高一数学正弦函数

高一数学正弦函数
高一数学正弦函数

单位圆与诱导公式

一、教学目标:

1、知识与技能

(1)进一步熟悉单位圆中的正弦线;(2)理解正弦诱导公式的推导过程;(3)掌握正弦诱导公式的运用;(4)能了解诱导公式之间的关系,能相互推导;(5)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(6)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦线表示α,-α,π-α,π+α,2π-α,从而体会各正弦线之间的关系;或从正弦函数的图像中找出α,-α,π-α,π+α,2π-α,让学生从中发现正弦函数的诱导公式;通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

二、教学重、难点

重点: 正弦函数的诱导公式,正弦函数的性质。

难点: 诱导公式的灵活运用,正弦函数的性质应用。

三、学法与教学用具

在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。

教学用具:投影机、三角板

第一课时正弦函数诱导公式

一、教学思路

【创设情境,揭示课题】

在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2kπ+α)=sinα(k∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。这就是我们这一节课要解决的问题。

【探究新知】

1.复习:(公式1)sin(360?k+α) = sinα

2.对于任一0?到360?的角,有四种可能(其中α为不大于90?的非负角)

[

[

[[

??

?

????β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角

),当为第三象限角),当为第二象限角

),

当为第一象限角,当

36027036027018018018090180)900 (以下设α为任意角)

3. 公式2:

设α的终边与单位圆交于点P(x ,y ),则180?+α终边与单位圆交于点P’(-x ,-y ),由正弦线可知: sin(180?+α) = -sin α

4.公式3: 如图:在单位圆中作出α与-α角的终边,

同样可得:

sin(-α) = -sin α,

5. 公式4:由公式2和公式3可得:

sin(180?-α) = sin[180?+(-α)] = -sin(-α) = sin α,

同理可得: sin(180?-α) = sin α, 6.公式5:sin(360?-α) = -sin α

【巩固深化,发展思维】 1. 例题讲评 例1. 求下列函数值

(1)sin(-1650?); (2)sin(-150?15’); (3)sin(-

4

7

π) 解:(1)sin(-1650?)=-sin1650?=-sin(4×360?+210?)=-sin210? =-sin(180?+30?)=sin 30?=

2

1

(2) sin(-150?15’)=-sin150?15’=-sin(180?-29?45’) =-sin29?45’=-0.4962 (3) sin(-

47π)=sin(-2π+4π)=sin 4π=2

2 例2.化简:

()()()()()

πααπαπαπαπ---+-+-sin 3sin sin 3sin 2sin 解:(略,见教材P24)

2. 学生练习

教材P24练习1、2、3

二、归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的体会是什么?

三、课后反思

x y

o P’(x ,-y ) P(x ,y ) M x

y

o P (x ,y )

P ,(-x ,-y )

第二课时 正弦函数的性质

一、 教学思路

【创设情境,揭示课题】

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y =sinx 在R 上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

【探究新知】

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题: (1) 正弦函数的定义域是什么? (2) 正弦函数的值域是什么? (3) 它的最值情况如何? (4) 它的正负值区间如何分? (5) ?(x)=0的解集是多少? 师生一起归纳得出:

1. 定义域:y=sinx 的定义域为R

2. 值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性) 再看正弦函数线(图象)验证上述结论,所以y =sinx 的值域为[-1,1]

3.最值:1?对于y =sinx 当且仅当x =2k π+

2

π

,k ∈Z 时 y max =1 当且仅当时x =2k π-

2

π

, k ∈Z 时 y min =-1 2?当2k π<x <(2k+1)π (k ∈Z)时 y =sinx >0 当(2k-1)π<x <2k π (k ∈Z)时 y =sinx <0

4.周期性:(观察图象) 1?正弦函数的图象是有规律不断重复出现的;

2?规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3?这个规律由诱导公式sin(2k π+x)=sinx 也可以说明 结论:y =sinx 的最小正周期为2π 5.奇偶性

sin(-x)=-sinx (x∈R) y=sinx (x∈R)是奇函数 6.单调性 增区间为[-

2π+2k π, 2π

+2k π](k∈Z),其值从-1增至1; 减区间为[2

π+2k π, 23π

+2k π](k∈Z),其值从1减至-1。

【巩固深化,发展思维】

1. 例题讲评 例1.利用五点法画出函数y =sinx -1的简图,根据函数图像和解析式讨论它的性质。 解:(略,见教材P26)

x -

2

π ... 0 (2)

