动量守恒定律

动量守恒定律
动量守恒定律

动量守恒定律

一.动量和冲量

1.动量:物体的质量和速度的乘积叫做动量:p =mv

⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。 ⑵动量是矢量,它的方向和速度的方向相同。 2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft

⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 ⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

⑶高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。

例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? 解:力的作用时间都是g

H

g H t 2sin 1

sin 22

α

α==,力的大小依次是mg 、 mg cos

α和mg sin α,所以它们的冲量依次是:

gH m I gH

m I gH m I N G 2,tan 2,sin 2===

合α

α

特别要注意,该过程中弹力虽然不做功,但对物体有冲量。

二、动量定理

1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp

⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 ⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

⑶现代物理学把力定义为物体动量的变化率:t

P F ??=(牛顿第二定律的动量形式)。

⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。

三.动量守恒定律

1.动量守恒定律的条件

⑴系统不受外力或者所受外力之和为零;

⑵系统受外力,但外力远小于内力,可以忽略不计;

⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/,

(2)Δp1 Δp2=0,Δp1= -Δp2

3.运用动量守恒定律的解题步骤

1.明确研究对象,一般是两个或两个以上物体组成的系统; 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.

四、碰撞

1.弹性碰撞

特点:系统动量守恒,机械能守恒.

设质量m 1的物体以速度v 0与质量为m 2

的在水平面上静止的物体发生弹性正碰,则有动量守恒:

221101v m v m v m +=

碰撞前后动能不变:2

22

212111210

121

v m

v m v m += 所以01

212

1v v m m m m +-= 0222

11

v v m m m +=

(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]

①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动)

⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞

特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′

机械能的损失:)()(2

222

12112

12

222

12

112

1'+'-+=?v m v m v m v m E

3.完全非弹性碰撞

特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v

动能损失:。

【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,

p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是

A.m 甲=m 乙

B.m 乙=2m 甲

C.m 乙=4m 甲

D.m 乙=6m 甲 五、平均动量守恒问题——人船模型:

1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).

对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:

【例1】静止在水面上的船长为L ,质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,船移动了多大距离?

分析:将人和车作为系统,动量守恒,设车向右移动的距离为s 船=s ,则人向左移动的距离为s 人=L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m (L -s )=0,从而可解得s. 注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分。

L m

M m

s +=

l

v 0 v S

说明:

(1)此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。

(2)做这类题目,首先要画好示意图,要特别注意两个物体相对于地面的移动方向和两个物体位移大

小之间的关系。

(3)以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

六、“子弹打木块”模型

此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹) 1.“击穿”类

其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动

【例2】质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速度v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。

2.“未击穿”类

其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,子弹射入木块后二者以相同速度一起运动.

【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 解:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒: ()v m M mv +=0

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d

对子弹用动能定理:22

012

121mv mv s f -=? ……①

对木块用动能定理:222

1

Mv s f =? ……② ①、②相减得:()()

2

22022121v m M Mm v m M mv d f +=+-=

? ……③ 这个式子的物理意义是:f d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =?,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用

s 2 d

s 1

v 0

v

位移)。

由上式不难求得平均阻力的大小:()d

m M Mmv f +=

22

至于木块前进的距离s 2,可以由以上②、③相比得出:d m

M m

s +=

2

从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:

()d m M m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/

一般情况下m M >>,所以s 2<

就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:()

2

02v m M Mm E k +=

?…④

当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。

做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据

七.爆炸类问题

【例4】 抛出的手雷在最高点时水平速度为10m/s ,这时忽然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。

八.某一方向上的动量守恒

【例5】 如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少?

练习题

1.质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块

运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H和物块的最终

速度v。

2.如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:

(1)A、B最后的速度大小和方向;

(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

3.两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们

的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求

(1)木块A的最终速度;(2)滑块C离开A时的速度。

4.如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置的半圆.一质量为M的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小.

