频谱仪设置总结

频谱仪设置总结
频谱仪设置总结

目录

1引言 (3)

1.1 编写目的 (3)

1.2 预期读者和阅读建议 (3)

1.3 参考资料 (3)

1.4 缩写术语 (3)

1.5 文档约定 (3)

2频谱 (4)

3时域观测 (4)

4WCDMA (5)

4.1 BTS测试 (5)

4.1.1 测试器材 (5)

4.1.2 仪表连接 (5)

4.1.3 仪表设置步骤 (5)

4.2 MS测试 (8)

4.2.1 测试器材 (8)

4.2.2 仪表连接 (8)

4.2.3 仪表设置步骤 (8)

5TD-SCDMA (9)

5.1 BTS测试 (9)

5.1.1 测试器材 (9)

5.1.2 仪表连接 (9)

5.1.3 仪表设置步骤 (10)

5.2 MS测试 (15)

5.2.1 测试器材 (15)

5.2.2 仪表连接 (15)

5.2.3 仪表设置步骤 (15)

6GSM (16)

6.1 测试器材 (16)

6.2 仪表连接 (16)

6.3 仪表设置步骤 (16)

6.3.1 CTP3110设置 (16)

6.3.2 频谱仪设置步骤 (16)

7LTE (18)

7.1 BTS测试 (18)

7.1.1 测试器材 (18)

7.1.2 仪表连接 (18)

7.1.3 仪表设置步骤 (18)

7.2 MS测试 (24)

第 1 页共26 页

7.2.1 测试器材 (24)

7.2.2 仪表连接 (24)

7.2.3 仪表设置步骤 (24)

1引言

1.1 编写目的

1.2 预期读者和阅读建议1.3 参考资料

1.4 缩写术语

1.5 文档约定

2频谱

查看频谱需要设置的一般主要是1、中心频点(central freqency),2、频谱跨度(span),3、扫描时间sweep time,4、分辨率带宽(RBW)。其他可以选择默认auto(建议配置前preset 下,恢复频谱仪默认设置)。如gsm频谱如下图:

说明:频谱跨度一定要大于信号带宽,sweep time在可忍受范围最好打大点,rbw一般选择anto,如果要提高观测精度可以减小rbw。

3时域观测

时域信号观测是信号能量随时间的变化量,一般需要设置主要是:1、频谱跨度= 0(span = 0),2、中心频点(central freqency),3、扫描时间sweep time,4、分辨率带宽(RBW)。其他可以选择默认auto(建议配置前preset下,恢复频谱仪默认设置)。如gsm时域波形如下图:

第 4 页共26 页

说明:1、span必须为0;2、RBW尽量大一些,尤其要观测时域信号功率时一定要保证rbw 大于或者等于信号带宽,但安捷伦频谱仪最大为8M,所以看LTE 20M功率时应该会小,建议测量宽带信号功率采用channel power测量项进行带宽内积分。

4WCDMA

4.1 BTS测试

4.1.1测试器材

CTP3110一台,频谱仪一台(支持WCDMA选件),trigger两根,射频线1根

4.1.2仪表连接

3110 trigger out 连接频谱仪TRIG IN 1

3110 10M out 连接频谱仪REF IN

3110 rf com/out链接频谱仪输入口(或者通过功分器)

4.1.3仪表设置步骤

4.1.3.1 CTP3110设置

SETP 1:设置仪表TRIGGER

setup->OutTriClock->选择80ms

mode->界面选择WCDMA

STEP 3:建立小区

STEP4:调整小区功率

4.1.3.2 频谱仪设置步骤

STEP 1:点mode进入WCDMA选件

STEP 2:设置频点为BTS中心频点

STEP 3:选择radio模式为BTS

STEP 4:进入code domain进行码域测试

需要设置码率、扩频码号、扰码号、同步方式(一般使用cpich )

通过此测试可以观测各个信道功率,如图所示,也可以加入mark 查看途中各个红色柱状图的码道号,也可进行数据内容解调,如下图

STEP5:进入mod accuracy 模式,查看调制精度类(这里fail 是由于没有接10Mhz 参考信号)

4.2 MS测试

4.2.1测试器材

CTP3110一台,频谱仪一台(支持LTE选件),trigger两根,射频线3根,功分器1个,MS一个

4.2.2仪表连接

3110 trigger out 连接频谱仪TRIG IN 1

3110 10M out 连接频谱仪REF IN

3110 MS主天线接功分器,功分器出口一端接3110rfcom口,另外一个端口接频谱仪rfin

4.2.3仪表设置步骤

4.2.3.1 CTP3110设置

SETP 1:设置仪表TRIGGER

setup->OutTriClock->选择80ms

mode->界面选择WCDMA

STEP 3:进入Active Cell模式

STEP 4:终端接入

STEP 5:调度终端发送数据

4.2.3.2 频谱仪设置

选择radio模式为MS模式,其他设置同BTS设置类似。

5TD-SCDMA

5.1 BTS测试

5.1.1测试器材

CTP3110一台,频谱仪一台(支持TD-SCDMA选件),trigger两根,射频线1根5.1.2仪表连接

3110 trigger out 连接频谱仪TRIG IN 1

3110 10M out 连接频谱仪REF IN

3110 rf com/out链接频谱仪输入口(或者通过功分器)