π ... π (2)

3π sinx

-1

1

-1

x

y o

人教版高中数学,正弦定理(一)

人教版高中数学同步练习 第一章 解三角形 §1.1 正弦定理和余弦定理 1.1.1 正弦定理(一) 课时目标 1.熟记正弦定理的内容; 2.能够初步运用正弦定理解斜三角形. 1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2 . 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c =sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C ,这个比值是三角形外接圆的直径2R . 一、选择题 1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2 答案 D 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =b sin B , 得4sin 45°=b sin 60° ,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A 解析 sin 2A =sin 2B +sin 2C ?(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形. 4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A > B B .A sin B ?2R sin A >2R sin B ?a >b ?A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60°

(完整版)高一数学分段函数练习题

高一数学函数的定义与分段函数测试题 1、给出函数?????<+≥=)4()1()4()21()(x x f x x f x ,则=)3(f ( ) A.823- B. 111 C. 19 1 D. 241 2、若f(x)=???≥)0()0(2πx x x x ???<-≥=) 0()0()(2x x x x x ?,则当x<0时,f[?(x)]=( ) A. -x B. -x 2 C.x D.x 2 3、下列各组函数表示同一函数的是( ) ①f(x)=|x|,g(x)=???<-≥) 0()0(x x x x ② f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2 ④f(x)=1122-+ -x x g(x)=0 x ∈{-1,1} A.①③ B.① C.②④ D.①④ 4、设f(x)=?????>+≤--1||111||,2|1|2x ,x x x ,则f[f(21)]=( ) A. 21 B.134 C. -59 D.4125 5、设函数3,(10)()((5)),(10)x x f x f f x x -≥?=?+≤+)2(,2)2(,22x x x x 则f(-4)=___________,若f(x 0)=8,则x 0=________ 6.、函数y =+的定义域为( ) A . {x |x ≤1} B . {x |x ≥0} C . {x |x ≥1或x ≤0} D . {x |0≤x ≤1} 7、.函数f (x )=的定义域为( ) A . [1,2)∪(2,+∞) B . (1,+∞) C . [1,2) D . [1,+∞) 8、函数 的定义域是( ) A . B . C . D .

高一数学正弦定理余弦定理习题及答案

高一数学正弦定理余弦定理习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

正 余 弦 定 理 1.在ABC ?中,A B >是sin sin A B >的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin 02C x x A B -?+ =的两根之和等于两根之积的一半,则ABC ?一定是 ( ) (A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= . 4、如图,在△ABC 中,若b = 1,c =3,23C π∠= ,则a= 。 5、在ABC ?中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 . 6、在?ABC 中,,,a b c 分别为角,,A B C 的对边,且2 74sin cos 222 B C A +-= (1)求A ∠的度数 (2)若3a =,3b c +=,求b 和c 的值 7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状. 8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c . A B 323 π

1、解:在ABC A B ?>中,2sin 2sin sin sin a b R A R B A B ?>?>?>,因此,选C . 2、【答案】由题意可知:211cos cos cos 2sin 222 C C A B -=??=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+- cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ?一定是等腰三角形选C 3、【命题立意】本题考察正弦定理在解三角形中的应用. 【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得 1sin sin 60A =得1sin 2 A =,由a b <知60A B <=,所以30A =,180 C A B =-- 90=,所以sin sin 90 1.C == 4、【命题立意】本题考查解三角形中的余弦定理。 【思路点拨】对C ∠利用余弦定理,通过解方程可解出a 。 【规范解答】由余弦定理得,222121cos 33 a a π+-???=,即220a a +-=,解得1a =或2-(舍)。【答案】1 【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。 5、【命题立意】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生的推理论证能力和运算求解能力。