5.如图所示,在足够长的光滑水平轨道上静止三个小木块A、B、C,质量分别为m A=1kg,m B=1kg,m C=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。求:

(1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值。

6.如图所示,在小车的一端高h 的支架上固定着一个半径为R 的1/4圆弧光滑导轨,一质量为m =0.2kg 的物体从

圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M =2kg ,车身长L =0.22m ,车与水平地面间摩擦不计,图中h =0.20m ,重力加速度g =10m/s 2,求R .

7.如图所示,质量为M =4kg 的木板长L =1.4m ,静止在光滑的水平地面上,其上端右侧静置一个质量为m =1kg 的小滑块,小滑块与木板间的动摩擦因数为μ=0.4.今用一水平力F =28N 向右拉木板,要使小滑块从木板上掉下来,求此力至少作用多长时间?(重力加速度g 取10m/s 2)

8、如图所示,质量为0.4kg 的木块以2m/s 的速度水平地滑上静止的平板小车,车的质量为1.6kg ,木块与小车之间的摩擦系数为0.2(g 取10m/s 2)。设小车足够长,求: (1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

m

M

F

L m

R h

L M

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少(g取10m/s2) 练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少 例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小. 练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。 例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.

练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求: (1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=.求: (1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略). 2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则 (1)小滑块b 经过圆形轨道的B 点时对轨道的压力. (2)通过计算说明小滑块b 能否到达圆形轨道的最高点C . 附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为 的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置 于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向 右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求: (1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . O C B a b A B v A v B C

第2讲 动量守恒定律

第2讲动量守恒定律 主干梳理对点激活 知识点动量守恒定律及其应用Ⅱ 1.几个相关概念 (1)系统:在物理学中,将相互作用的几个物体所组成的物体组称为系统。 (2)内力:系统内各物体之间的相互作用力叫做内力。 (3)外力:系统以外的其他物体对系统的作用力叫做外力。 2.动量守恒定律 (1)内容:如果一个系统01不受外力,或者02所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律。 (2)表达式 ①p=03p′,系统相互作用前的总动量p等于相互作用后的总动量p′。 ②m1v1+m2v2=04m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。 ③Δp1=05-Δp2,相互作用的两个物体动量的增量等大反向。 ④Δp=060,系统总动量的增量为零。 (3)适用条件 ①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。 ②近似守恒:系统受到的合外力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 ③某方向守恒:系统在某个方向上所受合外力为零时,系统在该方向上动量守恒。 知识点弹性碰撞和非弹性碰撞Ⅰ 1.碰撞 01很短,02很大的现象。 2.特点

在碰撞现象中,一般都满足内力03远大于外力,可认为相互碰撞的系统动量守恒。 3.分类 动量是否守恒机械能是否守恒 弹性碰撞守恒04守恒 非弹性碰撞守恒有损失 完全非弹性碰撞守恒损失05最大 4.散射 微观粒子相互接近时并不像宏观物体那样“接触”,微观粒子的碰撞又叫做散射。 知识点反冲爆炸Ⅰ 1.反冲现象 (1)在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用的过程中系统的动能01增大,且常伴有其他形式的能向动能的转化。 (2)反冲运动的过程中,一般合外力为零或外力的作用02远小于物体间的相互作用力,可认为系统的动量守恒,可利用动量守恒定律来处理。 2.爆炸问题 爆炸与碰撞类似,物体间的相互作用力很大,且03远大于系统所受的外力,所以系统动量04守恒,爆炸过程中位移很小,可忽略不计,爆炸后物体从相互作用前的位置以新的动量开始运动。 一堵点疏通 1.系统动量不变是指系统的动量大小和方向都不变。() 2.系统的动量守恒时,机械能也一定守恒。()

动量守恒定律

动量守恒定律 一.动量和冲量 1.动量:物体的质量和速度的乘积叫做动量:p =mv ⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。 ⑵动量是矢量,它的方向和速度的方向相同。 2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft ⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 ⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。 ⑶高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 ⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 - 解:力的作用时间都是g H g H t 2sin 1 sin 22 α α== ,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2=== 合α α 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp ⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 ⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 ⑶现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第二定律的动量形式)。 ⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。 ^ 三.动量守恒定律 1.动量守恒定律的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/, (2)Δp1 Δp2=0,Δp1= -Δp2 3.运用动量守恒定律的解题步骤 1.明确研究对象,一般是两个或两个以上物体组成的系统; . 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.

