基于场效应管的功率放大器电路

基于场效应管的功率放大器电路
基于场效应管的功率放大器电路

场效应管功放

场效应管功放 场效应管功放以其温暖、甜润、松软而被发烧友推崇备至,然而,由于其输出电阻大、承受电流小而低频疲软、推力不足的毛病却挥之不去,如很多对管并联虽然改善了低频,但一方面造价成倍增长,二方面场效应管的配对在业内也是个难题。如金嗓子A-100每声道采用10对场效应管并联输出,虽然声音堪称完美,但其价格之高,也仅仅成为了一台概念机、形象机。 90年代末,一种新型的mos管诞生了,这就是被称为超大电流场效应管的UHC-mos,这种mos管的单管输出电流达30A以上,输出电阻约50毫欧以下。首先在天龙PMA-S1功放上使用,一经推出就好评如潮,发烧友称赞其高音的透明度高得惊人,低频强劲有力。而当时这种器件即便在日本本国也很难购买得到,而在国内就更加无法目睹其芳容了。天龙功放亦将其功放管的型号磨去、煞有其事的打上自己编制的型号,就更让人觉得高深莫测了。 然而,十几年过去了,当年高深莫测的UHC-mos而今已成了大路货,如2sk851、2sk2967等新的10多元一个、而拆机的才2、3元一个,已经沦落到白菜价的水平了,真的是此一时、彼一时啊。 为圆笔者一直的梦想,笔者踏破铁鞋,参阅众多电路,发现的确这种器件的成品电路不仅少,而且多有错漏,只得自己设计电路制作。为方便起见,用何庆华音乐传真E-10功放板改装而来。这是原电路 这是改的电路

下面接着有 这是制作完成图。 调试,通电后先检查输出端直流电位在10mv以下。将可变电阻调到最大,再逐步调小,让发射极0.22欧电阻电压为5mV左右,这时每管电流约25ma即可。再检查中点电位在10mv以下即可开声。声音评价: 机器一开声就有一种让人振奋的感觉,高音透明度极高,音场开阔、堂音丰富。人声极为亲切感人,而低频结实有力,硬度十足。花费才20元不到,而声音却提高了几个档次,内心激动啊。 主观感觉,音乐味、细腻度比日立、东芝场效应管有过之而无不及,特别是透明度高,而低音的力度比东芝管结实的多,和三肯管比感觉霸气少了点,但量感大,硬度足,控制力好。一对管可比美3、4对并联的效果。 这种管子看上去其貌不扬,但声音的确有惊人的表现,我买的k851是拆机的,开启电压在3.2V左右,2.5元一个。4个才10元,加上几个电阻,总成本不到20元。却享受到高级机种才有的效果,比我自己制作的所有功放以及家里的5000千多元的nad、sony功放都要好。 拆机的管子没有做配对工作,由于静态电流只有20ma已经很好声,目前室温15度,散热器即便在很大音量基本感觉不到热量。只有简单的温度补偿,暂时没感觉到问题。夏天温度可能高些,准备把温补管和大管固定在一起,只要不把静态电流调的很大,应该没问题。 已经准备好了秘密武器,三肯专用温度补偿管,放大倍数1500倍。 天龙DENON PMA-2000的电路 G极电阻原则上是越小越好,但场管电路太小容易自激,我选120欧很稳定,100欧应该也可以此功放电压放大部分采用两级差分电路、末级则为准互补输出,最大限度保持了偶次谐波因此极具

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图6-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图6-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表6-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图3-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管特性及单端甲类功放制作全过程

场效应管特性及单端甲类功放制作全过程 场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。 场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。 一、场效应管的特性 场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。 高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。 场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。 场效应管具有更好的热稳定性和较大的动态范围。 场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。 普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。 场效应管的防辐射能力比普通晶体管提高10倍左右。 转换速率快,高频特性好。 场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。 场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。 绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。 VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 (1)利用图解法求解Q点;(2)利用等效电路法求解u A 、R i和R o。 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P 3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off) GS D m DS =-= ??= I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u & 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A &。 图P3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

(实验六)结型场效应管放大电路

实验六 结型场效应管放大电路 一.实验摘要 通过对实验箱上结型场效应管的测试,认识N 沟道JFET 场效应管的电压放大特性和开关特性。给MOS 管放大电路加输入信号为:正弦波,Vpp=200mV-500mV ,f=2Khz 。测量输入电阻时,输入端的参考电阻Rs=680K 。 二.实验主要仪器 三极管,万用表,示波器,信号源及其他电子元件。 三.实验原理 场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图所示。 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 V S i i i V 02A U R R R U A U += = 由此可以求出 R U U U R 02 O102 i -=

