红外通讯原理及实现详解

红外通讯原理及实现详解
红外通讯原理及实现详解

红外通讯原理及实现详解

红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。

1红外通信原理介绍

红外通讯通过使用红外光进行通信,发送设备将电信号转成光信号,接收设备则再将光信号还原成电信号,红外收发系统的框图如图所示:

图 1 红外收发系统

目前基于红外通讯的通讯协议有上百种,这些协议大同小异,下面以飞利蒲的RC5协议为例来进行介绍。同别的红外协议一样,飞利蒲的RC5协议也是由下列几部分组成:

1 .1键码

之所以定义键码就是为了规范设计,至少保证飞利蒲公司内部的红外通信设备之间可以互通,不会出现混乱的情况,当然大家也可以自个定义,这有点像TCP/IP中的应用层,你可以自个定义一个协议,也可以用标准定义好的协议。键码是基于数字信号二进制的0/1而言的。比如0x12,换成二进制就是0b0001 0010。飞利蒲定义的键码如下所示。

1)地址设备对照表(下表中的不同地址用于给不同类型的设备使用)

RC5 Address Device RC5 Address Device

$00 - 0 TV1 |$10 - 16 Pre-amp

$01 - 1 TV2 |$11 - 17 Tuner

$02 - 2 Teletext |$12 - 18 Recorder1

$03 - 3 Video |$13 - 19 Pre-amp

$04 - 4 LV1 |$14 - 20 CD Player

$05 - 5 VCR1 |$15 - 21 Phono

$06 - 6 VCR2 |$16 - 22 SatA

$07 - 7 Experimental |$17 - 23 Recorder2

$08 - 8 Sat1 |$18 - 24

$09 - 9 Camera |$19 - 25

$0A - 10 Sat2 |$1A - 26 CDR

$0B - 11 |$1B - 27

$0C - 12 CDV |$1C - 28

$0D - 13 Camcorder |$1D - 29 Lighting

$0E - 14 |$1E - 30 Lighting

$0F - 15 |$1F - 31 Phone

2)命令功能对照表(下表中定应义了常用的遥控的命令)

RC5 Command | TV Command | VCR Command

------------------------------------------------------ $00 - 0 | 1 | 1

$01 - 1 | 2 | 2

$02 - 2 | 2 | 2

$03 - 3 | 3 | 3

$04 - 4 | 4 | 4

$05 - 5 | 5 | 5

$06 - 6 | 6 | 6

$07 - 7 | 7 | 7

$08 - 8 | 8 | 8

$09 - 9 | 9 | 9

$0C - 12 | Standby Standby |

$10 - 16 | Volume + |

$11 - 17 | Volume - |

$12 - 18 | Brightness + |

$13 - 19 | Brightness - |

$32 - 50 | | Fast Rewind $34 - 52 | | Fast Forward $35 - 53 | | Play

$36 - 54 | | Stop

$37 - 55 | | Recording

---------------------------------------------------------1 .2编码

如何实现上述的键码的发送,并保持红外接收解码器件收到并识别呢,当然就必须按一定的格式进行编码并发送。这跟我们常用的IIC有点相仿,必须有开始位和结束位,RC5的数据格式如下:

图2 RC5编码

先发三个1,表示发送开始,接下来发送5位地址,然后再发送6位命令,一帧数据共14位。由接收设备再按照上述格式进行解码。其中地址和命令都是先发低位,再发高位。

1 .3 0/1标准

什么是0/1标准呢,传统的TTL电平,只是电平>vIh就是1,小于ViL就是0,这里则不是这样的了,RC5是这样定义的:先发900us的高,再发900us的低电平,则表示为0,反之则为1。如下图所示。

图 3 RC5 0/1定义

1 .4载波

什么是载波呢,也就是说红外波的发送是以一定的波长的形式发送出去的,0/1标准中介绍的900us的高,并不是一直为高,而是以一定频率的脉冲的形式存在,RC5定义载波频率为38KHZ。

2RC5编码红外遥控器设计实现

红外发送的实现比较简单,可以使用专用的红外发送IC来实现,也可以通过单片机I/O软件模拟来实现。下面介绍基于MSP430F147单片机实现的红外遥控器。带LCD的红外遥控器框图如图所示:

图4红外遥控器框图

由于硬件电路非常简单,将不做介绍。

下面介绍一下软件实现。系统软件框图如图5所示

图5系统软件框图

其中LCD和键盘非本文重点,不作介绍。

下面主要介绍一下红外发送。

1)38KHZ频率的载波由于频率较快,如果使用定时中断,CPU往往难以快速响应,因此发0/发1函数的38HZ载波可以使用NOP()延时实现。

2)发0/发1中使用的900us间隔则可以使用定时中断控制标志位实现。

3)红外发送函数由发送开始位,发送地址,发送命令字三个子函数组成,通过移位判断是发送0还是发送1。

图6红外发送软件框图

举例编码如下:

设定本遥控地址码为30(0x1E,0b1_1110),如果我们要发送一个VOLUM E+,则命令字为0x10,换成二进制就为0b01_0000.

根据编码规则,一个完整的编码为:(START)111_01111_000010(END),注意:地址和命令字都是先发送低位。

3R C5编码红外信接收器实现

RC5编码红外通信接收实现则是红外发送的逆过程,不过,实现上会稍微复杂一些,将在别的文章中再另行介绍。

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

红外谱图解析基本知识

红外谱图解析基本知识 基团频率区 中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域 (1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。 当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种: 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。 不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。 苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。 不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。 叁键oCH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。 (2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CoC、-CoN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。 对于炔烃类化合物,可以分成R-CoCH和R¢-C oC-R两种类型: R-CoCH的伸缩振动出现在2100~2140 cm-1附近; R¢-C oC-R出现在2190~2260 cm-1附近; R-C oC-R分子是对称,则为非红外活性。 -C oN 基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C oN基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C oN基越近,-C oN基的吸收越弱,甚至观察不到。

红外光谱的原理及应用

红外光谱的原理及应用 (一)红外吸收光谱的定义及产生 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱 红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱 (二)基本原理 1产生红外吸收的条件 (1)分子振动时,必须伴随有瞬时偶极矩的变化。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。 2分子的振动类型 伸缩振动:键长变动,包括对称与非对称伸缩振动 弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动 3几个术语 基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰; 倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰; 组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。 特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。 相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰 4影响基团吸收频率的因素 (1 外部条件对吸收峰位置的影响:物态效应、溶剂效应 (2分子结构对基团吸收谱带的影响: 诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。 共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。 当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。 (3)偶极场效应:互相靠近的基团之间通过空间起作用。 (4)张力效应:环外双键的伸缩振动波数随环减小其波数越高。 (5)氢键效应:氢键的形成使伸缩振动波数移向低波数,吸收强度增强 (6)位阻效应:共轭因位阻效应受限,基团吸收接近正常值。 (7)振动耦合,(8)互变异构的影响 (三)红外吸收光谱法的解析 红外光谱一般解析步骤 1. 检查光谱图是否符合要求; 2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的―假谱带‖; 4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

红外吸收光谱的测定及结构分析

仪器分析实验 ——红外吸收光谱的测定及结构分析 学号:2 班级:应用化工技术11-2 姓名:韩斐 一、实验的目的与要求 1.掌握红外光谱法进行物质结构分析的基本原理,能够利用红外光谱鉴别官能团,并根据 官能团确定未知组分的主要结构; 2.了解仪器的基本结构及工作原理; 3.了解红外光谱测定的样品制备方法; 4.学会傅立叶变换红外光谱仪的使用。 二、原理 红外吸收光谱法就是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置与峰的强度加以表征。测定未知物结构就是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度与形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱与度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。 三、仪器与试剂 1、Nicolet 510P FT-IR Spectrometer(美国Nicolet公司); 2、 FW-4型压片机(包括压模等)(天津市光学仪器厂);真空泵;玛瑙研钵;红外灯;镊子;可拆式液体池;盐片(NaCl, KBr, BaF2等)。 3、试剂:KBr粉末(光谱纯);无水乙醇(AR);滑石粉;丙酮;脱脂棉; 4、测试样品:对硝基苯甲酸;苯乙酮等。 四、实验步骤 1.了解仪器的基本结构及工作原理

红外图谱解析

红外图谱解析 首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。 对一张已经拿到手的红外谱图: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), F、T、O分别是英文4,3,1的首字母。 举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm-1一般为饱和C-H 伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm-1 烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不唠叨了。 这是一个令人头疼的问题,有事没事就记一两个吧: 1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1)