动量守恒定律(二)碰撞

动量守恒定律(二) 碰撞 1在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 2如图所示,在光滑水平面上有A 、B 两小球沿同一条直线向右运动,并发生对心碰撞.设向右为正方向,碰前A 、B 两球动量分别是p A =10kgm/s ,p B =15 kgm/s ,碰后动量变化可能是( ) A .Δp A =5 kg ·m /s Δp B =5 kg ·m /s B .Δp A =-5 kg ·m /s Δp B = 5 kg ·m /s C .Δp A =5 kg ·m /s Δp B =-5 kg ·in /s · D .Δp A =-20kg ·m /s Δp B =20 kg ·m /s 3甲物体以动量P 1与静止在光滑水平面上的乙物体对心正碰,碰后乙物体的动量为P 2,则P 2和P 1的关系可能是( ) A .P 2<P 1; B 、P 2= P 1 C . P 2>P 1; D .以上答案都有可能 5如图2-10所示,轻质细绳的一端系一质量m=0.01kg 的小球,另一端系一光滑小环套在水平轴O 上,O 到小球的距离d=0.1m ,小球跟水平面接触无相互作用力,在球的两侧距球等远处,分别竖立一固定挡板,两挡板相距L=2m .水平面上有一质量为M=0.01kg 的小滑块,与水平面间的动摩擦因数μ=0.25,开始时,滑块从左挡板处,以v0= 10m /s 的初速度向小球方向运动,不计空气阻力,设所有碰撞均无能量损失,小球可视为质点,g=10m /s 2 . 则:(1)在滑块第一次与小球碰撞后的瞬间,悬线对小球的拉力多大? (2)试判断小球能否完成完整的圆周运动.如能完成,则在滑块最终停止前,小球能完成完整的圆周运动多少次? 6如图2-4-7所示,滑块A 的质量m=0.01kg ,与水平地面间的动摩擦因素μ=0.2,用 细线悬挂的小球质量均为m=0.01kg ,沿x 轴排列,A 与第1只小球及相邻两小球间距离均为s=2m ,线长分别为L1、L2、L3……(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v 0=10m/s 沿x 轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动,重力加速度g=10m/s 2 。试求:(1)滑块能与几个 小球碰撞?(2)碰撞中第n 个小球悬线长Ln 的表达式? 7两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图所示。C 与B 发生碰撞并立即结成一个整体D 。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连。过一段时间,突然解除锁定(锁定及解除锁定无机械能损失)。已知A 、B 、C 三球的质量均为m 。 (1)求弹簧长度刚被锁定后A 球的速度。 ( 2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 8图2中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离l 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止,滑块A 和B 与导轨的滑动 摩擦因数都为 ,运动过程中弹簧最大形变量为l 2,重力加速度为g ,求A 从P 出发时的初速度v 0。

1.1-2物体地碰撞动量动量守恒定律(1)

学案1 物体的碰撞学案2 动量动量守恒定律(1) [目标定位] 1.探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞.2.理解动量、冲量的概念,知道动量的变化量也是矢量.3.理解动量定理的确切含义,会用其来解释和计算碰撞、缓冲等现象. 图1 一、弹性碰撞和非弹性碰撞