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

高中数学-分段函数的几种常见题型及解法

分段函数常见题型及解法 【解析】 3 ?求分段函数的最值 4x 3 (x 0) 例3?求函数f(x) x 3 (0 x 1)的最大值 x 5 (x 1) 分段函数是指自变量在两个或两个以上不同的范围内 有不同的对应法则的函数 它是一个函数,却又常常被学生误认为是几个函数 ;它的定义域是各段函数定义域的并 集,其值域也是各段函数值域的并集 ?由于它在理解和掌握函数的定义、函数的性质等知 识的程度的考察上有较好的作用 ,时常在高考试题中“闪亮”登场,笔者就几种具体的题 型做了一些思考,解析如下: 1 ?求分段函数的定义域和值域 例1.求函数f(x) 值域? 【解析】 2x 2 x [ 1,0]; 1 x x (0,2);的定义域、 3 x [2,); 作图, 利用“数形结合”易知f (x)的定义域为 [1,),值域为(1,3]. 2 ?求分段函数的函数值 |x 1| 2,(|x| 例2 . ( 05年浙江理)已知函数 f(x) 1 1 x 2 (|x| 1) 1) 求f[? 因为 f(i) 11 1| 2 所以 f[f(b] f( 1 4 1 ( i) 2 13

【解析】当 X 0 时,f max (X ) f(0) 3,当 0 X 1 时,f max (X ) f(1) 4, 当 X 1 时, X 5 15 4,综上有 f max (x) 4. 4 ?求分段函数的解析式 例4 .在同一平面直角坐标系中,函数y f (X )和y g(X )的图象关于直线 y X 对 称,现将y g(x)的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得 的图象是由两条线段组成的折线(如图所示) ,则函数f (x)的表达式为() 5 ?作分段函数的图像 例5?函数y e IM |X 1|的图像大致是() 2x 2 (1 X 0) A. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 0) B. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 2) C. f(x) X 2 1 ( 2 X 4) 2x 6 (1 X 2) D. f(x) X 2 3 (2 X 4) 【解析】 将其图象沿X 轴向右平移2个单位, 再沿y 轴向下 平移 1 个单位 得解析式为y 今(x 2) 1 1 4 1 f(x) 2x 2 (x [ 1,0]),当 x [0,1]时, y 2x 1,将其图象沿x 轴向右平移2 个单位,再沿y 轴向下平移 1个单位, 得解析式y 2(x 2) 1 1 2x 4, 所以 f(x) 2x 2 (x [0,2]) 综上可得f(x) 2x 2 ( 1 x 0) ■2 2 (0 x 2) 故选A 当 X [ 2,0]时,y 1 x 1

高一数学上册指数函数知识点及练习题含答案

课时4指数函数 一. 指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n n 次方 根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n 为奇数时, a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等 于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈

二.指数函数及其性质(4)指数函数

三.例题分析 1.设a 、b 满足00且a ≠1),则下列等式中不正确的是( D ) A.f(x+y)=f(x)f(y) B.f(x-y)= ) () (y f x f

高一数学集合练习题及答案(人教版)

一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤

9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分) 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|2 0x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题(每题10分,共40分) 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式

高一数学上册函数公式汇总

高一数学上册函数公式汇总 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:sin(2π+α)= sinα cs(2π+α)= csα tan(2π+α)= tanα ct(2π+α)= ctα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cs(π+α)= -csα tan(π+α)= tanα ct(π+α)= ctα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cs(-α)= csα tan(-α)= -tanα ct(-α)= -ctα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值

之间的关系: sin(π-α)= sinα cs(π-α)= -csα tan(π-α)= -tanα ct(π-α)= -ctα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cs(2π-α)= csα tan(2π-α)= -tanα ct(2π-α)= -ctα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= csα cs(π/2+α)= -sinα tan(π/2+α)= -ctα ct(π/2+α)= -tanα sin(π/2-α)= csα cs(π/2-α)= sinα tan(π/2-α)= ctα ct(π/2-α)= tanα

sin(3π/2+α)= -csαcs(3π/2+α)= sinαtan(3π/2+α)= -ctαct(3π/2+α)= -tanαsin(3π/2-α)= -csαcs(3π/2-α)= -sinαtan(3π/2-α)= ctαct(3π/2-α)= tanα(以上∈Z)

