢落下,岸上全站仪和经纬仪采用前方交会法同时拨角测量,随着钢管桩的下沉观测其偏位情况和垂直度,若有异常立即报告打桩船,以便及时调整,待钢管桩插打到位后,用全站仪复核桩顶偏位情况,放出中心十字线,再依次搭设工作平台。

打桩船打插钢管桩

钢管桩逐排沉放,一排桩沉放完成后再移船至另一侧。

钢管桩沉放应注意:振动锤中心和桩中心轴应尽量保持在同一直线上;每一根桩的下沉应连续,不可中途停顿过久,以免土的摩阻力恢复,继续下沉困难。沉放过程加强观测,钢管桩偏位不得大于10厘米,垂直度不得低于0.1%。

2)搭建工作平台

各钢管桩在顺水流向适当位置开口,割平钢管桩头,按照长截短接的原则,将桩顶找平,电焊剪刀撑及各连接系,完成桩的横向连接,而后安装贝雷梁、型钢等支撑梁、铺设钢板,完成工作平台搭建。

3)下沉钢护筒

钢护筒(钢管桩雷同)在加工场分节加工完成后,运输至码头,通过平板船及驳船运送至主墩处。

驳船:运河、河流上运载客货的大型平底船,驳船本身无自航能力,需拖船或顶推船拖带的货船。其特点为设备简单、吃水浅、载货量大。驳船一般为非机动船,与拖船或顶推船组成驳船船队,可航行于狭窄水道和浅水航道,并可根据货物运输要求而随时编组,适合内河各港口之间的货物运输。少数增设了推进装置的驳船称为机动驳船。机动驳船具有一定的自航能力。

拖船:用于拖带其他船只或浮动建筑物的船舶。

在平台上进行测量,定出桩基的纵横轴线,准确定出导向架的四个角点位置,导向架内径比钢护筒外径大3cm。

钢护筒导向架

钢护筒的安放选择在平潮时期,利用浮吊吊起已拼好的第一节护筒,通过导向架内空下放着床,沉至平台顶1米处停止下沉,打销悬挂,将护筒接高后再松吊机下沉,如此反复直至桩尖落入河床。

浮吊

钢护筒沉放应注意:钢护筒沉放前派遣潜水队员将桩位处清理干净,不得有影响钢护筒下沉和钻孔施工的杂物如大块石、钢材等;钢护筒焊接接长时应保证护筒顺直,焊缝饱满;振动锤重心和护筒中心轴尽量保持在同一直线上;开动空气吸泥机同时须往钢护筒内加水,护筒内水位不能低于江面水