红外谱图的解析

红外谱图的解析经验 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 (2) 分析3300-2800区域C-H伸缩振动吸收;以3000 为界:高于3000为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000有吸收,则应在 2250-1450频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200-2100,烯 1680-1640,芳环 1600,1580,1500,1450,若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000-650的频区 ,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O,O-H,C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750-1700的三个峰,说明醛基的存在。 1、烷烃:C-H伸缩振动(3000-2850) C-H弯曲振动(1465-1340),一般饱和烃C-H伸缩均在3000以下,接近3000的频率吸收。 2、烯烃:烯烃C-H伸缩(3100-3010) C=C伸缩(1675-1640) 烯烃C-H面外弯曲振动(1000-675)。 3、炔烃:伸缩振动(2250-2100) 炔烃C-H伸缩振动(3300附近)。 4、芳烃:3100-3000, 芳环上C-H伸缩振动 1600-1450, C=C 骨架振动 880-680C-H。 芳香化合物重要特征:一般在1600,1580,1500和1450,可能出现强度不等的4个峰。 880-680,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。 5、醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, O-H 自由羟基O-H的伸缩振动:3650-3600,为尖锐的吸收峰, 分子间

第三章-红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外谱图解析基本知识

红外谱图解析基本知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

红外谱图解析基本知识 基团频率区 中红外光谱区可分成4000 cm-1 ~1300(1800) cm-1和1800 (1300 ) cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1(1300 cm-1)~600 cm-1区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域 (1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。 当醇和酚溶于非极性溶剂(如CCl4),浓度于. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种: 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。如-CH3基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1附近,但强度很弱。

红外原理及实例分析

红外光谱法 第一节 概述 红外光谱法(infrared spectroscopy )研究红外光与物质间相互作用的科学,即以连续波长的红外光为光源照射样品引起分子振动和转动能级之间跃迁,所测得的吸收光谱为分子的振转光谱,又称红外光谱。红外区可分为以下几个区域,见表2-1。 表2-1 红外光谱区域划分 红外光谱在化学领域中主要用于分子结构的基础研究(测定分子的键长、键角等)以及化学组成的分析(即化合物的定性定量),但其中应用最广泛的还是化合物的结构鉴定,根据红外光谱的峰位、峰强及峰形,判断化合物中可能存在的官能团,从而推断出未知物的结构。有共价键的化合物(包括无机物和有机物)都有其特征的红外光谱,除光学异构体及长链烷烃同系物外,几乎没有两种化合物具有相同的红外吸收光谱,即所谓红外光谱具有“指纹性”,因此红外光谱法用于有机药物的结构测定和鉴定是最重要的方法之一。 第二节 红外光谱法的基本原理 红外光谱法主要研究分子结构与其红外光谱之间的关系。一条红外吸收曲线,可由吸收峰(max λ或~ ν)及吸收强度(ε)来描述,本节主要讨论红外光谱的起因,峰位、峰数、峰强及红外光谱的表示方法。 一、红外光及红外光谱 介于可见与微波之间的电磁波称为红外光。以连续波长的红外光为光源照射样品所测得的光谱称之为红外光谱。 分子运动的总能量为:转动振动平动电子分子E E E E E +++=。 分子中的能级是由分子的电子能级、平动能级、振动能级和转动能级所组成。引起电子能级跃迁所产生的光谱称为紫外光谱(第一章已详细讨论)。又因为分子的平移(E 平动)不产生电磁辐射的吸收,故不产生吸收光谱。分子振动能级之间的跃迁所吸收的能量恰巧与中红外光的能量相当,所以红外光可以引起分子振动能级之间的跃迁,产生红外光的吸收,形成光谱。在引起分子振动能级跃迁的同时不可避免的要引起分子转动能级之间的跃迁,故红外光谱又称为振–转光谱。 二、分子的振动能级与振动频率 分子是由原子组成的,原子与原子之间通过化学键连接组成分子,分子是非刚性的,而且有柔曲性,因而可以发生振动。为了简单起见,把原子组成的分子,模拟为不同原子相当于各种质量不同的小球,不同的化学键相当于各种强度不同的弹簧组成的谐振子体系,进行简谐振动。所谓简谐振动就是无阻尼的周期线性振动。 (一) 双原子分子的振动及其频率 为了研究简单,以双原子分子为例,说明分子的振动。如果把化学键看成是质量可以忽略不计的弹簧,A ,B 两原子看成两个小球,则双原子分子的化学键振动可以模拟为连接在一根弹簧两端的两个小球的伸缩振动。也就是说把双原子分子的化学键看成是质量可以忽略不计的弹簧,把两