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

场效应管及其放大电路例题解析

第3章 场效应管及其放大电路例题解析 例3.1 试将场效应管栅极和漏极电压对电流的控制机理,与双极型晶体管基极和集电极电压对电流的控制机理作一比较。 场效应管栅极电压是通过改变场效应管导电沟道的几何尺寸来控制电流。漏极电压则改变导电沟道几何尺寸和加速载流子运动。双极型三极管基极电压是通过改变发射结势垒高度来控制电流,集电极电压(在放大区)是通过改变基区宽度,从而改变基区少子密度梯度来控制电流。 例3.2 N 沟道JFET 的转移特性如图3.1所示。试确定其饱和漏电流I DSS 和夹断电压V P 。 解 由图3.1可至知,此JFET 的饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V 。 例3.3 N 沟道JFET 的输出特性如图3.2所示。漏源电压的V DS =15V ,试确定其饱和漏电流I DSS 和夹断电压V P 。并计算V GS =-2V 时的跨导g m 。 解 由图3.2可得:饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V ,V GS =-2V 时,用作图法求得跨导近似为:ms g m 2.1) 2(14.16.2=----≈ 例3.4 在图3.3所示的放大电路中,已知V DD =20V ,R D =10k Ω,R S =10k Ω,R 1=200k Ω,R 2=51k Ω,R G =1M Ω,并将其输出端接一负载电阻R L =10 k Ω。所用的场效应管为N 沟道耗尽型,其参数I DSS =0.9mA ,V P =—4V ,g m =1.5mA /V 。试求:(1)静态值; (2)电压放大倍数。 解 (1) 画出其微变等效电路,如图3.4所示。其中考虑到rGS很大,可认为rGS开路,由电路图可知, V V V R R R V DD G 42010 )51200(105133 212=??+?=+= 并可列出 D D S G G S I I R V V 310104?-=-= 图3.1 图3. 2

场效应管及其电路

第4章场效应管及其电路本章要点 ●MOS管的原理、特性和主要参数 ●结型场效应管原理、特性及主要参数 ●场效应管放大电路的组成与原理 本章难点 ●MOS管的原理和转移特性及主要参数 ●场效应管的微变等效电路法 场效应管(FET)是一种电压控制器件,它是利用输入电压产生电场效应来控制输出电流的。它具有输入电阻高、噪声低、热稳定性好、耗电省等优点,目前已被广泛应用于各种电子电路中。 场效应管按其结构不同分为结型(JFET)和绝缘栅型(IGFET)两种,其中绝缘栅型场效应管由于其制造工艺简单,便于大规模集成,因此应用更为广泛。 4.1 绝缘栅场效应管(MOSFET) 绝缘栅型场效应管简称MOS管,由于其内部由金属—氧化物—半导体三种材料制成,可分为增强型和耗尽型两大类,每一类中又有N沟道和P沟道之分。下面主要讨论N沟道增强型MOS管的工作原理,其余三种仅做简要介绍。 4.1.1 N沟道增强型场效应管(NMOS管) 1.结构 N沟道增强型MOS管的结构如图4-1(a)所示。它是在一块掺杂浓度较低的P型硅片(称为衬底)上,通过扩散工艺形成两个高掺杂的N+区,通过金属铝引出两个电极分别作为源极S和漏极D,再在半导体表面覆盖一层二氧化硅绝缘层,在源漏极之间的绝缘层上制作一铝电极,作为栅极G,另外从衬底引出衬底引线B(工作时通常与源极S接在一起)。在两个N+区之间的半导体区,是载流子从源极S流向漏极D的通道,把它称为导电沟道。由于栅极与导电沟道之间被二氧化硅所绝缘,故将此类场效应管称为绝缘栅型。 图4-1(b)是N沟道增强型MOS管的符号,其中箭头方向是由P(衬底)指向N(沟道), 由此可判断沟道类型。符号中的三条断续线表示 GS 0 = U不存在导电沟道,它是判断增强型MOS管的特殊标志。

实验6 结型场效应管共源放大电路实验

实验6 JFET-CS 放大电路测试报告 班级: _______ 姓名: ________________ 实验目的: 学习了解场效应晶体管放大电路的基本结构、原理、测试过程。通过实验、 仿 真,了解JFET 主要参数的获取、电路的静态工作点、增益等参数的计算和测 试方法。 实验设备及器件: 笔记本电脑(软件环境: Multisim13.0、WaveForms201) AD2 口袋仪器 电容:0.1卩F (独石或瓷片等无极性电容) 10卩F (电解电容) 电阻:300 Q 、1k Q 、10k Q 、100k Q FET: 2SK30A (或其他 JFET ,封装为 TO-92) 面包板、杜邦线 实验内容: 电路如图6.1所示。 1. 测量FET 的主要参数(V off 、I DSS ) 鉴于FET 参数非常分散,例如2SK30A 其后缀为GR (2SK30AG 漏极饱和电流 R 3 o +5V 图6.1实验电路