位;在护筒下沉过程中,当护筒沉入土中一定深度后,要及时撤除护筒导向架,以免影响护筒下沉;钢护筒沉放必须全过程测量,保证护筒偏位和倾斜度在容许范围内。

钢管桩施工平台

桥梁深水基础施工技术

价值工程 0引言 桥梁深水基础的修建是跨海跨江大桥的重要组成部分,深水基础的修建关键在于如何摆脱水深的影响。因为在深水环境下建造基础不仅是施工难题,更是设计难题。在近代,我国主要采用沉箱、沉井技术进行施工;随着桩基础以及钢板桩围堰技术的发展,现代跨海大桥主要采用桩基进行施工;发展到当代,双承台钢管桩基础得到广泛的采用。随着科技的不断进步和发展,用于解决深水施工的双壁钢围堰施工技术逐步获得工程人员的青睐,取得十足的发展。 1工程概况 某桥梁深水承台双壁钢围堰,水深8m ,承台为正方形,尺寸10m ×10m ,厚3m ,河床为密实细砂。本设计承台基础平面图如图1所示,钢围堰平面图如图2所示。 2双壁钢围堰优点分析 双壁钢围堰是一个带有单斜面刃脚的圆形双壁全焊水密钢结构圆筒,有自浮力,有强度更高的双壁钢壳,筒的内、外壁形成的空间称之钢壳。内、外壁由钢板围焊而成,圆筒上、下均不设底板或盖板,钢壳下口以环形单斜面刃脚封闭,钢壳上口敞开,以方便施工时往钢壳内灌注混凝土或注水。 双壁钢围堰施工技术有着明显的优势:①双壁钢围堰具有高强的双壁钢壳,从而可以承受较大的内外水压。②双壁钢围堰具有施工工艺简单,封底后,排水不受施工水位的限制,从而摆脱了施工的季节限制。③墩位处水深对双壁钢围堰施工不能产生显著的影响,在双壁钢围堰施工法进行施工时,如果能够配合使用空气幕下沉技术还可以将围堰下沉到更深的水域,从而扩大了双壁钢围堰施工法的应用范围。④双壁钢围堰下沉就位后,可以直接充当钻孔桩基的施工辅助设施。 3围堰结构选择 根据力学原理进行分析,双壁钢围堰宜制作成圆形,这样不仅制作简便而且下沉时也容易控制。但是当考虑承台结构的尺寸限制时,必须将围堰尺寸加大数倍,从而提高了工程的造价。同时,围堰作为承台和墩(塔)身施工的先决条件,围堰平面形状的选择也必须受到承台尺寸的限制。在实际工程实践中,双壁钢围堰多设计成矩 形、圆形和扇形。在双壁钢围堰法应用早期,一般采用圆形结构。但 是随着桥梁复杂程度的不断提高,其它结构形式也受到人们的普遍关注。在进行围堰结构设计时,必须在综合考虑围堰工程造价、受力特性以及施工难易程度基础上进行选型。 本设计中深水承台尺寸为10m ×10m ,围堰平面形状为正方形,外壁尺寸为15.6m ×15.6m ,内壁尺寸为13m ×13m ,内外壁板均为6mm ,壁腔厚1.3m 。围堰本身实际上是个浮式钢沉井,井壁钢壳是由有加劲肋的内外壁板和若干层水平钢桁架组成,中空的井壁提供的浮力可使围堰在水中自浮,使双壁钢围堰在自浮状态下分层接高下沉。围堰内外壁间设置8个隔舱板,在平面上将围堰分为8块,隔舱板将围堰分为8个互不连通的密封隔舱,利用向隔舱不等高灌水来控制双钢围堰下沉及调整下沉时的倾斜。围堰竖向总高22.5m ,考虑到浪高最大为1.5m ,围堰高出水面部分为2m ,围堰竖向分为5节(4.5m+5m+5m+4m+4m),井壁底部设置刃脚有利于切土下沉。 由于水深较大,为了保证围堰的整体刚度和稳定,在围堰内部设置两层截面形式为工字型内支撑。由于刃脚承受土压力及水压力较大,故刃脚段适当加密水平桁架的竖向间距(0.5m),其余部分水平桁架竖向间距为1m 。面板竖向加劲肋采用L50×5角钢,角钢与面板共同承受外荷载。水平环板采用准200mm ×10mm 钢板,钢板也与面板共同承受外荷载,同时在进行受力计算时,环板与参与受力面板作为桁架的弦杆进行受力计算。 4围堰施工工艺 4.1围堰加工工艺在本次工程中,钢围堰的制作流程如下:①胎架的设置。为了获得满足尺寸要求的围堰,在车间制作的过程中,首先必须设置恰当合适的胎架。组装用的胎架必须具有足够大的刚度,从而避免在组装过程中胎架发生过大的变形。同时,胎架的尺寸必须满足一定的精度,从而确保围堰尺寸的正确性。②钢围堰下料。在进行钢围堰构件下料前,必须对构件进行样本的制作。如果构件中存在无法确定具体尺寸的构件或者连接件时,必须通过实样的制作来确定尺寸。③分块组装。钢围堰主要由环板、壁板以及水平桁架等构件组成,当各构件制作完备后要将这些构件按照一定的次序进行组装。④焊接加工。双壁钢围堰在制作过程中需要进行严密的焊缝处理,焊接前必须对所有焊缝分类进行焊接工艺评定试验。为了双壁钢围堰的整体焊接变形,双壁钢围堰中的内外壁板采用两面自动焊进行。⑤试拼出厂。当围堰的分块加工完毕后,运送到试拼场进行出厂前的试拼,然后再用于施工。 4.2双壁钢围堰的锚碇系统布置根据施工水域水文条件和通航要求,围堰锚碇系统可以采取灵活多变的布置方式。本工程的锚碇布置系统主要如图3所示。 4.3围堰接高当双壁钢围堰的锚碇系统布置妥当后,接下来就要进行围堰接高。围堰接高的方式主要有: ①利用起重的船只将“钢堰”进行吊装接高;②当首节吊装完毕后,将围堰分块用导向船上的起重设备进行接高;③首节采用吊装 ————————————————————— —作者简介:王剑亮(1977-),男,陕西周至人,硕士学历,中铁西北科学研究院 有限公司工程师,研究方向为岩土工程。 桥梁深水基础施工技术研究 Research on Construction Technology of Deepwater Foundations of Bridge 王剑亮Wang Jianliang ;赵建刚Zhao Jian'gang (中铁西北科学研究院有限公司,咸阳712000) (Northwest Research Institute Co.,Ltd of C.R.E.C ,Xianyang 712000,China ) 摘要:随着我国综合国力的不断提升,横跨长江大河的桥梁不断涌现。桥梁的深水基础施工是大跨度桥梁施工的重要组成部分。桥梁深水基 础施工所处的环境比较复杂,在工程实际中一般采用围堰和钢吊箱进行施工。本文以***桥梁深水基础施工为背景,详细的阐述了双壁钢围堰 法在深水基础施工中的应用,并做了简单的数值模拟,验证了双壁钢围堰法的可用性。 Abstract:With the rising of China's comprehensive national strength,the Yangtze river bridge across the river emerge.The deep water foundations of the bridge construction are an important component of the large span bridge construction.Bridge construction in deep water foundations always starts in complex environment,cofferdam and steel construction hanging box are general methods in engineering practice.Based on the construction of the deep water foundations bridge of***in the background,the double-wall steel cofferdams in the deep water were described in detail,and the application of the numerical simulation simplify,finally get the effectiveness of the method of double steel cofferdam. 关键词:深水基础;双壁钢围堰;有限元分析;施工方案Key words:deep water foundations ;double-wall steel cofferdam ;finite element analysis ;construction scheme 中图分类号:U44 文献标识码:A 文章编号:1006-4311(2012)18-0092-02 图1承台平面图(单位:m )图2钢围堰平面图(单位:mm ) ·92·

深水桥墩桩基础施工方案

S316X段(长江东路至湖光南路)改建工程K4+746.5X河特大桥 24# 25# 深 水 桥 墩 基 础 施 工 方 案 XX公司S316X段改建工程市政02标 X年十二月

X河特大桥24#、25#深水桥墩基础施工方案 一、工程概况 1、桥型和结构 本标段实施桩号K4+013.1-K5+461.5,为X河特大桥,桥梁全长1454.4米;跨径组合为:5×25+4×30+(23.4+4×25)+9×25+ (70+130+75)+23×25,按一级公路标准建设,设计速度80km/小时,桥梁全宽41m,双幅设置。主桥平面位于4600m的圆曲线上、纵断面纵坡为+2.48%和-2.48%,单幅桥面横坡为单向2%。 跨X河主桥长280m(跨径布置:75m+130m+75m),桥面宽度41m。桩基全部采用钻孔灌注嵌岩桩基础。24#墩(高16米)、25#墩(高17米)位于X河河道内,桥位地处X下游,是X流域的主要入江水道,为III级航道,河底高程为1.70~0.60m,相应底宽100~110m,堤距约200m,堤顶高程9.80~11.40m,最高通航水位10.31m。现场概况为横跨X河、农田、沟塘等。主墩52根桩基(共2墩),桩径2.0m,桩间距3.0米,承台顶面标高2.464m,河道常流水位6.5m。 技术标准 1.公路等级:公路—I级; 2.设计行车速度: 80公里/小时; 3.桥梁设计汽车荷载等级:公路-Ⅰ级; 4.设计基准年:100年 5.桥面宽度:全宽41.0m,双幅设置,单幅标准宽度19.0m,桥面布置为:2.5m(人行道)+3.5m(非机动车道)+0.5m(护栏)+12m (行车道)+0.5m(护栏)+3.0m(分隔带); 6.环境类别:I类环境;