KBr压片法测定苯甲酸红外光谱及谱图解析

实验 KBr压片法测定苯甲酸红外光谱及谱图解析 I.实验目的 1、熟悉傅里叶变换红外光谱仪的工作原理及其使用方法。 2、掌握KBr压片法的操作技能。 3、了解红外光谱谱图解析。 II.实验用品 仪器:红外光谱仪(岛津 FTIR-8400S),压片机,研钵,红外灯。 试剂:溴化钾(光谱纯)、苯甲酸(分析纯)。 III.实验原理 傅立叶变换红外光谱仪是根据光的相干性原理设计的测量分子吸收光谱的仪器,属于干涉型光谱仪。傅立叶变换红外光谱仪主要由光源、干涉仪(迈克逊)、吸收池(样品室)、检测器、计算机和记录系统等组成。傅立叶变换红外光谱仪将各种频率的光信号经干涉作用后调制成干涉图,即时间域光谱图,然后用计算机进行快速傅立叶变换,换算成频率域光谱图即红外光谱图。 1 2

Ⅳ. 实验步骤 1、压片制样 准备: 1)保持使用压片机的房间湿度较低; 2)将压片机配件,放入干燥器备用; 3)用玛瑙研钵一次研磨适量KBr晶体干燥,放入干燥器备用; 4)为避免手汗对压片的影响,研磨和压片过程中戴手套; 压片操作: 1%干燥的样品,在红 1)取200毫克备用KBr粉末于玛瑙研钵中,加入 ~ 外灯下研细混匀; 2)使用乙醇棉清洗模具等; 3)将样品和KBr混合粉末放到模具中,用抹刀铺平;将装配好的压片 模具移至压片机下; 4)压片机阀门拧至lock, 加压至~60KN,停留适当时间使压片透明; 脱模,样品基本透明为合格; 5)将样品装入样品架; 2、测试 1)将样品架放入仪器内,点击测试按钮; 2)测试结束,保存文件。 3)取出样品架,卸下样品。 3、整理 1)清洁模具等制样器具; 2)如有需测试样品则进入下一样品的制备,如无样品则整理物品、清 洁台面后离开。 4、注意事项: 1)操作规范,轻举轻放,不要敲击; 2)研钵材质为玛瑙,易摔碎; 3)全过程要求干燥防水; 4)将溴化钾研细(2μm); 5)控制溴化钾与样品的比例; 6)注意保持室内清洁、干燥; 7)不要震动光学台 8)取、放样品时,样品盖应轻开轻闭; 9)眼睛不要注视氦-氖激光,以免受到伤害。 Ⅴ.实验结果 1、对样品纯度、来源、元素分析及其他物理性质、谱学性质等方面的 了解。 2、初步分析特征基团频率、特征宽强峰、倍频(泛频)及合频特征峰。 3、初步确定为某类化合物后,与标准谱图核对 Ⅵ.问题讨论 1、KBr压片法制备红外吸收光谱固体试样的注意事项 2、红外光谱实验室为什么要求温度和相对湿度维持一定的指标

马来酸的红外光谱定性分析讲义

实验八马来酸的红外光谱定性分析 【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理; 2.掌握红外光谱分析的基础实验技术; 3.学会用傅立叶变换红外光谱仪进行样品测试; 4.掌握几种常用的红外光谱解析方法。 【实验要求】 利用所学过的红外光谱知识对马来酸的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 分子吸收红外光子,从低的振动能级向高的振动能级跃迁时,而产生红外吸收光谱。在分子中发生振动能级跃迁所需要的能量大于转动能级跃迁所需要的能量,所以发生振动能级跃迁的同时,必然伴随转动能级的跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。只有偶极矩大小或方向有一定改变的振动才能吸收红外光,发生振动能级跃迁,产生红外光谱。不引起偶极变化的振动,无红外光谱吸收带。 π和c为常数,吸收频率随键的强度的增加而增加,随键连原子的质量增加而减少。化学键的力常数越大,原子折合质量越小,则振动频率越高,吸收峰将出现在高波数区(即短波区)。当振动频率和入射光的频率一致时,入射光就被吸收。因而同一基团基本上总是相对稳定地在某一稳定范围内出现吸收峰。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定