[问题设计] 演示实验:小明用如图1所示装置做实验. (1)如图1所示,让橡皮球A 与另一静止的橡皮球B 相碰,两橡皮球的质量相等,会看到什么现象?两橡皮球碰撞过程中总动能相等吗? (2)小明在A 、B 两球的表面涂上等质量的橡皮泥,再重复实验(1),可以看到什么现象? 若两橡皮球粘在一起上升的高度为橡皮球A 摆下时的高度的14 ,则碰撞过程中总动能相等吗? [要点提炼] 1.碰撞:碰撞就是两个或两个以上的物体在相遇的 时间产生非常大的相互作用的过程.其最主要特点是:相互作用 ,作用力 和作用力峰值 等. 2.弹性碰撞:两个物体碰撞后形变能够完全恢复,碰撞后没有动能转化为其他形式的能量,则碰撞前后两物体构成的系统的动能 .这种碰撞也称为完全弹性碰撞. 3.非弹性碰撞:两个物体碰撞后形变不能完全恢复,该过程有动能转化为其他形式的能量,总动能 .非弹性碰撞的特例:两物体碰撞后粘在一起以共同的速度运动,该碰撞称为完全非弹性碰撞,碰撞过程能量损失最多. 二、动量及其变化 [问题设计] 假定一个质量为m 的物体,初速度为v ,在合力F (恒力)的作用下,经过一段时间Δt 后,速度变为v ′.求这一过程中m 、v 、v ′、F 、Δt 的关系. [要点提炼] 1.冲量(1)定义式:I = 冲量是矢量,方向与力 的方向相同. (2)冲量是 (填“过程”或“状态”)量,反映的是力在一段时间的积累效果.

§2 动量守恒定律及其应用

§2 动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式 (1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和 1221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中

动量守恒定律1 动量 动量定理(1)理解与应用2018学案

动量守恒定律专题1 动量动量定理 题型一——对基本概念的理解 例题1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 例题2.如图示,AB、AC、AD是竖直平面内三根固定的光滑细杆,A、B、C、D四点位于同一圆周上,A点位于最高点,D点位于圆周的最低点,每根杆上都套着一个质量相同的小滑环(图中没画出),三个滑环分别沿不同的细杆从A点由静止开始滑下,在他们分别沿细杆下滑的整个过程中,下列说法正确的是:() A.弹力对它们的冲量相同, B.重力对它们的冲量相同, C.合外力对它们的冲量相同 D.以上三种说法均错误 例题3.如图所示,一个质量是0.2 kg的钢球,以2 m/s的速度斜射到坚硬的大理石板上, 入射的角度是45°,碰撞后被斜着弹出,弹出的角度也是45°,速度仍为2 m/s.你能不能用作图法求出钢球动量变化的大小和方向? 例题4.在光滑的水平面上有一小滑块,开始时滑块静止,若给滑块加一水平恒力F1,持续一段时间后立刻换成与F1相反方向的水平恒力F2.当恒力F2与恒力F1持续时间相同时,滑块恰好回到初始位置,且具有动能E k,在上述过程中,F1对滑块做功为W1,冲量大小为I1;F2对滑块做功为W2,冲量大小为I2.则( ) A.3I1=I2 B.4I1=I2 C.W1=0.25E k,W2=0.75E k D.W1=0.20E k,W2=0.80E k 练习1-1:关于冲量和动量,下列说法中错误的是() A.冲量是反映力和作用时间积累效果的物理量 B.冲量是描述运动状态的物理量 C.冲量是物体动量变化的原因 D.冲量的方向与动量的方向一致 练习1-2:在动量定理F·t = △P中,F指的是() A.物体所受的弹力 B.物体所受的合外力 C.物体所受的除重力和弹力以外的其他力 D.物体所受的除重力以外的其他力的合力 练习1-3:甲、乙两个质量相同的物体,以相同的初速度分别在粗糙程度不同的水平面上运动,乙物体先停下来,甲物体又经较长时间停下来,下面叙述中正确的是() A、甲物体受到的冲量大于乙物体受到的冲量 B、两个物体受到的冲量大小相等 C、乙物体受到的冲量大于甲物体受到的冲量 D、无法判断 练习1-4:物体在恒力作用下作直线运动,在t1时间内物体的速度由零增大到v,F对物体做功W1,给物体冲量I1.若在t2时间内物体的速度由v增大到2v,F对物体做功W2,给物体冲量I2,则() A.W1=W2,I1=I2 B.W1=W2,I1>I2 C.W1<W2,I1=I2 D.W1>W2,I1=I2 练习1-5:与水平方向成角的光滑斜面的底端静止一个质量为m的物体,从某时刻开始有一个沿斜面方 向向上的恒力F作用在物体上,使物体沿斜面向上滑去,经过一段时间t撤去这个力,又经时间2t物体返回到斜面的底部,则() A.F与的比应该为3:7 B. F与的比应该为9:5