深水基础锁口钢管桩围堰施工工法

锁口钢管桩围堰深水基础施工工法 xxxx有限公司

锁口钢管桩围堰深水基础施工工法 1、前言 随着桥梁建设向大跨度方向的发展,大型水中承台围堰的施工方法较为繁多,工艺较为成熟。针对不同工程的结构特点选择适宜的围堰结构进行水中大型承台施工,锁口钢管桩围堰与双壁钢围堰和钢板桩围堰比较,即具有围水、挡护特性,又利用了钢管圆形截面的受力特点,简化了结构,同时造价低、安装速度快。对桥梁施工的安全、工期、经济和社会效益有重要影响。锁口钢管桩围堰施工工法是采用锁口钢管桩作围堰围水闭水进行桥梁水中大型承台施工的成套技术,包括相关的设计计算、加工制作、插拔施工、止水封底等系统施工技术。 xxxx工程局有限公司结合所承建的临海高等级公路灌河斜拉桥工程项目,根据施工现场水文、地质、气候及周边环境,通过技术攻关确定辅助跨5#、6#墩水中承台采用锁口钢管桩围堰施工,解决了水中大型承台施工的技术难题并形成工法。实践证明,工法具有很好的实用性、先进性、科学性。 2、工法特点 2.1加工制作简单、快速。钢管采用厂制成品钢管,能快速购置;钢管和锁扣之间的焊接工艺要求不高,工作量少,工地现场或一般钢结构厂家均可加工。 2.2施工工期短。采用振动锤逐根插入锁口钢管桩,施工工序简洁,精度要求不高,人工作业量小,施工速度大大提高。 2.3整体刚度大。锁口钢管桩本身刚度较大且深嵌入承台底以下地层、变形少,桩间通过锁口连接在一起整体稳定性非常好;围堰内无须复杂的内支撑体系,为承台施工提供了作业空间和可靠的安全保障。 2.4材料回收利用率高。锁口钢管桩可全部拔除,整个围堰结构的钢材回收率达90%以上,可用于其他承台基础围堰施工或上部结构施工的支撑管柱,材料周转利用率高,经济效益明显。 3、使用范围 锁口钢管桩围堰适用于陆地(土质类地质层)大型承台深基坑支护及水深20m以内、河床为砂类土、粘性土和风化岩等种复杂地质、地层条件下的大型承台施工。

陆水特大桥主桥墩深水基础施工方案

目录 一、工程概况 (1) 二、桥位水文、地质情况 (1) 三、施工方案综述 (2) 四、施工便道(栈桥)施工 (3) 五、40#、41#墩桩基施工 (4) ⑴、40#、41#墩施工平台的筑岛施工 (4) ⑵、40#、41#墩桩基施工 (5) 六、40#墩沉井围堰施工 (6) ⑴、沉井围堰施工工艺流程 (6) ⑵、施工坑开挖 (7) ⑶、沉井制作 (7) ⑷、沉井下沉 (9) ⑸、沉井清基、堵水: (12) 七、41#墩沉井围堰施工 (13) ⑴、施工工艺流程 (13) ⑵、双壁钢沉井制造 (14) ⑶、双壁钢沉井下沉 (15) ⑷、沉井清基 (17) 八、承台大体积混凝土施工 (17) ⑴、合理选择原材料,优化混凝土配合比。 (17) ⑵、控制混凝土骨料温度 (18) ⑶、合理选择混凝土的浇筑时间 (18) ⑷、制定合理的混凝土浇筑工艺施工方法 (18) ⑸、模板的外部降温 (19) ⑹、浇筑完毕后的降温 (19) 九、沉井围堰的拆除 (20) 十、主要施工机械设备配置 (20) 十一、施工进度安排及工期保证措施 (21) ⑴、施工进度安排 (21) ⑵、工期保证措施 (22) 十二、质量保证措施 (23) ⑴、质量保证体系 (23) ⑵、组织保证 (23) ⑶、强化现场的技术、质量、检测力量 (24) ⑷、抽调和整合施工专业队伍 (25) ⑸、意识和能力的保证 (25) ⑹、材料保证 (25) ⑺、质量管理保证 (26) 十三、安全保证措施 (27) 十四、环保措施 (28)

陆水特大桥40#、41#主桥墩深水基础施工方案 一、工程概况 陆水特大桥跨越陆水河主桥为(70+125+70)m预应力混凝土连续梁,一联全长266.5m(含两侧梁端至边支座中心0.75m),桥面板宽13.4m。梁体结构按三向预应力体系设计,箱梁截面为单箱单室直腹板型式。 主桥40#、41#和42#墩处于陆水河两侧河堤间,按施工水位21.5m考虑(该标高为现场实测的2006年秋冬季陆水河的水位),41#墩处于深水区(平均水深4.2m),40#墩处于浅水区(平均水深2.5m),其余各墩均在枯水期均露出水面。 二、桥位水文、地质情况 桥址处陆水河水流流向为左至右,线路法线与水流夹角为12°,H1%=35.71m。陆水河为通航河道,航道为Ⅴ级(3)等航道,通航净高为8.0m,侧高为5.5m,净宽为80m,上底宽72m,桥址处最高通航水位H10%=31.25m。 根据设计提供的地质资料,40#、41#墩表层为粗圆砾土,下层依次为全风化、强风化、弱风化泥质粉砂岩。 地质情况表

深水桩基施工工法.

深水桩基施工工法 天元建设集团有限公司 高丰裴兆波周先鹤吕凤勇陈国欣 1、前言 随着我国经济的快速发展,城市间的距离不断缩短,跨江跨河的公路桥梁越来越多,在这些工程中,水深一般比较大,通常的筑岛围堰已经不能满足施工的需要,且工程量大,费用高,于是钢管桩水中平台加钢板桩围堰的方案越来越受到业主及施工单位的青睐。我公司施工的连云港市赣榆县青口河大桥水面宽度有600多米,平均水深达15米,在施工过程中,通过不断的总结提炼,形成了深水桩基施工工法。 本工法先后在东海县南辰大桥、204国道龙王河大桥、连云港市新沭河特大桥的桩基础施工中应用,加快了施工进度,降低了工程成本,保证了施工质量与安全,取得了非常好的效果。 2、工法特点 2.1、施工过程中平台与陆地之间的联系非常方便,顺利地解决了各种材料的水中运输问题,并且安全可靠。 2.2、钢板桩围堰封闭性比较好,打入、拔除操作简单、快捷。有利于加快施工进度。 3、适用范围 本工法适用于水深在30米范围内跨越水库、河流、海湾的铁路、公路桥梁的深水基础施工。 4、工艺原理 将浮箱、工字钢、桁架、卷扬机、卷扬机带动的旋转底座和起重机大臂等拼装组成浮吊,利用浮吊将浮箱和工字钢组成的导向船固定,作为导向框架,使用浮吊依靠导向船打入钢管桩,搭设水中平台,以水中作业平台为依托,下设钢护筒、钻孔、下放钢筋笼、灌注混凝土,然后拔除施工平台,进行钢板桩围堰,钢板桩内边抽水边用工字钢作内支撑,抽干水后用混凝土封底,施工系梁及承台。 5、施工工艺流程及操作要点 5.1工艺流程 钢板桩及钢护筒制作----浮箱拼装----浮吊拼装----搭设水中平台----埋设钢护筒----钻孔桩施工----清孔----混凝土灌注----平台拆除----打入钢板桩围堰----抽水清淤----凿除桩头----浇注混凝土封底----细梁或承台施工----拔除钢板桩围堰