红外谱图峰位分析方法

红外谱图分析(一) 基团频率和特征吸收峰 物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1 氢键区 2 500~2 000 cm-1 产生吸收基团有O—H、C—H、N—H; 叁键区 2 000~1 500 cm-1 C≡C、C≡N、C═C═C 双键区 1 500~1 000 cm-1 C═C、C═O等 单键区 按吸收的特征,又可划分为官能团区和指纹区。 一、官能团区和指纹区 红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。 4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。由于基团的特征吸收峰一般位于高频围,并且在 该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。 在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区对 于区别结构类似的化合物很有帮助。 指纹区可分为两个波段 (1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振动和C═S, S═O,P═O等双键的伸缩振动吸收。

傅立叶变换红外光谱仪的基本原理及其应用

J I A N G X I N O R M A L U N I V E R S I T Y 2009届本科生毕业论文课题名称:傅立叶变换红外光谱仪的基本原 理及其应用 Basic principles and application of Fourier transform infrared spectrometer 姓名高立峰 学院理电学院 专业物理学(师范) 学号06 完成时间2009.4 声明 本人郑重声明: 所呈交的毕业设计(论文)是本人在指导教师指导下进行的研究工作及取得的研究成果。其中除加以标注和致谢的地方外,不包含其他人已经发表或撰写并以某种方式公开过的研究成果,也不包含为获得其他教育机构的学位或证书而作的材料。其他同志对本研究所做的任何贡献均已在文中作了明确的说明并表示谢意。 本毕业设计(论文)成果是本人在江西师范大学读书期间在指导教师指导下取得的,成果归江西师范大学所有。

特此声明。 声明人(毕业设计(论文)作者)学号:06 声明人(毕业设计(论文)作者)签名: 摘要 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展 Abstract Infrared spectroscopy is an effective method to identify substance and analyze the structures of molecular. Fourier transform infrared (FT-IR) spectrometers developed in the seventies are a typical representative of the third generation of infrared spectroscopy. They are a kind of interference-type spectrometers which were designed based on the principle of coherent light, with excellent features and perfect functions. And they haven’t only been used widely but also have extensive pros pects. In this paper, the basic principles of Fourier transform infrared spectrometer are described briefly. The main features of FT-IR were summed up as well as its application in various fields, and some basic opinions of developmental direction as far as FT-IR were put forward. Key words: Fourier transform infrared spectrometer;Basic principles;Application;Development

红外谱图解析口诀

红外谱图解析口诀 红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。 末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。 三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰, 环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别, 开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、

红外光谱图分析

红外识谱歌 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。识图先学饱和烃,三千以下看峰形。2960、2870是甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。二个甲基同一碳,1380分二半。面内摇摆720,长链亚甲亦可辨。烯氢伸展过三千,排除倍频和卤烷。末端烯烃此峰强,只有一氢不明显。化合物,又键偏,~1650会出现。烯氢面外易变形,1000以下有强峰。910端基氢,再有一氢990。顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。900~650,面外弯曲定芳氢。五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。C-O伸展吸收大,伯仲叔醇位不同。1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。苯环若有甲氧基,碳氢伸展2820。次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。缩醛酮,特殊醚,1110非缩酮。酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。羰基伸展一千七,2720定醛基。吸电效应波数高,共轭则向低频移。张力促使振动快,环外双键可类比。二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。1740酯羰基,何酸可看碳氧展。1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。1600兔耳峰,常为邻苯二甲酸。氮氢伸展三千四,每氢一峰很分明。羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。八百左右面内摇,确定最好变成盐。伸展弯曲互靠近,伯胺盐三千强峰宽,仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可见。硝基伸缩吸收大,相连基团可弄清。1350、1500,分为对称反对称。氨基酸,成内盐,3100~2100峰形宽。1600、1400酸根展,1630、1510碳氢弯。盐酸盐,羧基显,钠盐蛋白三千三。矿物组成杂而乱,振动光谱远红端。钝盐类,较简单,吸收峰,少而宽。注意羟基水和铵,先记几种普通盐。1100是硫酸根,1380硝酸盐,1450碳酸根,一千左右看磷酸。硅酸盐,一峰宽,1000真壮 观。勤学苦练多实践,红外识谱不算难

相关文档
最新文档