5.1.3仪表设置步骤

5.1.3.1 CTP3110设置

SETP 1:设置仪表TRIGGER

setup->OutTriClock->选择80ms

STEP:2:进入TD-SCDMA制式

mode->界面选择TD-SCDMA

STEP 3:进入Active Cell模式

STEP 4:调整cell power

5.1.3.2 频谱仪设置步骤

STEP 1:点mode进入TD-SCDMA选件

STEP 2:设置频点为BTS中心频点

STEP 3:选择radio模式为BTS,分析时隙选择TS0

STEP4:设置参数如图:

STEP5:进入测量项(transmit power),需要设置trigger 采用vidio模式(因为建小区模式下只有广播和导频,其他时隙没有功率)

STEP6:PVT(一般不用)

STEP7:code domain

STEP8:调制精度(mode accuracy)

5.2 MS测试

5.2.1测试器材

CTP3110一台,频谱仪一台(支持LTE选件),trigger两根,射频线3根,功分器1个,MS一个

5.2.2仪表连接

3110 trigger out 连接频谱仪TRIG IN 1

3110 10M out 连接频谱仪REF IN

3110 MS主天线接功分器,功分器出口一端接3110rfcom口,另外一个端口接频谱仪rfin

5.2.3仪表设置步骤

5.2.3.1 CTP3110设置

SETP 1:设置仪表TRIGGER

setup->OutTriClock->选择80ms

STEP:2:进入TD-SCDMA制式

mode->界面选择TD-SCDMA

STEP 3:进入Active Cell模式

STEP 4:终端接入

STEP 5:调度终端发送数据

5.2.3.2 频谱仪设置

选择radio模式为MS模式,其他设置同BTS设置类似。

6GSM

GSM是环回系统,MS发射信号和BTS发射信号基本相同(除个别信道如rach、导频等),所以不区分BTS或者MS只是以信道进行区分。

6.1 测试器材

CTP3110一台,频谱仪一台(支持GSM选件),trigger两根,射频线1根

6.2 仪表连接

3110 trigger out 连接频谱仪TRIG IN 1

3110 10M out 连接频谱仪REF IN

3110 rf com/out链接频谱仪输入口(或者通过功分器)

6.3 仪表设置步骤

6.3.1CTP3110设置

STEP 1:进入GSM\GPRW\EGPRS制式

mode->界面选择GSM\GPRW\EGPRS

STEP 2:进入Active Cell模式

STEP 3:调整cell power

6.3.2频谱仪设置步骤

STEP 1:点mode进入GSM选件

STEP 2:设置频点

STEP 3:选择同步类型,一般选择训练序列同步(采用此同步方式不能测量不含训练序列的突发如频率同步信道FCB),或者同步信道同步(只在测试BTS),也可选择功率沿同步(测试ms用的多一些)

STEP4:选择信道类型,这里有rach等上行信道和各种下行信道

STEP5:含有auto detect选择默认就行。

STEP6:PVT测量项,这个测量项一般只用来测试ms,如果测试bts,后端超出模板也是正常的。GMSK和8PSK调制型号的模板是不同的,这里的mod scheme一定要设置成auto det,可以自动识别GMSK和8PSK调制。

STEP7:进入EDGE EVM测量项(包括GMSK调制和8psk调制),mod scheme也是auto det,信号质量类测量都可以在这里找到。

7LTE

7.1 BTS测试

7.1.1测试器材

CTP3110一台,频谱仪一台(支持LTE选件),trigger两根,射频线1根7.1.2仪表连接

3110 trigger out 连接频谱仪TRIG IN 1

3110 10M out 连接频谱仪REF IN

3110 rf com/out链接频谱仪输入口(或者通过功分器)

7.1.3仪表设置步骤

7.1.3.1 CTP3110设置

SETP 1:设置仪表TRIGGER

setup->OutTriClock->选择80ms

mode->界面选择TD-LTE/FDD-LTE

STEP 3:进入Active Cell模式

STEP 4:调整cell power

7.1.3.2 频谱仪设置步骤

STEP 1:点mode进入8960 1B选件

STEP 2:选择LTE选件,如图:

STEP 3:选择MeasSetup ——> Frequency,设置频点,如图:

STEP 4:设置reflevel,选择自动,如图auto-range:

STEP 5:设置观测窗口(依据个人喜好),选择window ——> 2x3

STEP 6:配置参数,选择MeasSetup ——> Properties,弹出如下窗口,在此窗口设置Duplex mode:TDD/FDD;TDD:上下行配比,特殊子帧配比(此参数在仪表界面都能找到);Direction:Downlink,Bandwidth;Sync Type:P-SS/RS(选择RS必须配置Cell ID,一般选择P-SS就可以了);Cell ID:auto/manual(指定小区ID);RS-PRS:3GPP;Tx antennas:1对应单端口,2对应双端口(建小区的时候建立的单天线小区还是双天线小区);ref.tx antenna:单天线小区无论接的哪一个射频通道都选择port 0,如果建立的双天线小区,则射频通道0对应port 0,射频通道1对应port 1;P-SS/S-SS Ant.port:单天线小区选择port0,双天线小区选择all port;MIMO decoding:选择默认;PDSCH Cell Spesic Ratio:按照3110去配置(会影响PDSCH 数据解调功率显示,EVM显示)。