深水基础围堰施工方法

深水基础围堰施工方法 【摘要】就深水基础套箱围堰的几种结构形式及特点进行了论述,并介绍了相应的应用情况,为类似工程的施工提供了有益的经验。 【关键词】深水基础围堰施工 近年来,随着我国经济建设的不断发展,跨越大江大河的桥梁也越来越多。我们中国铁道建筑总公司近几年来也修建了许多深水桥梁,深水基础的施工水平逐渐提高。在许多方面已赶上和达到了国内先进水平。本文针对深水桥梁施工中的难点——低桩承台的施工围堰加以总结,以便我系统在类似工程的施工中参考。 一、围堰的类型 目前,围堰主要有以下几种:钢板桩围堰、混凝土围堰、钢套箱围堰以及钢-混凝土组合结构围堰。其中,钢板桩围堰主要为单壁结构;混凝土围堰又分为重力式钢筋混凝土围堰和双层薄壁钢筋混凝土围堰;钢套箱围堰又分为单壁、双壁以及单双壁组合式钢围堰;钢-混凝土组合结构围堰也可分为上钢下混凝土、下钢上混凝土形式。每种围堰都有自己的特点和适用条件,因此需根据各自的水文、地质、材料价格以及设备情况等比选而定。下面分别就每种围堰的结构形式及适用条件结合实例加以综述。 二、钢板桩围堰 钢板桩围堰是一种比较传统的深水基础施工方法。钢板桩是从国外引进的一种制式产品,我系统主要为德国拉森式钢板桩。钢板桩可以打入上中或连到物件上,组成承载及防水结构,工作结束后,拔出或拆下重复使用。 1.结构型式及特点 钢板桩围堰一般采用单壁的矩形、圆形等结构形式,内部根据水位情况设置支撑,该围堰因为是重复使用,因此,一般没有封底混凝土;它是一种施工简单、快捷、成本较低的围堰形式。但是,该围堰也有其很大的局限性,其一,由于是组拼式结构,整体刚度较小,因此其抗水流及冲刷能力差,不宜于在流速较大的

推荐-深水基础施工方案 精品

目录

客运专线大跨度连续梁(刚构)深水基础施工技术 1概述 1.1工程概况 武广客运专线新广州站及相关工程流溪河特大桥跨西华海连续刚构横跨白泥水道,跨径组合为(94+168+94)m。里程范围DK2189+053.58~DK2189+409.88,全桥长356m,桥墩轴线与水道成28°夹角。水中主墩基础为12根φ2.5m,桩长95m钻孔桩。承台尺寸为23.2m(长)×16.8m(宽)×5m(高),最近角距离岸边约6m。详见图1-1 平面位置关系图。 主墩的地质情况为岩层上覆盖厚4-5m的细砂层,强、弱风化炭岩分层交替,岩层裂隙发育,层深4m~10m,部分区域夹杂有3m~8m厚弱风化粉砂岩层,根据地质勘察报告显示,桩基所涉及的地层(由上而下)情况见表1.3。

表1.3 主墩桩基所处地层情况表 1.4水文气象 本桥址所处地区属亚热带季风气候。气候温暖多雨夏季中时有台风侵袭,接受阳光热能较多,且受海洋气候影响调节。夏季时间长,雨季充沛,没有严寒。年平均气温21.8℃,极端最高气温38.5℃,极端最低气温-1.9℃,年平均相对湿度80%左右。年平均降雨量1667mm,最大日雨量284.9mm,4~9月为雨季,占全年降雨量的80%,春夏季节多偏南风,冬季多偏北风,夏季与秋季常发台风,台风经过时夹带暴雨,最大风速达35.4m/s。 1.5工程特点及技术难点 主墩深水基础施工主要具有以下特点: (1)水上与高空作业多,安全隐患多; (2)过程控制环节多,且控制部位又位于水中; (3)主墩间河道为III级航道,过往船只频繁; (4)临堤建筑物及道路密集; (5)工程工期紧,难度大;

桩基础、挡墙基础、深水基础、围堰工程专项施工安全措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.桩基础、挡墙基础、深水基础、围堰工程专项施工安全措施正式版

桩基础、挡墙基础、深水基础、围堰工程专项施工安全措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 一.建立健全各项安全制度 根据工程特点,制定具有针对性的各 项安全管理制度:各类机械的安全作业制 度;用电安全制度;便道、便桥通行及养 护作业制度;孔下安全作业制度;高空安 全作业制度;施工现场保安作业制度;工 区防洪、防火、防风等措施;起重作业安 全制度;各种安全标志的设置及维护措施 等。 二.安全生产教育与培训 项目经理部经常开展安全生产宣传教 育活动,使广大员工真正认识到安全生产

的重要性、必要性,牢固树立“安全第一,预防为主”的思想,自觉地遵守各项安全生产法令和规章制度。 开工前,对所有参建员工进行上岗前的安全教育,教育内容包括:安全技术知识,各工种操作规程、安全制度,工程特点及该工程的危险源等。经考核合格后,方可上岗作业。对于从事电器、起重、孔下、高空作业、焊接、机动车驾驶、爆破作业等特殊工种人员,经过专业培训,获得《安全操作合格证》后,方准持证上岗。 三.安全生产检查 开工前的安全检查验收。工程开工前,进行全面的安全检查验收,检查验收

深水基础施工技术概论

深水基础施工技术

目录 一、桥梁深水基础施工的关键技术 (一)水上施工运输方式 1、施工栈桥运输方式 2、船运方案 3、综合运输方案 4、水上施工运输方式总结 (二)钻孔平台 1、固定工作平台