I DSS 的范围是2.6 — 6.5mA 截止电压 V 的范围为-0.4 ? -5V (具体手册参数见附 件)。因此本实验需要先行测试元件的主要参数,所实际测得的参数用于计算电 路静态工作点及增益等,也用于修改仿真软件模型参数,以便获得相对准确的仿 真结果。 在面包板上搭建图6.2( a )电路(栅源为0偏压,即:V GS =0),测试此时源 极电阻的电压,进而得到源极(也是漏极)电流,该电流就是漏极饱和电流I DS ? 再通过图6.2 (b )电路(静态自给偏压偏置电路)测源极电阻两端电压,从而 得到此时的栅源电压及漏极电流,也就是得到一个栅源的负偏压值 Ma s 及漏极电 流I D ,利用这两个值并通过漏极电流公式计算出 V off 。填入表6-1 0 图6.2 FET 参数测试电路 公式: 表6-1 实测FET 主要参数 参数 1 DSS (测试得出) V Off (计算得出) 数值 3.3mA -2.527v 2. 用得到的参数I DSS V f 修改仿真模型:在仿真软件中结型场效应晶体管的模 型是Shichman-Hodges 模型,需要根据测得的参数修改Multisim 模型中的两 个参数:截止电压 VT0及跨导系数BETA ( B )。修改后的模型用于仿真(注 意:跨导系数不是理论教学中的跨导 g m )o 3. 3. 搭建图6.1电路,计算、仿真及测试静态工作点,并填入表 6-2 : (1)通过理论计算计算I DQ Va se 并填入表6-2 0 (2) 使用新建的模型仿真静态工作点并填入表 6-2 0 (3) 通过测试源极电阻直流电压,获取静态工作点并填入表 6-2 2SK30A +5V (b)

场效应管放大器

实验四 场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验原理 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图3-1所示为N 沟道结 图3-1 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导

常数U △U △I g DS GS D m == 表3-1列出了3DJ6F 的典型参数值及测试条件。 表3-1 2、场效应管放大器性能分析 图3-2为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

实验4场效应管放大器资料

实验四场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图4-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图4-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表4-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图4-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图4-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

采用IRF250场效应管制作胆味功放及电路图

采用IRF250场效应管制作胆味功放及电路图 笔者用绝缘栅VMOS大功率场效应管IRF250制作纯甲类功率放大器。这类管子在音响界里是冷僻管,不大受人喜欢。该类管通常用于开关电源中,由于该类管高频区线性好、开关速度快、输出电流大、耐压高,让笔者很感兴趣,把它用于音频放大器中作功率输出管,在甲类输出状态下,声音极具"胆"味。该管的价位低廉,拆机品2元/只,便宜好找,适合工薪族发烧(IRF250电流30A,耐压220V,导通电阻0.8 5Ω,功率150W,IRF240电流40A耐压180V,导通电阻0.55Ω,功率150W),何乐而不为? 一、场效应管与电子管的原理比较有相似之处 场效应管与电子管的原理相比较如图1所示。场效应管的源极供应电子,相当于电子管的阴极,漏极泄漏电子,相当于电子管的屏极(阳极),栅极是控制电子流的大小,和电子管的栅极作用完全一样,都是通过栅极"G"来输入控制,开大或开小电流从漏极流向源极(电子管是阳极流向阴极)。它们都属于电压控制器件。 二、VMOS管的缺点与制作中的克服 对于电源开关管IRF250、IRF240而言,确与音频名管中的K135、J49等有差异,使众多的发烧友不大喜欢用这类管子。笔者认为其成了冷僻管的原因有两点,一是开启电压的差异,IRF250达到3V~5V不等,给推动级增加了极大的负担。二是该管的一致性差,不好配对,N沟道和P沟道的异极型就更难配对 了。 音频CMOS管在0.2V~1.5V的范围就能开启,并进入良好的线性工作区,对推动级的驱动能力要求低,且一致性好,容易配对。因此用IRF250给制作带来一定难度,工作中有时一部分管子已到甲类状态,而另一部分管子还在乙类状态,甚至有的工作在开启与夹断之间,劣化了音质。 针对IRF250这类管子的特点,笔者认为可以避开它的缺点,挖掘它潜在的优点,如高耐压、大电流和好 的高频放大线性等。 实际制作中,应将电路的重点放在推动级上,只要推动级能输出驱动末端场效应管所需的开启电压3V~5 V,也就克服了上述的一大难点。另一个是对差分电压放大管和中功率驱动管的配对误差要在2%的范围内(用数字表配对),每声道只用一对输出管,就不存在配对难的问题。IRF250管子的功率本身就大,没有必要采用多管并联。每声道使用一对输出管,纯甲类最大不失真输出功率在60W~100W,能胜任大多数 家庭的使用要求。 三、线路的选择和改进 笔者选用的是日本雅马哈(YAMAHA)功放的线路,把输出级进行了改造而成(见图2)。IRF250这类管子都是同极型N沟道,因为没有与之功率、耐压、栅偏压值相近的异极型P沟道管子,所以对同极型的管子 采用准互补推挽输出。