频谱分析仪常见问题

频谱分析仪常见问题 01. 是否可以将频谱分析仪当做网络分析仪使用? 是的,有2种方法可将频谱分析仪当作网络分析仪使用,但是都只能进行标量测量 方法1:使用频谱分析仪内置的跟踪信号源。大部分安捷伦频谱仪可以加装这个选件。如果要测量反射系数,则还需要一个定向耦合器去采集反射功率。 方法2:使用独立的源。如需要可配上耦合器。前提是频谱仪的扫描速度要快过信号源的扫描速度。但这种方式通常不被推荐,因为它的准确性较低。 对于校准,可用到的方法是归一化的方法。这种方法把接收机和源的频率响应移除。然而,矢量网络分析仪采用更强大的误差校准技术,还可以消除不匹配和交调带来的的影响。这就意味着,一般来讲,和频谱分析仪方法相比较,网络分析仪可以进行更准确的测量。 02. 频谱分析仪在零扫宽能够测得的最快脉冲上升时间是多少? 测得的上升时间一般不会超过频谱分析仪的最佳上升时间。分析仪的上升时间由下面这个公式来确定:Tr = 0.66/max RBW, 其中RBW为分辨率带宽。 例如,在 PSA (E4440A、E4443A、E4445A、E4446A或E4448A)中,RBW最大值为8 MHz。因此,最快的上升时间为: 0.66/8 E6 = 82.5 nS。 然而,RBW过滤器带宽误差为± 15%,额定值(中心频率= 3 GHz),因此上升时间范围在71.7 nS到97 nS之间。 参见具体频谱分析仪的技术资料或规范指南。 03. 怎样设置矢量信号分析仪(VSA)测量I和Q增益和相位? 在使用89600S或89400系列矢量信号分析仪时,必须有两个基带信道输入。把I或Q信号连接到信道1上,把另一个信号连接到信道2上。确保89400处于矢量模式下,或已经打开89600的VSA (非标量)应用程序。 在89400上,选择:Instrument Mode > receiver > IF section (0-10 MHz)。 在89600上,选择:Input > Channels > 2 channels. 设置4个网格(89400: Display > 4 grids stack; 89600: Display > Layout > Stacked 4). 对轨迹A,选择Measurement Data spectrum ch1 和 Data Format log magnitude。 对轨迹B,选择Measurement Data spectrum ch2 和 Data Format log magnitude。 对轨迹C,选择Measurement Data frequency response 和 Data Format log magnitude。(在89600上,必须先选择Cross Channel,然后再选择Freq Response) 对轨迹D,选择Measurement Data frequency response 和 Data Format wrap phase。 选择量程,以使OV1 (ADC过载消息)消失。 自动定标所有轨迹。 现在,可以使用标尺,在轨迹C中进行增益测量,在轨迹D中进行相位测量。 在89400上,按蓝色Shift键 > A, Shift > B, Shift > C 和 Shift > D,激活所有标尺。然后选择Markers > couple markers on。使用旋钮,把标尺滚动到感兴趣的标尺上。

安立频谱仪使用说明

安立频谱仪介绍

安立频谱仪使用章程 频谱分析仪的正面图如下: 下面介绍这些按键的功能: 第三章按键功能 硬键 硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。 功能硬键 模式 按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选 择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模 式。 FREQ/SPAN (频率/频宽)

按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、 FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截 至频率)的选项。我们可以通过相应的软键来选择相应的功能。AMPLITUDE (幅度) 按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、 SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、 和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。BW/SWEEP (带宽/扫描) 按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、 MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检 测)”选项,我们可以通过相应的软键来选择相应的功能。KEYPAD HARD KEYS (面板上的硬键) 下面的这些按键是用黑色字体标注的 0~9 是当需要进行测量或修改数据时用来输入数据的。 +/- 这个键可以使被操作的数值的符号发生变化即正负变化。 . 入小数点。 ESCAPE CLEAR 这个键的功能是退出当前操作或清楚显示。如果您在进行参数修改时 按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按 一次该键则关闭该参数的设置窗口。再正常的前向移动(就是进入下 层目录)中,按一下这个键则返回上层目录。如果在开该仪器的时候 一直按下该键则仪器将恢复出厂时的设置。 UP/DOWN ARROWS

路测流程与路测规范

路测流程与路测规范 路测是对GSM无线网络的下行信号,也就是GSM的空中接口(Um)进行测试,主要用于获得以下数据:服务小区信号强度、话音质量(误码率)、各相邻小区的信号强度与质量、切换及接入的信令过程(L3层信息)、小区识别码(BSIC)、区域识别码(LAC)、手机所处的地理位置信、呼叫管理(CM)、移动管理(MM)等。其作用主要在于网络质量的评估(例如覆盖率、接通率和话音质量等等)和无线网络的优化(例如掉话分析、干扰分析等等)。 第一节路测数据采集和测试工具的要求 一、数据采集的要求 在移动通信中,信号的传送以直射、反射和散射的方式传播,在城市中,反射信号占大部分,这些信号呈现多径传播的情况。在传播过程中,将出现信号衰落的现象,通常情况下,我们将更加关心慢衰落的信号,而忽略快衰落的信号。在路测中,我们需要关注以下的数据特性: 1.采样长度 在路测工具的性能固定的情况下,采用长度就是测试的时间。基本上,我们在进行数据分析的时候,都是取采用点数量和时间的平均值。如果采用长度太短,将不能消除快衰落的影响;如果采用长度太长,将丢失地理特征的信息。 采用长度通常定为40个波长。 2.采样数量 根据William C.Y.Lee的推导,在40个波长的间隔内,采用36~50个采样点比较合适。 3.采样速率 在确定了采用长度和采样数量的前提下,我们必须考虑测试的速度(测试车辆速度)、仪器的采样速率和同时测量的信道数。 通常我们只需要测试一个信道,目前市面上销售的测试硬件(例如SAGEM