2、浮动工作平台 3、钻孔平台总结 (三)钻孔桩施工 1、钻机选型 2、护筒 3、泥浆的配制 4、成孔工艺 5、灌注工艺 6、钻孔灌注桩施工工艺流程 7、深水钻孔桩施工控制措施 8、钻孔桩的质量检验 9、钻孔桩基础施工小结 (四)围堰施工 1、低桩承台的围堰施工 2、高桩承台的围堰施工 3、围堰施工总结 (五)封底及承台的大体积混凝土施工 1、水下大体积封底混凝土的施工 2、承台大体积混凝土的施工 二、深水基础施工所需要的主要机具设备三:深水基础墩施工的方案及设备案例

深水基础施工技术 一、桥梁深水基础施工的关键技术 随着我国大型桥梁建设的跨径增长,深水基础的施工技术已成为大型桥梁建设的关键技术。深水基础施工包括桩基础和承台的施工,分析深水基础的施工,其关键技术包括水上施工运输方式、水上施工平台的结构形式、水上钻孔桩的施工、围堰的施工以及土封底及承台大体积混凝土的施工等方面。 (一)水上施工运输方式

水上施工的关键就是如何进行设备、材料的运输以及混凝土的施工,目前水上施工运输的方式主要有三种:施工栈桥运输方案、船运方案、综合运输方案。 1、施工栈桥运输方案 一般情况下,深水基础施工的环境多为大江大河,其风大浪大,自然条件对施工影响较大,施工多采用栈桥方案。搭设临时栈桥作为深水基础施工的便桥,利用栈桥进行钻孔灌注桩的施工的材料及机械设备的运输通道。另外,水中墩越多,跨度越小,水深越浅,落潮时大船难以进入的深水基础施工,采用栈桥作为陆上运输方案越合理。 栈桥的形式有如下几种:浮式栈桥和固定式栈桥,浮式栈桥和固定式栈桥均可分为单线或双线栈桥两种。 (1)浮式栈桥方案 在水位较深、流速较小、不受台风影响的深水基础施工中,可采用浮式栈桥作为交通运输便道。浮式栈桥施工避免了风险性较大船只运输,施工进度快,减少了临时工程的时间。但由于使用水上设备较多,一般较少采用。 浮式栈桥一般采用铁路六四式标准舟节组拼作为浮体,在浮体上架设铁路六四式军用梁作为桥跨结构承受上部运输荷载,利用锚碇锚固定位。 (2)固定式栈桥方案 在水深流急、河床覆盖层较厚、受台风及潮汐影响的深水基础施工时,可搭设固定式栈桥作为交通运输便道。搭设临时施工栈桥所用的时间虽然较长,但可为后续工程的施工提供一劳永逸的交通运输便道,较安全经济。 固定式栈桥一般采用钢管桩打入覆盖层一定深度作为临时支墩,在临时支墩上安装横梁和上部桥跨结构,上部桥跨一般采用六四式铁路军用梁等制式器材。 无论浮式栈桥还是固定式栈桥,均要根据工程量的大小和工期的长短以及运输时的大小选择采用单线或双线栈桥。具体采用何种方式的栈桥还要根据具体的自然条件、河床地质条件和工程情况

深水桩基础施工方案

S316巢湖段(长江东路至湖光南路)改建工程 K4+746.5裕溪河特大桥 安徽路港公司S316巢湖段改建工程市政02 标 二O —三年十二月 深水桥墩基础施工方案

裕溪河特大桥24叭25#深水桥墩基础施工方案 工程概况 1.桥型和结构 本标段实施桩号K4+013.1-K5+461.5 ,为裕溪河特大桥,桥梁全长1454.4 米;跨径组合为:5x25+4x30+ (23.4+4x25 )+9x 25+( 70+130+75 >23x25按一级公路标准建设设计速度80km/ 小时,桥梁全宽41m,双幅设置。主桥平面位于4600m的圆曲线上、纵断面纵坡为+2.48%和?2.48% ,单幅桥面横坡为单向2%o 跨裕溪河主桥长280m (跨径布置:75m + 130m+75m ),桥面宽度41m。桩基全部采用钻孔灌注嵌岩桩基础。24#墩(高16米1 25#墩(高17米)位于裕溪河河道内,桥位地处巢湖下游,是巢湖流域的主要入江水道,为III级航道,河底高程为1.70~0.60m,相应底宽100~110m ,堤距约200m ,堤顶咼程9.80~11.40m ,最局通航水位10.31m。现场概况为横跨裕溪河、农田、沟塘等。主墩52根桩基(共2墩),桩径2.0m ,桩间距3.0米,承台顶面标高2.464m , 河道常流水位6.5m o 技术标准 1 ?公路等级:公路一I级; 2?设计行车速度:80公里/小时; 3?桥梁设计汽车荷载等级:公路?:[级; 4?设计基准年:100年 5?桥面宽度:全宽41.0m ,双幅设置,单幅标准宽度19.0m , 桥面布置为25m(人行道)+3.5m(非机动车道)+0.5m(护栏) + 12m (行车道) +0.5m(护栏)+3.0m(分隔制;

深水桥墩桩基础施工方案

S316巢湖段(长江东路至湖光南路)改建工程K4+746.5裕溪河特大桥 24# 25# 深 水 桥 墩 基 础 施 工 方 案 安徽路港公司S316巢湖段改建工程市政02标 二〇一三年十二月

裕溪河特大桥24#、25#深水桥墩基础施工方案 一、工程概况 1、桥型和结构 本标段实施桩号K4+013.1-K5+461.5,为裕溪河特大桥,桥梁全长1454.4米;跨径组合为:5×25+4×30+(23.4+4×25)+9×25+(70+130+75)+23×25,按一级公路标准建设,设计速度80km/小时,桥梁全宽41m,双幅设置。主桥平面位于4600m的圆曲线上、纵断面纵坡为+2.48%和-2.48%,单幅桥面横坡为单向2%。 跨裕溪河主桥长280m(跨径布置:75m+130m+75m),桥面宽度41m。桩基全部采用钻孔灌注嵌岩桩基础。24#墩(高16米)、25#墩(高17米)位于裕溪河河道内,桥位地处巢湖下游,是巢湖流域的主要入江水道,为III级航道,河底高程为 1.70~0.60m,相应底宽100~110m,堤距约200m,堤顶高程9.80~11.40m,最高通航水位10.31m。现场概况为横跨裕溪河、农田、沟塘等。主墩52根桩基(共2墩),桩径2.0m,桩间距3.0米,承台顶面标高2.464m,河道常流水位6.5m。技术标准 1.公路等级:公路—I级; 2.设计行车速度: 80公里/小时; 3.桥梁设计汽车荷载等级:公路-Ⅰ级; 4.设计基准年:100年 5.桥面宽度:全宽41.0m,双幅设置,单幅标准宽度19.0m,桥面布置为:2.5m(人行道)+3.5m(非机动车道)+0.5m(护栏)+12m (行车道)+0.5m(护栏)+3.0m(分隔带); 6.环境类别:I类环境;