二、动量守恒定律及应用讲义

动量守恒定律及应用巩固练习1 一、选择题 1.木块a和b用一根轻弹簧连接起来,放 在光滑水平面上,a紧靠在墙壁上,在b上施加向左 的水平力使弹簧压缩,如图1所示,当撤去外力后, 下列说法中正确的是 [ ] A.a尚未离开墙壁前,a和b系统的动量守 恒 B.a尚未离开墙壁前,a与b系统的动量不守恒 C.a离开墙后,a、b系统动量守恒 D.a离开墙后,a、b系统动量不守恒 2.甲球与乙球相碰,甲球的速度减少5m/s,乙球的速度增加了3m/s,则甲、乙两球质量之比m甲∶m乙是 [ ] A.2∶1 B.3∶5 C.5∶3 D.1∶2 3.光滑水平面上停有一平板小车,小车上站有两人,由于两人朝同一方向跳离小车,而使小车获得一定速度,则下面说法正确的是 [ ] A.两人同时相对于地以2m/s的速度跳离,比两人先后相对于地以2m/s 的速度跳离使小车获得速度要大些 B.两人同时相对于地以2m/s的速度跳离与两人先后相对于地以2m/s 的速度跳离两种情况下,小车获得的速度是相同的 C.两人同时相对于车以2m/s的速度跳离,比两人先后相对于车以2m/s 的速度跳离,使小车获得的速度要大些 D.两人同时相对于车以2m/s的速度跳离,比两人先后相对于车以2m/s 的速度跳离,使小车获得的速度要小些 4.A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是 [ ] A.若碰后,A球速度为0,则碰前A的动量一定大于B的动量

B.若碰后,A球速度为0,则碰前A的动量一定小于B的动量 C.若碰后,B球速度为0,则碰前A的动量一定大于B的动量 D.若碰后,B球速度为0,则碰前A的动量一定小于B的动量 5.在光滑水平面上有A、B两球,其动量大小分别为10kg·m/s与15kg·m/s,方向均为向东,A球在B球后,当A球追上B球后,两球相碰,则相碰以后,A、B两球的动量可能分别为 [ ] A.10kg·m/s,15kg·m/s B.8kg·m/s,17kg·m/s C.12kg·m/s,13kg·m/s D.-10kg·m/s,35kg·m/s 6.分析下列情况中系统动量守恒的是 [ ] A.如图2所示,小车停在光滑水平面上, 车上的人在车上走动时,对人与车组成的系统 B.子弹射入放在光滑水平面上的木块中 对子弹与木块组成的系统(如图3) C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统 D.斜向上抛出的手榴弹在空中炸开时 7.一平板小车静止在光滑的水平地面上,甲乙两个人背靠站在车的中央,当两人同时向相反方向行走,如甲向小车左端走,乙向小车右端走,发现小车向右运动,则 [ ] A.若两人质量相等,则必定v甲>v乙 B.若两人的质量相等,则必定v甲<v乙 C.若两人的速度相等,则必定m甲>m乙 D.若两人的速度相等,则必定m甲<m乙 8.质量为M的原子核,原来处于静止状态,当它以速度V放出一个质量为m的粒子时,剩余部分的速度为 [ ] A.mV/(M-m)