测试手机、TEMS测试手机等)都可以满足采样速率的要求。 二、测试工具的要求 通常我们用来路测工具有测试手机、频谱分析仪、数字接收机等,配以相应的软件,达到各种的测试要求。 1)测试手机 目前常用的GSM专用测试手机包括SAGEM和TEMS。 SAGEM手机有GSM的OT75、OT76和OT160;GPRS的OT96和OT190。SAGEM OT96以前的版本已经停产了(2003年)。SAGEM进入工程模式的指令是:“上箭头” “#”。使用SAGEM手机的时候需要注意手机速率的设置要与测试软件相对应,通常对于话音的速率是9600,数据业务(GPRS)的速率是57600。 TEMS手机是ERICSSON的专用测试手机,以前TEMS888的测试手机已经停产,现在使用的是TEMS R320(GSM)和TEMS R520(GPRS)。TEMS的价格比SAGEM要贵5~6倍,性能也要比SAGEM好。 基本上所有的测试手机在非通话状态下都能够进行扫频,但是只能对GSM 系统的124个频点进行扫描,并将每个频点的信号强度和BSIC解析出来。 由于目前所有的CDMA设备都使用高通的芯片,所以几乎所有普通的CDMA手机都能够作为专用测试手机用,但是其信令上的解码程度不同。但是国内几乎没有没有手机连接软件的数据线卖。 2)频谱分析仪 频谱分析仪可以分析整个频段,包括GSM和CDMA,它根据信号的波形、功率等数据,分析出干扰源的类型。如果配合八目天线一起使用,还可以追踪干扰源。 但是频谱仪使用复杂,通常我们只用来进行验证测试的时候或者追踪带外干扰的时候才使用,普通的频率问题,使用专用的测试手机和专用软件,就可以解决大部分的问题。 3)数字接收机

用频谱分析仪作EMI测试和诊断

用频谱分析仪作EMI测试和诊断 频谱分析仪是电磁干扰(EMI)的测试、诊断和故障检修中用途最广的一种工具。本篇文章将重点突出频谱分析仪在EMI应用的广阔范围内作为诊断测试仪器的多用性。 对于一个EMC工程师来说,频谱分析仪最重要的用途之一是测试商用和军用电磁发射,其他用途包括对以下内容的评估: 材料的屏蔽效能, 仪器机箱的屏蔽效能, 较大的试验室或测试室的屏蔽效能, 电源线滤波器的衰减特性。 此外频谱分析仪在从事场地勘测中也很有用。 概述 频谱分析仪对于一个电磁兼容(EMC)工程师来说就象一位数字电路设计工程师手中的逻辑分析仪一样重要。频谱分析仪的宽频率范围、带宽可选性和宽范围扫描CRT显示使得它在几乎每一个EMC测试应用中都可大显身手。 辐射发射测量 频谱分析仪是测试设备辐射发射必不可少的工具,它与适当的接口相连就可用于EMI自动测量。比如说,一台频谱分析仪与一台计算机相连,就可以在对应的频率范围内把发射数据制成图和/或表。虽然EMI测量接收机也可用于自动测试系统,但在故障的诊断和检修阶段频谱分析仪则显得更优越。大多数情况下被测设备在第一次测试时都不能满足人们的期望值,因此,诊断电磁干扰源并指出辐射发射区域就显得很迫切。在EMI辐射发射测试的故障检修方面,有时可能想要设置足够宽的频率范围以使得辐射发射要的频谱范围以外的频谱也包括在内。用频谱分析仪,EMC工程师就可以观察到比用一台典型的EMI测试接收机可观察到的更宽的频谱范围。另一种常用技术是观察特殊宽带天线频率范围。包括所有校正因子在内的频谱图也同时被显示在频谱分析仪的CRT上,显示的幅值单位与分析仪上的单位相一致,通常是dBm。这样,测试人员可在CRT上监测发射电平,一旦超过限值,就会被立刻发现。这在故障检修中极其有用。这种特性使得人们在屏蔽被测产品的同时观察频谱仪的屏蔽并可立刻获得反馈信息。在快速进行滤波、屏蔽和接地操作时同样可做以上尝试。频谱分析仪的最大保持波形存储以及双重跟踪特性也可用于观察操作前后的EMI电平的变化。 许多频谱分析仪是便携式的,可以方便地移入测试室内以对被测产品进行连续观察。测试人员可以用电场或磁场探头探测被测设备泄漏区域。通常这些区域包括如,箱体接缝,CRT前面板、接口线缆、键盘线缆、键盘、电源线和箱体开口部位等,探头也可深入被测设备的箱体内进行探测。为了确切指出最大辐射区域,要求探头灵敏度不要太高,通常,一段小线头与一同轴线缆一