高一数学必修1 集合教案

第一章集合与函数概念 §1.1集合 (一)集合的有关概念 ⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。 2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3.集合相等:构成两个集合的元素完全一样。 4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于?两种) ⑴若a是集合A中的元素,则称a属于集合A,记作a∈A; ⑵若a不是集合A的元素,则称a不属于集合A,记作a?A。 5.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+;N内排除0的集. 整数集,记作Z;有理数集,记作Q;实数集,记作R; 6.关于集合的元素的特征 ⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明” (造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大 的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的. ⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2} ⑶无序性:即集合中的元素无顺序,可以任意排列、调换。 练1:判断以下元素的全体是否组成集合,并说明理由: ⑴大于3小于11的偶数;⑵我国的小河流; ⑶非负奇数;⑷方程x2+1=0的解; ⑸某校2011级新生;⑹血压很高的人; ⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点 7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于?”两种) ⑴若a是集合A中的元素,则称a属于集合A,记作a∈A; ⑵若a不是集合A的元素,则称a不属于集合A,记作a?A。 例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4?A,等等。 练:A={2,4,8,16},则4∈A,8∈A,32?A.

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

高中数学-分段函数及题型

高中数学-分段函数及题型 【经典例题赏析】 例1.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值. 【解析】当0x ≤时, max ()(0)3f x f ==, 当01x < ≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =. 例2.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图 象沿x 轴向左平移2个单位, 再沿 y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线 (如图所示), 则函数()f x 的表达式为( ) 答案A. 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 2 26(12) .()3(24)x x x D f x x -≤≤?=?-<≤? 例3.判断函数2 2(1)(0) ()(1)(0) x x x f x x x x ?-≥?=?-+时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时, (0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于 任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数. 例4.判断函数3 2 (0) ()(0)x x x f x x x ?+≥?=?-

高中数学正弦定理

正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等 式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则sin sin sin a b c c A B C === b c 从而在直角三角形ABC 中,sin sin sin a b c A B C == C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的 定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B (图1.1-3)

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

分段函数练习题及答案(最新整理)

1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( ) 2.(2011年葫芦岛高一检测)设f (x )= Error!,则f (5)的值是( ) A .24 B .21 C .18 D .16 3.函数y =x +的图象为( )|x |x 4.函数f (x )=Error!的值域是________. 1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+的像和B 中元素-1的原像分别为( ) 2A.,0或2 B .0,22C .0,0或2 D .0,0或2 2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( ) 3.函数f (x )=Error!的值域是( ) A .R B .[-9,+∞) C .[-8,1] D .[-9,1]4.已知f (x )=Error! 若f (x )=3,则x 的值是( ) A .1 B .1或32 C .1,或± D.32 335.已知函数f (x )=Error! g (x )=Error!当x ∈R 时,f (g (x )),g (f (x ))的值分别为( ) A .0,1 B .0,0 C .1,1 D .1,0 6.设f (x )=Error!已知f (a )>1,则实数a 的取值范围是( ) A .(-∞,-2)∪(-12,+∞) B.(-12,12)

高一数学集合知识点总结归纳

高一数学集合知识点总结归纳 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:n,z,q,r,n* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈a都有x∈b,则a b(或a b); 2)真子集:a b且存在x0∈b但x0 a;记为a b(或,且 ) 3)交集:a∩b={x| x∈a且x∈b} 4)并集:a∪b={x| x∈a或x∈b} 5)补集:cua={x| x a但x∈u}

注意:①? a,若a≠?,则? a ; ②若,,则 ; ③若且,则a=b(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。 4.有关子集的几个等价关系 ①a∩b=a a b;②a∪b=b a b;③a b c ua c ub; ④a∩cub = 空集 cua b;⑤cua∪b=i a b。 5.交、并集运算的性质 ①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a; ③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub; 6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。 【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系 a) m=n p b) m n=p c) m n p d) n p m 分析一:从判断元素的共性与区别入手。 解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n ∈z} 对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