第四章 场效应管(FET)及基本放大电路要点

第四章 场效应管(FET )及基本放大电路 §4.1 知识点归纳 一、场效应管(FET )原理 ·FET 分别为JFET 和MOSFET 两大类。每类都有两种沟道类型,而MOSFET 又分为增强型和耗尽型(JFET 属耗尽型),故共有6种类型FET (图4-1)。 ·JFET 和MOSFET 内部结构有较大差别,但内部的沟道电流都是多子漂移电流。一般情况下,该电流与GS v 、DS v 都有关。 ·沟道未夹断时,FET 的D-S 口等效为一个压控电阻(GS v 控制电阻的大小),沟道全夹断时,沟道电流D i 为零;沟道在靠近漏端局部断时称部分夹断,此时D i 主要受控于GS v ,而DS v 影响较小。这就是FET 放大偏置状态;部分夹断与未夹断的临界点为预夹断。 ·在预夹断点,GS v 与DS v 满足预夹断方程: 耗尽型FET 的预夹断方程:P GS DS V v v -=(P V ——夹断电压) 增强型FET 的预夹断方程:T GS DS V v v -=(T V ——开启电压) ·各种类型的FET ,偏置在放大区(沟道部分夹断)的条件由表4-4总结。 表4-4 FET 放大偏置时GS v 与DS v 应满足的关系 ·偏置在放大区的FET ,GS v ~D i 满足平方律关系: 耗尽型: 2 ) 1(P GS DSS D V v I i - =(DSS I ——零偏饱和漏电流) 增强型:2 )(T GS D V v k i -=*

· FET 输出特性曲线反映关系 参变量 G S V DS D v f i )(=,该曲线将伏安平面分为可变电阻区 (沟道未夹断),放大区(沟道部分夹断)和截止区(沟道全夹断);FET 转移特性曲线反映在放大区的关系)(GS D v f i =(此时参变量DS V 影响很小),图4-17画出以漏极流向源极的沟道电流为参考方向的6种FET 的转移特性曲线,这组曲线对表4-4是一个很好映证。 二、FET 放大偏置电路 ·源极自给偏压电路(图4-18)。该电路仅适用于耗尽型FET 。有一定稳Q 的能力,求解该电路工作点的方法是解方程组: 22() [FET ()]GS D DSS d GS T P GS S D v i I v i k v V V v R i ? =-=-?? ?=-?对于增强型,用关系式 ·混合偏压电路(图4-20)。该电路能用于任何FET ,在兼顾较大的工作电流时,稳Q 的效果更好。求解该电路工作点的方法是解方程组: ??? ??-+=D s CC GS i R R R R V v 212平方律关系式 以上两个偏置电路都不可能使FET 全夹断,故应舍去方程解中使沟道全夹断的根。 三、FET 小信号参数及模型 ·迭加在放大偏置工作点上的小信号间关系满足一个近似的线性模型(图4-22低频模 型,图4-23高频模型)。 ·小信号模型中的跨导 Q GS D m v i g ??= m g 反映信号gs v 对信号电流d i 的控制。m g 等于FET 转移特性曲线上Q 点的斜率。 m g 的估算:耗尽管 D DSS P m I I V g ||2 = 增强管D m kI g 2= ·小信号模型中的漏极内阻 Ds ds D Q v r i ?= ? ds r 是FET “沟道长度调效应”的反映,ds r 等于FET 输出特性曲线Q 点处的斜率的倒 数。 四、基本组态FET 小信号放大器指标 1.基本知识 ·FET 有共源(CS )共漏(CD )和共栅(CG )三组放大组态。 ·CS 和CD 组态从栅极输入信号,其输入电阻i R 由外电路偏置电阻决定,i R 可以很大。 ·CS 放大器在其工作点电流和负载电阻与一个CE 放大器相同时,因其m g 较小,|| V A