CE102测试操作规程

CE102电源线传导发射测试操作规程 1.目的 本测试方法用来测量EUT输入电源线(包括回线)上10kHz~10MHz的传导发射。 2.测试设备 CE102测试设备如表1所示: 表1 CE102测试设备 3.测试配置

要求 按照GJB152A-97中CE102测试方法中的要求,保持EUT的基本测试配置。校准 按照GJB152A-97中CE102测试方法中的校准规定进行仪器设备校准。 测试配置 CE102电源线传导发射分为直流EUT和交流EUT两种测试配置,直流EUT测试配置如图1所示,交流EUT测试配置如图2所示。 图1 直流EUT测试配置框图 图2 交流EUT测试配置框图

4.测试方法 校准 按照GJB152A-97中CE102测试方法中的校准步骤进行。 测试步骤 1)按照图1~图2所示方法进行试验配置; 2)EUT通电预热,使其达到稳定工作状态; 3)连接BNC同轴电缆至频谱仪INPUT口; 4)打开EMIPRE预测试软件,选择CE102测试界面,查看CE102测试路径、测试设备等参数是否正确; 5)一个完整的CE102测试,分两段频率进行,详细参数如表1所示; 表1 CE102频率范围 6)直流EUT需测试直流正线与直流负线的传导发射值,交流EUT需测试交流零线与火线的传导发射值。 5.注意事项 1)连接测试仪器配置时,需要逐级检验电源的正负线或交流线的零线与火线连接是否正确,确保没有短路等安全隐患; 2)注意接入LISN的电源线的正负极与LISN电源输出端是否对应,重点检查LISN输出端的开关是否在电源的直流正线或交流火线上; 3)测试过程中如需要进行仪器连接线更改,务必输入切断电源或者确保LISN输出端电源开关切断的是电源的正线或火线; 4)测试应先让EUT通电,然后将LISN检测端口连接至频谱分析仪输入端; 5)每更换一个新的EUT时,LISN检测端口首先要通过衰减器再接入频谱分析仪,确保不会烧毁频谱仪接收器;

频谱仪测试时几个重要参数的设置

- 49 - 频谱仪测试时几个重要参数的设置 冯菊香 (玉林师范学院,广西 玉林 537000) 【摘 要】频谱仪的最佳工作状态是由诸多因素、参数决定的,而各种参数之间又相互关联,因此在设置频谱仪时需要统筹考虑。文章从频谱仪的基本原理出发,对输入衰减、前置放大、混频、分辨率带宽、视频带宽、扫频宽度和扫描时间等参数作了重点介绍,并就它们之间的最佳工作状态关系设置进行了阐述。 【关键词】频谱仪;分辨率带宽;视频带宽;扫频宽度 【中图分类号】TM935.21 【文献标识码】A 【文章编号】1008-1151(2009)10-0049-02 频谱分析仪是信号分析处理中常用的仪器设备,它不仅 用于测量各种信号的频谱,而且还可测量功率、失真、增益 和噪声特性等。其覆盖的频率范围可达40GHz甚至更高,因而 被广泛用于所有的无线或有线通信应用中,包括开发、生产、 安装与维护等。 从工作原理上看,频谱分析仪可以分为模拟式与数字式 两大类。数字式频谱分析仪主要用于超低频或低频段,其中 最有代表性的为傅立叶分析仪。模拟式频谱分析仪根据使用 滤波器的不同,又分为带通滤波器频谱分析仪与外差式扫频 频谱分析仪。 (一)频谱仪的基本原理 频谱分析仪的基本电路是超外差接收机,亦即利用超过 输入信号频率的本地振荡频率通过混频器获得差频输出。频 谱仪显示屏的水平坐标为频率轴,垂直坐标为功率轴,主要 用于观测和记录某个指定频率段内的载波频谱。其基本原理 如图1: 图1 频谱分析仪基本原理框图 信号的流程是:射频信号RF 接入频谱仪,经过前端的衰 减器和放大器,达到频谱仪的量程电平指标后,再经过混频 器,通过与本振信号的和频或差频而产生中频频率,然后, 通过中频带通滤波器和检波器峰值检波后的信号,再经过视 频滤波器滤波,经由A/D 转换后显示出来。由于本振电路的振 荡频率随着时间变化,因此频谱分析仪在不同的时间接收的 频率是不同的。当本振振荡器的频率随着时间进行扫描时, 屏幕上就显示出被测信号在不同频率上的电压包络,从而得 到被测信号的频谱。 (二)频谱仪的几个重要参数分析 用频谱分析仪对电信号进行测量时,要充分发挥频谱仪 的性能,尽可能地减少测量误差,显示其巨大的优越性,首 先必须根据所测的信号特点来设定频谱仪的衰减器、分辨率 带宽、视频带宽和扫描宽度(或时间)等,才可能使频谱仪 处于最佳工作状态。 1.合理使用输入衰减器和前置放大器 为了防止高电平输入信号对混频器产生的非线性失真,各种不同型号和不同类型的频谱仪,在仪器内部都设有输入衰减器,以此来选择最佳的混频电平。输入信号的电平不随衰减增加而下降,这是因为每当衰减降低加到检波器的信号电平10dB时,中放(IF)增益同时增加10dB来补偿这个损失,其结果使仪表显示的信号幅度保持不变。但是,噪声信号受到放大器的影响很大,其电平被放大,增加了10dB。既然内部噪声主要由中放第一级产生,因而输入衰减器不影响内部噪声电平。但是,输入衰减器影响到混频器的信号电平,并降低信噪比。也就是说,衰减器的衰减量每增加10dB,频谱仪显示的噪声电平就增加10dB。这样,要提高频谱分析仪的灵敏度就需要将衰减设置得尽可能小,降低噪声电平的值,使得信号不被噪声淹没。 使用前置放大器可以提高RF输入信号的信噪比,在测量小信号时,用前置放大器配合频谱仪的测量是非常有帮助的,特别是对卫星信号下行链路的弱信号进行检测时,需要加前置放大器改善系统的接收效果,否则,信号将很难看到或者根本看不到。但是,使用前置放大器时需要考虑两个重要的因素: 噪声值和增益。接收到的信号强度已经包含了放大器的增益,因此在计算信号的实际强度时,需要将天线增益、放大器增益以及监测系统的其它增益或损耗均排除掉,才能 够得到信号的实际强度。前置放大器有内部和外部之分,内 部前置放大器需要选件,工作频率范围一般为3GHz;外部前置放大器可根据待监测的频率范围,选择相应的放大器,放大器的增益要足够大,以便于监测。 2.最佳混频电平 混频器是频谱仪的前端电路,如果工作不正常,频谱仪自身就会产生多种频率成份,导致测量不准确。为了满足大的动态范围和最好的信噪比,希望混频器的驱动电平尽可能大;为了减少非线性失真,又希望加到混频器的电平尽可能低。究竟混频器的电平取多大呢?多数使用说明书建议最佳的混频电平在-30~0dBm 之间,这时混频器内部产生的失真电平低于显示的平均噪声电平,也就是说混频器产生的失真电平观察不到,可以忽略。 3.分辨率带宽 (RBW:Resolution Band Width) 在频谱分析仪中,分辨率带宽 RBW 是一个非常重要的参【收稿日期】2009-07-02 【作者简介】冯菊香(1972-),女,安徽滁州人,玉林师范学院讲师,桂林电子科技大学在读工程硕士,从事电子与通信测试技术研究。