桩基础 挡墙基础 深水基础及围堰工程技术的专项方案

桩基础挡墙基础深水基础及围堰工程技术的专项方案 第一章编制依据 一凯里市马田至三江水泥路建设工程招标文件 二凯里市马田至三江水泥路建设工程施工图设计 三现场场地情况,周围环境情况及三通一平情况 四国家现行的道路工程法律、法规、规范、标准等。 第二章工程概况 凯里市马田至三江水泥路建设工程,工程位于凯里市万潮镇,本段全长7.3公里,公路等级为四级,设计速度20千米每小时,路基宽度为4.5米。 前期准备工作已经就绪,根据《中华人民共和国招标投标法》,《贵州省招标投标条例》,《贵州省建筑市场管理条例》暂定办法规定实行公开招标,择优选取施工单位进行工程施工。工程有关施工图已由凯里市交通规划设计所设计完成 第三章施工部署 (一)桩基础 1主要施工方法 (1)桩孔施工工艺流程 场地清理→放线、定桩位→做井圈(高于原地面20cm)→挖第一节桩孔土方→绑扎护壁钢筋、支模浇灌第一节护壁砼→在护壁上二次投测标高及桩位十字轴线→安装、调试垂直运输架、吊土桶、渗水泵、鼓风机、照明设施等→第二节桩身挖土→清理桩孔四壁、校核桩孔直径、绑扎护壁筋→拆上节模板、支第二节模板、校对桩中垂直、浇筑第二节护壁→重复第二节挖土、支模、浇灌护壁砼工序,循环作业直至设计深度(持力层)→对桩孔直径、深度、

入岩深度进行全面检查验收→清理岩渣、排除孔底积水→安装钢筋笼→埋设检测管→浇灌桩身砼→桩芯砼养护→桩芯砼检测。 (2)挖孔作业 松散土层用人工锄、铲、镐开挖,进入强风化层后用风镐破碎掘进或采用爆破,挖孔时需每节校正桩孔中心及几何尺寸偏差,经检查合格后才能进行下一道工序。每节护壁的开挖深度为1.25米,遇到砂层流砂时为0.5米,并及时浇灌,尽量减少孔内涌砂。桩孔开挖超过5米以后,孔内施工时要用鼓风机连续向孔内送风,风管口要求距离孔底2米左右,孔内照明采用低压防爆灯泡,灯泡位置离孔底2米,不能直接放在井底。 挖土次序为先挖中间部分、后周边,按设计桩直径加2倍厚度控制截面,允许尺寸误差±3cm。扩底部分采取先挖桩身圆柱体,再按扩底尺寸从上到下削土修成扩底成形。遇到坚硬土层和进入岩层用空压机镐破碎或采取爆破,弃土装入吊桶。垂直运输,每桩孔上口安装一台提升吊架,用0.5T卷扬机提升。吊至地面上后,用手推车运送,通过提升架二次垂直运至基坑顶集中堆放,再用汽车外运到弃土场。孔内地下水采取随挖随用吊桶将泥水一起吊出。渗出水大者,在—侧挖集水坑,用高扬程潜水泵抽排出孔外。 为保证砼护壁的整体性,在淤泥和流砂层土质以上土层均按设计要求用12钢筋作拉结筋,以免护壁脱节下沉。为确保工程桩质量,在桩终孔验收后,在桩底开挖一集水坑,以便抽排净桩孔内积水。 当桩孔挖进入中风化岩层1.0m时,及时通知建设单位、监理单位、地质勘察单位和质监单位现场确认岩样,并现场取样,进行终孔验收工作。终孔验收完毕后才能进行下一道工序。 (3)护壁制作 桩孔成形模板采用钢制,按比例分块定型,普通型的钢模高为1.0米,为针对本工程出现特殊情况,特制一批0.3~0.5米规格的成品钢模。拆上节、支下节,循环周转使用,模板间用U形卡连接,上下各设一道型钢圈顶紧,钢圈由两半圆组成,用螺拴连接,不另设支撑,以便浇筑砼和下一节挖土操作。为了满足工期要求,每桩配制一套以上模板。

桥梁深水基础施工方案及施工工艺

5.2.1.某桥梁深水基础施工方案及施工工艺 5.2.1.1.概况 大桥位于巴中侵蚀低山区,在曾口场下游约3km跨越某河,桥位处航道等级为Ⅶ级,航道尺度(航深×航宽×回旋半径)0.9×12×249m ,桥位处河面宽约110m。本桥采用大跨混凝土连续梁桥,中心里程为D1K24+610,桥跨布置:8×32+(48+80+48)+7×3。桥位处轨底至河底高50m。 两座桥梁下部结构均采用T形桥台,圆端形桥墩及圆端形空心墩,基础采用钻(挖)孔桩基础。水中墩基础采用双壁钢围堰施工,需搭设水中栈桥及钻孔平台。 5.2.1.2.施工方案 见“表5.2.1-1”。 5.2.1.3.施工方法及工艺 本桥陆地桩基、浅水桩基、墩台、现浇连续梁施工法同“3.5.桥梁工程”,不再详述。重点主要是深水基础施工,施工方法及措施如下: 表5.2.1-1 深水基础施工方案表