高一数学分段函数1

第九课时 分段函数 【学习导航】 知识网络 分段函数?? ???分段函数图象分段函数定义域值域分段函数定义 学习要求 1、了解分数函数的定义; 2、学会求分段函数定义域、值域; 3、学会运用函数图象来研究分段函数; 自学评价: 1、分段函数的定义 在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数; 2、分段函数定义域,值域; 分段函数定义域各段定义域的并集,其值域是各段值域的并集(填“并”或“交”) 3、分段函数图象 画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象; 【精典范例】 一、含有绝对值的解析式 例1、已知函数y=|x -1|+|x+2| (1)作出函数的图象。 (2)写出函数的定义域和值域。 【解】: (1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x=1,第二个绝对值的分段点x=-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞) 所以已知函数可写为分段函数形式: y=|x -1|+|x+2|=?? ???>+≤<--≤--)1(12)12(3)2(12x x x x x 在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象。(图

象略) (2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞) 二、实际生活中函数解析式问题 例2、某同学从甲地以每小时6千米的速度步行2小时到达乙地,在乙地耽搁1小时后,又以每小时4千米的速度步行返回甲地。写出该同学在上述过程中,离甲地的距离S(千米)和时间t(小时)的函数关系式,并作出函数图象。 【解】: 先考虑由甲地到乙地的过程: 0≤t ≤2时,y=6t 再考虑在乙地耽搁的情况: 2-∈-+-≤≤---<+) 2(52)22(23)2(522 a a a a a a 利用分段函数图象易得:g(a)max =3

高一数学上册基础知识点总结

数学必修一基础要点归纳 第一章 集合与函数的概念 一、集合的概念与运算: 1、集合的特性与表示法:集合中的元素应具有:确定性、互异性、无序性;集合的表示法 有:列举法、描述法、文氏图等。 2、集合的分类:①有限集、无限集、空集。 ②数集:{ } 2 2y y x =- 点集: (){},1x y x y += 3、子集与真子集:若x A ∈则x B ∈?A B ? 若A B ?但A ≠B ?A B 若{}123,n A a a a a = ,,,则它的子集个数为2n 个 4、集合的运算:①{} A B x x A x B =∈∈ 且,若A B A = 则A B ? ②{}A B x x A x B = ∈∈ 或,若A B A = 则B A ? ③ { } U C A x x U x A =∈?但 5、映射:对于集合A 中的任一元素a,按照某个对应法则f ,集合B 中都有唯一的元素b 与之 对应,则称:f A B →为A 到的映射,其中a 叫做b 的原象,b 叫a 的象。 二、函数的概念及函数的性质: 1、函数的概念:对于非空的数集A 与B ,我们称映射:f A B →为函数,记作()y f x =, 其中,x A y B ∈∈,集合A 即是函数的定义域,值域是B 的子集。定义域、值域、对应法则称为函数的三要素。 2、 函数的性质: ⑴ 定义域:0 1 简单函数的定义域:使函数有意义的x 的取值范围,例: y = 的定义域为:25053302x x x ->??<? 2 复合函数的定义域:若()y f x =的定义域为[),x a b ∈,则复合函数 ()y f g x =????的定义域为不等式()a g x b ≤<的解集。 0 3 实际问题的定义域要根据实际问题的实际意义来确定定义域。

高一数学集合的基本运算练习题及答案25

1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于() A.{x|x≥3}B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4} 【解析】B={x|x≥3}.画数轴(如下图所示)可知选B. 【答案】 B 2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=() A.{3,5} B.{3,6} C.{3,7} D.{3,9} 【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D. 【答案】 D 3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】 设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5. ∴只参加甲项的有25人,只参加乙项的有20人, ∴仅参加一项的有45人. 【答案】45 4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.【解析】∵A∩B={9}, ∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3. 当a=5时,A={-4,9,25},B={0,-4,9}. 此时A∩B={-4,9}≠{9}.故a=5舍去. 当a=3时,B={-2,-2,9},不符合要求,舍去. 经检验可知a=-3符合题意. 一、选择题(每小题5分,共20分)

1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4,故选D. 【答案】 D 2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .? B .{x|x<-12 } C .{x|x>53} D .{x|-120}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12 0},B ={x|-1≤x ≤2},则A ∪B =( ) A .{x|x ≥-1} B .{x|x ≤2} C .{x|0

相关文档
最新文档