动量守恒定律的推导

动量守恒定律的推导: 设在光滑水平面上做匀速运动的两个小球A和B,质量分别是m1和m2,沿着同一直线向 相同的方向运动,速度分别是v1和v2(v1>v2),经过一段时间后,两个发生碰撞,碰撞过 程相互作用时间为t,碰撞后的速度分别是v1’和v2’ 1)A、B两个小球在碰撞过程中各自所受的平均作用力 F1与F2有什么关系? (2)写出碰撞过程中小球各自所受到的外力的冲量? 每个小球的动量的变化?(推导过程略) 动量守恒定律玉中物理组复习回顾1、动量定理:合外力对物体的冲量等于其动量变化量。2、动量定理的表达式:3、动量定理的表达式:动量守恒定律—定律推导动量守恒定律—定律推导设在光滑水平面上做匀速运动的两个小球A和B,质量分别是m1和m2,沿着同一直线向相同的方向运动,速度分别是v1和v2(v1>v2),经过一段时间后,两个发生碰撞,碰撞过程相互作用时间为t,碰撞后的速度分别是V1/和v2/。(1)AB两个小球在碰撞过程中所受的平均作用力F1与F2有什么关系?(2)在碰撞前后两个小球的总动量分别是多少?(3)写出碰撞过程中小球各自所受到的外力的冲量和每个小球的动量的变化?动量守恒定律—定律推导答:两个小球在碰撞过程中所受到平均作用力F1与F2是相互作用力,大小相等,方向相反,作用在一条直线上,作用在两个物体上。(1)AB两个小球在碰撞过程中所受的平均作用力F1与F2有什么关系?动量守恒定律—定律推导(2)在碰撞前后两个小球的总动量分别是多少?动量守恒定律—定律推导(3)设碰撞过程中A球和B球所受的平均作用力分别是F1与F2和,力的作用时间是t.根据动量定

系统动量守恒的条件:系统不受外力,或者所受外力之和为0; 外力不为0,但是内力远远大于外力; 某方向上外力之和为零,在这个方向上动量守恒。 适用于正碰,也适用于斜碰; 适用于碰撞,也适用于其他形式的相互作用; 适用于两物系统,也适用于多物系统; 适用于宏观高速,也适用于微观低速。

1.3 动量守恒定律

1.3动量守恒定律 [学习目标] 1.理解系统、内力和外力的概念.2.知道动量守恒定律的内容及表达式,理解其守恒的条件.3.了解动量守恒定律的普遍意义. [导学探究] 如图所示,光滑水平桌面上的两个小球,质量分别为m1和m2,沿着同一直线向相同的方向做匀速运动,速度分别是v1和v2,v2>v1.当第二个小球追上第一个小球时两球发生碰撞,碰撞后两球的速度分别为v1′和v2′.试用动量定理和牛顿第三定律推导两球碰前总动量m1v1+m2v2与碰后总动量m1v1′+m2v2′的关系. [知识梳理] 动量守恒定律 1.系统、内力和外力 (1)系统:相互作用的两个或多个物体组成一个力学系统. (2)内力:系统中物体间的相互作用力. (3)外力:系统外部的物体对系统内物体的作用力. 2.动量守恒定律 (1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变. (2)表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后总动量相等). (3)适用条件:系统不受外力或者所受外力的矢量和为0. [课堂练习]判断下列说法的正误. (1)一个系统初、末态动量大小相等,即动量守恒.() (2)两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒.() (3)若系统内存在摩擦力,则动量不可能守恒.() (4)只要系统所受到的合力的冲量为零,动量就守恒.() (5)系统动量守恒也就是系统的动量变化量为零.() 例1:在列车编组站里,一辆m1为1.8×104kg的货车在平直轨道上以v1=2m/s的速度运动,碰上一辆m2=2.2×104kg的静止的货车,它们碰撞后一起继续运动。求货车碰撞后运动的速度。 例2:一枚在空中飞行的火箭,质量为m,在某点的速度为v,方向水平,火箭在该点突然炸裂成两块,其中质量为m1的一块沿着与v相反的方向飞去,速度为v1。求炸裂后另一块的速度v2。 [知识深化]

16.3 动量守恒定律(二)

第三节动量守恒定律(二) 教学目标: (一)知识与技能 掌握运用动量守恒定律的一般步骤。 (二)过程与方法 知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。 (三)情感、态度与价值观 学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。 教学重点: 运用动量守恒定律的一般步骤。 教学难点: 动量守恒定律的应用。 教学方法: 教师启发、引导,学生讨论、交流。 教学用具: 投影片,多媒体辅助教学设备。 教学过程: (一)引入新课 1、动量守恒定律的内容是什么? 2、分析动量守恒定律成立条件有哪些? 答:①F 合 =0(严格条件) ②F 内远大于F 外 (近似条件) ③某方向上合力为0,在这个方向上成立。 (二)新课教学 1、动量守恒定律与牛顿运动定律 教师:给出问题 学生:用牛顿定律自己推导出动量守恒定律的表达式。