连续梁悬灌施工方案 先施工0#梁段,根据具体情况选择落地支架或墩顶托架进行施工,落地支架采用钢管或制式器材搭设,托架采用制式杆件或型钢,立模、布设钢筋、钢绞线,泵送砼一次浇筑成型,张拉、压浆完成后,在0#块上安装挂蓝。悬灌采用对称、同步浇筑施工。边跨直线段,采用支架法现浇。合拢时,先合拢边跨合拢段,拆除临时支墩进行第一次体系转换,然后合拢中跨合拢段。合拢时采取临时固结刚性锁定,两端进行均衡压重。悬灌梁的标高、线形控制采用铁科院开发的软件随时进行信息反馈和调整。 简支T梁 施工方案 采用预制架设法施工,T梁在制梁场预制,架桥机逐孔架设。5.2.1.3.1.施工栈桥施工 分别从两岸浅水区修建便道,再分别搭设栈桥,栈桥宽6m,栈桥为15m一跨,每个临时墩布置3根Φ80cm钢管桩、桩间设置横向剪刀撑连接系,桩顶设置钢结构分配梁,栈桥梁部采用贝雷梁拼装、铺设桥面板,栈桥与桥墩基础施工平台连接,以保证吊机到墩位作业。具体见施工栈桥示意图5.2.1-1。 栈桥基础采用打入钢管桩,钢管桩顶部设型钢承台,承台上设钢支座,沿线路纵向架设贝雷梁,贝雷梁上部沿栈桥横纵向架设工字钢作桥面分配梁,与贝雷梁之间联结采用勾头螺栓连接,上部铺设钢板,与工字梁焊接。贝雷梁横向之间设剪刀撑,确保施工栈桥整体稳定。 钢管桩直径采用Φ60cm,钢板壁厚12mm,长度根据设计荷载及地质状况综合考虑布设要求经计算确定。 (1)钢管桩施工 履带吊停放在已施工完成的施工便道,吊装悬臂导向定位支架,悬臂导向定位支架精确就位后,运输钢管桩就位。履带吊机起吊底节钢管桩吊至设计桩位并插桩,让钢管桩自沉入土,待一组全部钢管桩就位后,用履带吊将振动锤与液压夹钳吊至钢管桩顶口,用液压夹钳将钢管桩顶口夹住检查桩的垂直度满足要求后,开动振动锤振动,每次振动持续时间不宜超过10~15min,过长则振动锤易遭到破坏,太短则难以下沉。每根桩的的下沉一气呵成,不可中途停顿或较长时间的间隙,以免桩周土恢复造成继续下沉困难。 单根桩节按起吊高度和重量控制最大为15m,单根桩长超过15m分为2节,底节钢管桩入土至导向架施工平台上0.5~1.0m高度时,移去振动锤进行接桩。用履带吊将顶节钢管桩就位后,逐根就位,钢管桩就位后进行两节桩的焊接,同时履带吊换上桩锤和液压夹钳。桩与桩之间焊接质量经检查合格后重新进行打桩,直至将桩打到设计深度。

公路桥梁工程明挖扩大基础及基础混凝土施工方案

公路桥梁工程明挖扩大基础及基础混凝土施工方案 一、施工方法 对刚性扩大基础的施工,一般均采用明挖,根据开挖深度、边坡土质、渗水情况及施工场地、开挖方式和施工方法可以有多种选择。 A.放坡开挖 1.测量放线:用经纬仪测出墩、台基础纵、横中心线,放出上口开挖边线桩,边坡的放坡率可参照下表: 为避免雨水冲坏坑壁,基坑顶四周应做好排水,截住地表水,基坑下口开挖的大小应满足基础施工的要求,渗水的土质,基底平面尺寸可适当加宽50cm-100cm,便于设置排水沟和安装模扳,其它情况可放小加宽尺寸,不设基础模板时,按设计平面尺寸开挖。 2.开挖作业方式以机械作业为主,采用反铲挖掘机配自卸汽车运输作业辅以人工清槽。单斗挖掘机(反铲)斗容量根据上方量和运输车辆 的配置可选择0.4~0.1立方米,控制深度4一6m。挖基土应外运或远离基坑边缘卸土,以免塌方和影响施工。

3.基坑开挖前,依据设计图提供的勘探资料,先估算渗水量,选择施 工方法和排水设备,采用集水坑排水方法施工时按集水坑底应比基坑底面标高低50一100cm,以降低地下水位保持基底无水,抽水设备可采用电动或内燃的离心式水泵或潜水泵,采用人工降低地下水位。 井点法适用于基坑土质容易流砂的砂土层,不能用直接排水法的情况下。降低地下水位效果较好。在距基坑壁1.0m的土层内通过计算设置若干针形管,通过水泵从中抽水引起地下水位的下降,由于各集水井的作用使基坑范围地下水位下降,在施工过程中不断抽水,使基坑保持干燥无水。 4.基坑开挖应连续施工,避免晾槽,一次开挖距基坑底面以上要预留20一30cm,待验槽前人工一次清除至标高,以保证基坑顶面坚实。 5.坑壁的支撑 坑壁的支撑方式可选以下几种: (1)档扳支撑:适用于基坑断面尺寸较小,可以边挖边支撑的情况,档 板可竖或横立,板厚5一6cm,加方木带,板的支撑用钢、木均可。 (2)喷射砼护壁是一种常用的边坡支护方法,在人工修整过的边坡上采 用砼喷射机喷射砼,厚度一般为5-10cm(或特殊设计),砼标号C20,石子粒径0.5-1.5cm,喷射法随着基坑向下开挖1.0一2.0m,即开始喷射砼护壁,以后挖一节喷一节直到基底。 (3)围堰:在有地表水的地段,开挖基坑应设置围堰,根据施工的不同 环境,水文情况,围堰可以采用土围堰、草(麻)袋围堰、木板或钢板桩围堰等多种型式,施工时应注重充分利用当地材料和现有设备,尽可能缩短工期,提高工效,保证安全。要求堰顶面至少高出施工期最高水位0.5一1.0m,围堰应尽量减少压缩河床断面,要满足强度和稳定的要求。各类围堰简述如下: a.土围堰适用于水深在2.0m以内,流速小于0.5m/S的情况下, 围堰易采用松散的粘性土填筑,堰顶宽一般为1-2m,临水面边坡1:2一1:3,堰内最小边坡l:1,坡角距基坑边不小于1.0m,筑堰前应先清理堰底树根、草皮、石块等杂物,填土出水面应分层夯实。

深水桩基础施工工艺细则

深水桩基础施工工艺细则 本章节主要明确钢管桩支架平台法施工桥梁深水钻孔桩工序作业、分项工程的相关质量要求和现场安全文明施工,规范现场的管理和指导施工。 4.5.1施工前提条件 4.5.1.1组织技术部门认真研究设计图纸及其提出的有关要求,结合地质资料、施工工期,编制实施性施工组织设计,内容应包括各种机械设备到场安排、性能、状况,克服水文、 地质等条件所采取的施工技术和工艺措施,人员及各班组组织安排,材料进场和检验计划安排,质量、安全保证体系,工期计划等。 4.5.2工序 1水中施工常用方法有沉箱法、钢围堰法、平台法、便桥法等,钢管桩水中平台的方案适合于跨度小,墩柱分散,施工方便,充分利用浮吊,发挥运输船的作用,既解决了施工平台的问题,又解决了运输问题。 2钢管桩水中平台的施工工序(见图 4.5.2):以浮箱和工 字钢、角钢组成的导向船为导向框架,将浮箱、工字钢、桁架、卷扬机、卷扬机带动的旋转底座和起重机大臂等拼装组成浮吊,使用浮吊依靠导向船打设钢管桩,搭设水中平台,以水中作业平台为依托,钻孔,下放钢筋笼,灌注砼。