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

频谱仪的简单操作使用方法

R3131A 频谱仪简单操作使用方法 R3131A 频谱仪简介。 R3131A 频谱仪是日本ADVANTEST 公司的产品,用于测量高频信号,可测量的频率范 围为9K — 3GHz 。对于GSM 手机的维修,通过频谱仪可测量射频电路中的以下电路信号 ,(维 修人员可以通过对所测出信号的幅度、 频率偏移、干扰程度等参数的分析, 以判断出故障点, 进行快速有效的维修): 1. 手机参考基准时钟(13M,26M 等); 2. 射频本振(RFVCO )的输出频率信号(视手机型号而异); 3. 发射本振(TXVCO )的输出频率信号(GSM:890M — 915M;DCS:1710 — 1785M ); 4. 由天线至中频芯片间接收和发射通路的高频信号; 5. 接收中频和发射中频信号 (视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A 区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下 B 区的FREQ 键后,会在屏幕的右边弹出一列功能菜单, 要选择其中的“START ”功能就可通过按下其对 应位置的键来实现。 屏幕亮度调节旋钮—数值微调旋钮 B 区:此区按键是主要设置参数的功能按键区,包括: FREQ —中心频率; SPAN —扫描频率宽度;LEVEL —参考电平。此区中按键只需直接按下对应键输入数值及 单位即可。 C 区:此区是数字数值及标点符号选择输入区,其中“ 1”键的另一个功能是“ CAL (校 a! RF INPUT 2! RF IHPUT 1 (图-1) AUTO POWER TlRNE COUNTER MEASURE ■ LJLJLJ " □ATA 区 E 区 G 区 IRACE 连接测试探针端口