(教师巡回指导,及时点拨、提示) 推导过程: 根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是 111m F a = , 2 22m F a = 根据牛顿第三定律,F 1、F 2等大反向,即 F 1= - F 2 所以 2211a m a m -= 碰撞时两球间的作用时间极短,用t ?表示,则有 t v v a ?-'= 111, t v v a ?-'=2 22 代入2211a m a m -=并整理得 221 12211v m v m v m v m '+'=+ 这就是动量守恒定律的表达式。 教师点评:动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。) 2、应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统。对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。 (2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分

动量和动量守恒定律训练(2)

1、如图:在竖直平面内有两条光滑轨道,期中轨道ABC 末端水平,轨道CDE 为半径为R 的半圆形轨道,现有两个质量都为m 的物体,其中一个在斜面上,另一个在C 点静止,若要使两个物体在C 点处碰后合为一体并恰能通过E 点,轨道ABC 上的物体应离水平面多高处由静止释放? 2、下图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止。滑块A 和B 与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为 2l ,求A 从P 出发时的初速度0v 。 3、.如图,质量为M 的槽体放在光滑水平面上,内有半径为R 的半圆形轨道,其左端紧靠一个固定在地面上的挡板。质量为m 的小球从A 点由静止释放,若槽内光滑,求小球上升的最大高度。 4.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度v 0=4m/s 滑上B 的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取).求: (1)A 、B 最后的速度; (2)木块A 与木板B 间的动摩擦因数. 5.在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”,这类反应的

前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以v射向B球,如图所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运速度 动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。 (1)求弹簧长度刚被锁定后A球的速度。 (2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。 6、如图1所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面。A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑。小滑块P1和P2的质量均为m。滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力。开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上。当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零。P1与P2视为质点,取g=10m/s2。问: (1)P2在BC段向右滑动时,滑板的加速度为多大? (2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少? 分析与求解:(1)P1滑到最低点速度为,由机械能守恒定律有: 解得:。P1.P2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为、,则有:和,解得:,=5m/s。

16.2 动量守恒定律(一)(二)正式版

16.2 动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。

师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论:

动量守恒定律中的共速模型 2

动量守恒定律中的“共V 模型” 力的观点、动量的观点、能量的观点是力学问题分析中总的思路,通过对多过程问题受力分析抓住特殊状态及状态之间的相互联系,利用动量和能量的解决问题,可以避开中间的的复杂问题。在动量守恒定律的应用中,两物体相互作用后以相同的速度运动即“共V 模型”的题目出现的频率很高,在这里将这类问题做简单的归纳。 对于“共V 模型”中通常是围绕能量的转化为主线,下面分别从以下几个方面加以分析说明。 1.动能转化为内能 这一类型的问题主要是物体之间存在相对滑动或物体间的完全非弹性碰撞,通过滑动摩擦力做功实现了能量的转化。 例1.如图1所示,质量为M 的足够长木板置于光滑水平地面上,一质量为m 的木块以水平初速度0v 滑上长木板,已知木块与木板之间的摩擦因数为μ,求: (1)m 的最终速度v ; (2)m 与M 相对滑动产生的焦耳热Q ; (3)m 在M 上相对滑动的距离L 。 分析:m 与M 之间速度不同,必然存在相对运动,在相互的摩擦力作用下m 减速而M 加速,当两者速度相同时无相对运动达共速,所以m 的最终速度v 即为两者的共同速度共V 。对m 、M 整体分析知,系统所受合外力为零,动量守恒,既然两者出现共速,动能必然要减少,从能量守恒的角度看,减少的动能转化为内能产生焦耳热。产生的热就其原因看是由于两者的相互摩擦,所以可以利用摩擦力产生热的特点即相对滑动S f Q ?=得解。 解:(1)对m 、M 组成系统受力分析知,其合外力为零,由动量守恒得 v M m mv )(0+= ○1 得:M m m v v +=0 ○2 (2)对系统由能量守恒得产生焦耳热 220)(2 1 21v M m mv Q +-= ○3 得: 由○2、○3解得 ) (220M m m M v Q += ○4 (3)由滑动摩擦力生热特点得 L mg L f Q ?=?=μ ○5 得: 解得 ) (22 M m g Mv L +=μ ○6 变式题1-1.如图1-1所示,在光滑水平面上一质量为m 的物块以初速度0v 与质量为M 的物块发生碰撞后粘在一起,则在两物块碰撞过程中产生的焦耳热Q 为多少? 分析:两物块发生碰撞后“粘在一起”,即碰撞后一共同速度运动,典型的“共V 模型”。象这类问题属于完全