采用2个MOS场效应管构成的功率放大器

本电路采用2个MOS 场效应管构成功率放大器,为甲乙类(AB 类)功率放大器,上面采用N 沟道增强型MOS 场效应管IRF130,下面采用P 沟道增强型MOS 场效应管IRF9130,IRF130和IRF9130是IR 公司生产的配对N 沟道和P 沟道器件,性能几乎是对称的。 为了克服交越失真,必须使输入信号避开场效应管的截止区,可 以给场效应管加入很小的静态偏置电流,使输入信号叠加在很小的静态偏置电流上,这样可以避开场效应管的截止区,使输出信号不失真。 增强型MOS 场效应管有个开启电压V T ,V GS 必须要大于V T ,该 场效应管才能进入放大区。IRF130和IRF9130的V GS 最小值为2V ,设计时使2个场效应管栅极之间的电压在2V*2=4V ,或者为了减小直流电源的消耗,取比4V 稍小一点,也是可以的。 只要保持电压的分压比,电阻上的电流是不必考虑的,因为场效 应管的栅级输入阻抗是非常高的,栅级几乎不消耗电流,因此,分压 GND_0VOFF = 0v

电阻的阻值取常用的即可。 从单个场效应管看,这是源级跟随器,所以电压放大倍数为1。 功率放大器对输入电压范围是没有限制的,取决于场效应管的参数,IRF130和IRF9130的绝对最大V GS=±20V,就是说,输入电压范围±15V是没有问题的。 功率放大器根据输入电压,放大接近1倍,得到输出电压,由输出电压,根据负载,得到输出电流。 如果电源电压是±24V,减去2个场效应管的正常工作时的V DS,输出电压范围应该大于±22V,具体做一下实验,也是简单的事。 甲乙类放大器电路的主要特点如下所述: (a).这种放大器同乙类放大器电路一样,也是用两只场效应管分别放大输入信号的正、负半周,但给两只场效应管加入了很小的静态偏置电流,以使场效应管刚刚进入放大区。 (b).由于给场效应管所加的静态直流偏置电流很小,所以在没有输入信号时放大器对直流电源的消耗比较小(比起甲类放大器要小得多),这样具有乙类放大器的省电优点,同时因加入的偏置电流克服了场效应管的截止区,对信号不存在失真,又具有甲类放大器没有非线性失真的优点。所以,甲乙类放大器具有甲类和乙类放大器的优点,同时克服了这两种放大器的缺点。正是由于甲乙类放大器无交越失真,又具有输出功率大和省电的优点,所以被得到广泛的应用。 当这种放大电路中的场效应管静态直流偏置电流太小或没有时,就成了乙类放大器,将产生交越失真。

MOSFET功放电路

目录 场效应管功率放大电路 (1) 场效应管80W音频功率放大电路 (1) 一款性能极佳的JFET-MOSFET耳机功放电路图 (2) 100W的MOSFET功率放大器 (2) 场效应管(MOSFET)组成的25W音频功率放大器电路图 (4) 一种单电源供电的MOSFET功放电路 (6) 100W的V-MOSFET功率放大器电路 (6) 100W场效应管功率放大电路 (8) 全对称MOSFET OCL功率放大器电路图 (9) 场效应管功率放大电路 如图所示电路是采用功率MOSFET管构成的功率放大器电路。电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。 场效应管80W音频功率放大电路

图 100W的MOSFET功率放大器

电路图 关于电路 电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。如果畅通,将改变这个直流电压偏置值S后续阶段。电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。预设R1用于调整放大器的输出电压。电阻R3和R2设置放大器的增益。第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。这样做是为了提高线性度和增益。Q7和Q8在AB 类模式运行的功率放大级的基础上。预设R8可用于调整放大器的静态电流。电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。F1和F2是安全的保险丝。 电路设置 设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。 注意事项 质量好的印刷电路板组装的电路。 使用一个45 / -45 V直流,3A的双电源供电电路。 电源电压不得超过55 / -55 V直流。 连接扬声器前,检查零信号放大器的输出电压,在任何情况下不应该大于50mV。如果是大于50mV,检查电路中的任何错误。另一套更换Q1,Q2,也可以解决问题。 Q7和Q8适合2 °C / W的散热片。Q7和Q8都必须被隔离,使用云母片。很容易在市场上几乎所有的功率晶体管/几乎所有封装形式的MOSFET散热器安装包。 所有电阻R10,R11和R19的其他1 / 4瓦的金属膜电阻。R10和R11是5W线绕型,而R19是一个3W线绕类型。

相关文档
最新文档