3首先要修建临时码头,以便于运输船、浮吊的停泊,码 头距离桥位不可过远或过近,以200米为宜;各种器材下水 并在码头边利用吊车拼装浮吊;浮吊拼装完毕埋设地垄、锚碇,抛锚定位;测量水深定位导向船;打设钢管桩;拼装平台;下放钢护筒;吊拼钻机,钻机就位;钻孔;终孔后反循环清孔;下放钢筋笼;灌注砼。 4.5.3 施工技术 4.531水中平台的设计 根据桩位情况(以一排2根桩为例),确定钢管桩支架平台的布置型式,根据不同桩间距调整内侧两排管桩间距; 水中平台由12根$ 720mm的钢管桩、两根140a工字钢纵梁、四根I40工字钢横梁、角钢斜撑若干根组成。详细布置见图4.5.3。 4.5.4施工工艺 4.5.4.1根据现场地形情况选择合适地点制作临时码头,组织各种器材下水,拼装浮箱、浮吊及导向船等。 4.5.4.2钢管桩及钢护筒的制作

深水基础施工

水中基础施工工艺 水中基础有三种常用的施工方法,即:筑岛围堰、钢板桩围堰以及双壁钢围堰。下面逐一介绍: 一、筑岛围堰 一般来说,水深不大于2米,流速小于0.3m/s处的水中基础,适用土石筑岛围堰;水深不大于3米,流速小于1.5m/s处的水中基础,适用草袋筑岛围堰。 ①土体围堰:水深较浅、流速比较缓慢,围堰底为不透水土层可用土堆筑成梯形截面的土堤,其迎水面的边坡不宜陡于1:2(竖横比,下同),基坑侧边坡不宜陡于1:1.5。为防止迎水面边坡受冲刷,常用片石、草皮或草袋填土围护。 ②草袋围堰:围堰堰体采用草袋、麻袋或编织袋装以松散的粘质土,装土量为袋容量的1/2-2/3,袋口用麻袋线或细铁丝缝合,堆码土袋时,上下左右互相错缝,并尽可能堆码整齐。 若水流较大时可采用有粘土心墙的围堰,流速较大时,外圈土袋可装小卵石或粗砂,以防被水冲走,必要时抛片石防护,或者外圈改用竹篓或荆条筐内装砂石。 在内外圈土袋堆码至一定高度或出水面后,即可填筑粘土心墙,粘土心墙的填筑采取顺坡填筑,不得直接倾倒在水中。 为防止渗水,围堰底部采用砼封底。如下图:

编织袋粘土芯墙围堰横断图 二、钢板桩围堰 水深4m 以上、流速较大且地质情况较好(如砂层、碎石土、风化岩、熟性土等地层)的水中基础适用钢板桩围堰。钢板桩可以打入土中或连到物件上,组成承载及防水结构。 钢板桩是带有锁口的一种型钢,其截面有直板形、U 形、槽形及Z 形等,有各种大小尺寸及联锁形式。其优点为:强度高,容易打入坚硬土层;围堰内有纵横向支撑,必要时加斜支撑成为一个围笼。能按需要组成各种外形的围堰,防水性能好,并可多次重复使用。如下图: 直线型钢板桩 其高度底,接近于直线,所以对于开挖一些沟渠,特别是在两个建筑物中间空间不大,而又必须开挖的时候,比较适用,第一,他可以形成一道稳固的钢板桩墙,从而保证向下顺利开挖,而不受两侧踏方,地下水的影响,另外,还有助于稳定地基,从而保障的两侧建筑物的稳定 钻孔桩 H 1:0.5 水位 1.5m 0.8m 1:0 .51:0.5 编织袋围堰 封底砼(50cm厚) 粘土芯墙1:0 .50.8m 0.8m 0.8m 0.8m 0.8m 1.5m 承台

大连振兴路跨海大桥深水基础施工工艺

大连振兴路跨海大桥深水基础施工工艺论文概要,大连市振兴路主线桥采用深水承台开挖,基桩施工搭建海上作业平台、水下安放钢护筒、海上成孔灌注。本论文从深水基础的结构设计、方案实施、控制要点等方面进行了论证,并对大桥深水基础施工的关键技术进行了研究分析,提出了具体解决方案,为有关单位提供了研究资料。 关键词,深水基础,钢套筒,箱梁,承台 工程概况,本工程位于大连市振连路开发区,起点为大连湾和尚岛,终点接赤峰街,主要穿越红土堆子湾、滨海新区、金窑铁路,总长3348.718m,桥梁总面积86810m2,引堤总面积5650m2。其中,桥梁段长2817.004m,引堤段长107.996m,沈阳路改造段长423.718m。本标段为主线桥梁,位于海上,双向八车道标准,上下行两幅桥梁分开布置形式,标准断面横断面布置为0.5米,防撞栏杆,+15.5米(车行道)+0.5米(防撞栏 杆)+1.0米(分隔带)+ 0.5米,防撞栏杆,+15.5米(车行道)+0.5米(防撞栏杆),断面全宽34米。本工程为海上作业施工,基础为深水基础,需要搭建海上作业平台,设置钢套筒,主体结构为后张法预应力箱梁结构。 一、工程简介 1.水文地质情况 1 1.1地质情况 工程场区地处黄海近岸海域,属海滨地带,水下海底面较平坦,标高变化在- 4.12~2.2米之间。水深2~5米,海水水面标高变化在-1.38~2.04米之间,根据钻探揭露,场地地层自上而下为,淤泥、粉质粘土、中砂和弱风化石灰岩。 1.2水文气象情况 本地区位于北半球的暖温带地区,具有海洋性特点的暖温带大陆性季风气候,春风和煦、夏无酷暑、秋高气爽、冬无严寒。全年平均气温为8至10摄氏度,8月份

相关文档
最新文档