频谱分析仪操作规程

频谱分析仪操作规程 一、设置 1 打开ON/OFF 开关 2 设置频率范围,即图形界面的横坐标,选择按下正下方一排键中的FREQ/SPAN 键,右上方的CENTER 键,此处设置为930MHZ,再选择频谱的宽度,此处可以选择 7MHZ(频谱宽度的选择只要是能包含所要测试信号的所有频段,可根据情形而定)。 此处也可选择START 和STOP 键设置你所需要的起始和终止频率。 3 设置信号的振幅,即图形界面的纵坐标,按下最下排功能键AMPLITUDE 键,选 择右上方REF LEVEL 设置参考电平值,此处设置为10dbm,然后按下SCALE 键设置电 平值的间隔,此处可以取值为10db.然后在设置UNITS 键,单位为dbm,最后选中ATTEN 键,设置衰减值,此处的值选择手动设置,其值比参考电平的二倍大一些, 如可以选择30. 4 设置带宽参数,选中最下方的功能键中的BW/SWEEP 键,设置带宽参数值,选择 RBW 键,设置扫描带宽的宽度,此处的值定要小于信号频点的最小间隔值,建议取 值为30khz,如果仅测试一束波形,此处可以忽略设置。 二测试流程 到此基本所需要的参数设置完毕,可以对信源进行测试啦,我们所要测试的数 据主要从两点入手, (一)MU 侧信号电平值的测试 1)测试HDL 输出地电平值,理论值趋近于0dbm,用双工头1/2 跳线于频谱仪的 RF 口对接,打开频谱仪开关,按回车,在屏幕显示出波形图,再按回车,然后按MARKER 键,选中M1(此时M1 是出于ON 状态,其他的M 处于OFF 状态),再选择MARKER TO PEAK 键读取此时的峰值,就是你所要测试的信号电平值。然后按下回车键正下方的SINGLE CONT 键锁定峰值,如需要可以将其保存下来,按下SAVE DISPLY 键将其保 存为容易识别的名字。以此类推,分别测试光模块的主备信号值,和从信号的电平 值,测试光模块主备信号值时射频跳线接在IN 口对应点,测量从信号时射频线接在 从光模块对应的IN(如有衰减器,测量时包含在内)口处,测试结果两者之间的差 值在6db 左右。 (二)RU 侧信号电平值的测试 测试前先将RU 中的主备从三根光纤拔掉,然后用双工头1/2 跳线于频谱仪的 RF 口之间加一个30db50W 的衰减器(衰减器的输入口对准RU 侧),再与RU 上其中 之一的RF 口对接,然后只插上主备光纤,从空着,开始测试主信号电平值,此处可 以读取到理论值-5dbm 左右,然后与31(此时考虑相连射频线的衰减,大概在1dbm 左右,取决线的长短)相加就得到输出主信号强度。再拔掉主备光纤,只插从光纤, 测试从信号强度,理论上得到的结果低于主信号6db. 最后主备从光纤维全部插上,测试主从信号,在屏幕上显示两束波形,此时采 取读差值的方法,将其MARKER 中的M2 打开,分别用M1,M2 标注两峰值,然后用DELTA键取差值,理论上主从信号强度相差6db.此时的操作方法是选中M1读取峰值, 然后选中M2,通过EDIT 修改键,用上下箭头键平移M2 的至所要读取的第二峰值, 然后按下DELTA 键,读取M1-M2 差值。

频谱仪操作规范

频谱分析仪操作规范 一、设置 1 打开ON/OFF开关 2 设置频率范围,即图形界面的横坐标,选择按下正下方一排键中的FREQ/SPAN 键,右上方的CENTER键,此处设置为930MHZ,再选择频谱的宽度,此处可以选择7MHZ(频谱宽度的选择只要是能包含所要测试信号的所有频段,可根据情形而定)。此处也可选择START和STOP键设置你所需要的起始和终止频率。 3 设置信号的振幅,即图形界面的纵坐标,按下最下排功能键AMPLITUDE键,选择右上方REF LEVEL设置参考电平值,此处设置为10dbm,然后按下SCALE键设置电平值的间隔,此处可以取值为10db.然后在设置UNITS键,单位为dbm,最后选中ATTEN键,设置衰减值,此处的值选择手动设置,其值比参考电平的二倍大一些,如可以选择30. 4 设置带宽参数,选中最下方的功能键中的BW/SWEEP键,设置带宽参数值,选择RBW键,设置扫描带宽的宽度,此处的值定要小于信号频点的最小间隔值,建议取值为30khz,如果仅测试一束波形,此处可以忽略设置。 二测试流程 到此基本所需要的参数设置完毕,可以对信源进行测试啦,我们所要测试的数据主要从两点入手, (一) MU侧信号电平值的测试 1)测试HDL输出地电平值,理论值趋近于0dbm,用双工头1/2跳线于频谱仪的RF口对接,打开频谱仪开关,按回车,在屏幕显示出波形图,再按回车,然后按MARKER 键,选中M1(此时M1是出于ON状态,其他的M处于OFF状态),再选择MARKER TO PEAK 键读取此时的峰值,就是你所要测试的信号电平值。然后按下回车键正下方的SINGLE CONT键锁定峰值,如需要可以将其保存下来,按下SAVE DISPLY 键将其保存为容易识别的名字。以此类推,分别测试光模块的主备信号值,和从信号的电平值,测试光模块主备信号值时射频跳线接在IN口对应点,测量从信号时射频线接在从光模块对应的IN(如有衰减器,测量时包含在内)口处,测试结果两者之间的差值在6db左右。