高中物理动量守恒定律(一)

教案部分 16.2 动量守恒定律(一) 【教学目标】 (一)知识与技能 理解动量的确切含义和表达式,会计算一维情况下的动量变化; 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围; (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 灵活运用动量守恒定律的不同表达式; (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题; 【教学重点】 动量的概念和动量守恒定律的表达式 【教学难点】 动量的变化和动量守恒的条件. 【教学方法】 教师启发、引导,学生讨论、交流。 【教学用具】 投影片,多媒体辅助教学设备 【课时安排】 1 课时 【教学过程】 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运

动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②相对性:这是由于速度与参考系的选择有关,通常以地球(即地面)为参考系。 ③矢量性:动量的方向与速度方向一致。运算遵循矢量运算法则(平行四边形定则)。师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 【例1】关于动量的概念,下列说法正确的是;( ) A.动量大的物体惯性一定大 B.动量大的物体运动一定快 C.动量相同的物体运动方向一定相同 D.动量相同的物体速度小的惯性大 [解析] 物体的动量是由速度和质量两个因素决定的。动量大的物体质量不一定大,惯性也不一定大,A错;同样,动量大的物体速度也不一定大,B也错;动量相同指动量的大小和方向均相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C 对;动量相同的物体,速度小的质量大,惯性大,D也对。 [答案] CD [点评] 动量是状态量,求动量时必须明确是哪一物体在哪一状态的动量。动量是矢量,它的方向与瞬时速度的方向相同 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mυ1 矢量差 【例2】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 注意:内力和外力随系统的变化而变化。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 (2)适用条件:系统不受外力或者所受外力的和为零

第二节《动量动量守恒定律》导学案(公开课)

第二节《动量 动量守恒定律》导学案 【学习目标】 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 【学习重点】 动量的概念和动量守恒定律 【学习难点】 动量的变化和动量守恒的条件. 【新课探究】 一.引入新课 1.一片树叶和一个小石头分别从头顶下落你会作出如何反应呢?为什么? 2.上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后m υ的矢量和保持不变,因此m υ很可能具有特别的物理意义。 二.进行新课 【自主学习】 (一)动量及其改变 1.动量 (1)定义:运动物体的_____和它的_____的乘积. (2)定义式:p =______. (3)单位:在国际单位制中,动量的单位是千克米每秒,符号为_____________. (4)方向:动量是矢量,其方向与物体的__________方向相同. 思考讨论一: 1.同一物体动能不变,则动量是否变化?反之动量不变,动能是否变化? 2.质量不同的物体动能相等,动量的大小是否相等?动能与动量有什么关系? 我的结论一:_______________________________________________________ 练习1BC A.动能相等时,动量必然相等 B.动量相等时,动能必然相等 C.动能发生变化时,动量必有变化 D.动量发生变化时,动能必有变化 练习2.甲、乙两物体的质量之比为m 甲:m 乙=1:4,若它们在运动过程中的动能相等, 则它们动量大小之比p 甲:p 乙是( B ) A.1:1 B.1:2 C.1:4 D.2:1

相关文档
最新文档