频谱仪使用经验

GSP-827频谱分析仪 现在台湾固纬原产的GSP-827频谱分析仪可以配合相应附件实现以下功能: 各种套餐策略能实现的功能(具体了解,请下载) 套餐A 适合RD、产线、QA等需要简易辐射(Radiation)测试的使用者,提供一套最经济实惠的前置测试系统。 套餐B 适合RD、产线、QA等需要传导测试(Conduction)与辐射测试(Radiation)的使用者,提供一套最经济实惠的前置测试系统。 套餐C 适合RD、产线、QA等需要简易测试并且有软件报表需求的使用者,提供一套最经济实惠的前置测试系统。 套餐D 适合在高噪声下的测试,使用隔离室可以有效的阻绝大部分的外在噪声,使得RD、产线、QA等需要测试的使用者,可以很完整的接收正确的讯号 特点: Superior Performance: 频率范围: 9kHz~2.7GHz. 输入范围: -100dBm~+20dBm 平均杂讯位准: -130dBm/Hz 功率量测: ACPR/ OCBW/CH Power 分割视窗: Simultaneous Measurements in Two Separate Frequency Spans. 解析频宽(RBW):3kHz, 30kHz, 300kHz, 4MHz Portability: 4.5公斤轻巧设计 AC/DC/Battery 操作模式 100组量测波形/操作状态记忆体, 并可于储存档案同时纪录日期/时间 Easy-To-Use: 10组游标量测功能: Delta Mode, Peak Search, Peak Track Trace Function: Dual-Trace Display, Peak Hold, Freeze, Average, Trace Math 限制线功能: Upper/Lower Limit with Pass/Fail Test 触发功能: Video/ External 时间/日历功能: Time/Date Stamp in Saved Data 提供宽广的外部参考时脉输入端: 1MHz…19.2MHz 规格 频率 频率范围 9kHz-2.7GHz 老化率 + 5 ppm, 0-50°C, 1ppm/每年

LTE射频测试仪器操作指南(RS)

中国移动TD-LTE射频测试操作指南(R&S) 注:本文测试条目编号与《TD-LTE无线子系统射频测试规范》一致 7.1发射机指标测试 7.1.1最大输出功率 1.配置载波频点,信道带宽20MHz; 2.启动发射机工作在E-TM1.1模式以最大功率发射; 3.设置仪表外部参考信号和帧触发信号; 1)设置仪表中心频率为载波频率,频率跨度(SPAN)设为30MHz 2)设置频谱仪为外部参考频率:连接10MHz参考频率至仪器后面板的BNC接口REF IN1…20MHz 点击SETUP键,点击REFERENCE FREQUENCY键,选择REFERENCE EXTERNAL. 3)设置外触发信号测量时间门限,用来选择SF5~SF0连续六个子帧:连接外触发信号至仪器后面板的BNC接口EXT GATE/TRIGGER IN,点击硬键TRIG,选择EXTERN,选择GATED TRIGGER,点击GATE SETTING,设置GATE DELAY为5ms,GATE LENGTH为6ms。 4.测试信道带宽内SF5~SF0连续六个子帧的积分功率; 1)点击硬键MEAS,点击CHAN PWR ACP,点击CP/ACP STANDARD,在弹出菜单里选择E-UTRA/LTE SQUARE项,点击CP/ACP CONFIG,点击CHANNEL BANDWIDTH,将TX BANDWIDTH改为18.015MHz. 2)得到SF5~SF0连续六个子帧的发射功率,可以通过SWEEP---SWEEP TIME MANUAL来增加测量时间以得到更加稳定的测量结果。 5.遍历测试高、中、低三个频点,重复步骤1~4; 6.测量限值: 在正常测试环境下,测量出的eNB最大输出功率应在制造商给出的eNB额定输出功率的+2dB和–2dB范围内; 在极端测试环境下,测量出的eNB最大输出功率应在制造商给出的eNB额定输出功率的+2.5dB和–2.5dB范围内。 7.测量结果示例见图1。

频谱仪使用

频谱分析仪系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectru m Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time).最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系.影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(R BW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RB W密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念. 频谱分析仪的使用 一、什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即 X轴表示频率,Y轴表示信号幅度。 二、原理:用窄带带通滤波器对信号进行选通。 三、主要功能:显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。 四、测量机制: 1、把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载 波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。 2、波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如 DG、DP、CLDI、调制深度、频偏等。 五、操作: (一)硬键、软键和旋钮:这是仪器的基本操作手段。 1、三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显 示在屏幕上。 2、软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对 应于按键处显示什么,它就是什么按键。 3、其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USE R测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个B KSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗

频谱仪的使用方法

仪器仪表的使用 第一章 频谱仪的使用 ?快速指南 ?测量实例 ?按键功能

目录 一:MS2711B频谱分析仪 (3) 第1节:概述 (3) 第2节快速启动指南 (9) 第3节按键功能 (19) 第4节基本测量 (28) 第5节测量的例子 (36) 第6节预放 (49) 第7节跟踪信号发生器.............................................. 错误!未定义书签。 第8节软件工具.......................................................... 错误!未定义书签。二:AT5011频谱分析仪使用方法............................................. 错误!未定义书签。 1、目的 ................................................................................ 错误!未定义书签。 2、适用型号 ........................................................................ 错误!未定义书签。 3、功能 ................................................................................ 错误!未定义书签。 4、特点 ................................................................................ 错误!未定义书签。 5、应用 ................................................................................ 错误!未定义书签。 6、应用场合 ........................................................................ 错误!未定义书签。 7、其它说明 ........................................................................ 错误!未定义书签。 8、仪器操作使用方法 ........................................................ 错误!未定义书签。三:hp频谱分析仪使用方法..................................................... 错误!未定义书签。 1.目的 ................................................................................ 错误!未定义书签。 2.功能 ................................................................................ 错误!未定义书签。 3.常用键功能介绍 ............................................................ 错误!未定义书签。 4、应用 ................................................................................ 错误!未定义书签。

相关文档
最新文档