数学史上的三次危机

数学史上的三次危机
数学史上的三次危机

数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。

第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。

最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。

我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。

第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?

直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该

是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。

而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。

第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。

我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。

罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有R R。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R 的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。

从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓ZF公理系统),这场数学危机到此缓和下来。

现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算而得来得。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。

中国最著名的五大数学家介绍

中国最著名的五大数学家 第一位:华罗庚 自学成材的天才数学家,中国近代 数学的开创人!在众多数学家里华罗 庚无疑是天分最为突出的一位! 华罗 庚通过自学而成为世界级的数学家, 他是解析数论、矩阵几何学、典型群、 自守函数论、多复变函数论、偏微分 方程、高维数值积分等广泛数学领域 的中都做出卓越贡献。在这些数学领域他或是创始人或是开拓者! 华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。 “华罗庚金杯少年数学邀请赛”(简称“华杯赛”)就是为了纪念和学习我国杰出的数学家华罗庚教授的。

现代微分几何的开拓者,曾获数学界 终身成就奖----沃尔夫奖!他对整体微分几 何的卓越贡献,影响着半个多世纪的数学 发展。他创办主持的三大数学研究所,造 就了一批承前启后的数学家。 在微分几何领域有诸多贡献,如以他命名 的“陈空间”,“陈示性类”,“陈纤维从”。 一位数学家说“陈省身就是现代微分几何。”这是对他的最好评价!

世界著名微分几何学家,射影微分几何学派的开拓者,40、50年代开始研究一般空间微分几何学,60年代又研究高维空间共轭网理论,70年代以来在中国开创了新的研究方向——计算几何!为中国数学走向现代化做出巨大贡献! 第四位:陈景润 华罗庚的学生!数论学家,歌德巴赫猜想专家!离解决歌德巴赫猜想即“1+1”问题,最近的人,证明了“1+2”陈景润一生只做一件事的人,那就是歌德巴赫猜想,他也一直只专注于这个领域而取得了举世瞩目的成就!迄今为止,歌德巴赫猜想依然是世界级难题!众多数学家认为用现有数学理论系统无法解决这一问题,除非出现新的数学观念,新的数学理论系统!

历史上的三次数学危机

历史上的三次数学危机王方汉(武汉市第二十三中学430050) 在数学发展的过程中,人的认识是不断深化的.在各个历史阶段,人的认识又有一定的局限性和相对性.当一种/反常0现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机.许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展. 在历史上,数学曾发生过三次危机.这三次危机,从产生到消除,经历的时间各不相同,都极大地推动了数学的发展,成为数学史上的佳话. 第一次数学危机产生于公元前五世纪.那时,古希腊的毕达哥拉斯学派发现:正方形边与对角线是不可通约的,现在称之为/比达哥拉斯悖论0. /悖论0这一术语,许多中小学生恐怕是第一次见到.所谓悖论,就是指自相矛盾荒谬结论. 今天看来,两条线段不可通约,是数学中常见的合理的现象,它不过表明两条线段之比是一个无理数而已,可是,当时的古希腊人怎么会认识到这一点?!在他们眼中,各种事物的许多物理的、化学的、生物的性质都可能改变,惟其数量性质是不会变的!他们认为:万物都包含着数:数只有两种,这就是自然数和可通约的数.所以,不可通约的数是不可思议的! 第一次数学危机持续了两千多年.十九世纪,数学家哈密顿(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷尔(Borel)、康托尔(Cantor)和维尔斯特拉斯(Weietstrass)等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类)))实数,并建立了完整的实数理论.这样,就完全消除了第一次数学危机. 第二次数学危机是因为发现微积分方法而产生的.十七世纪,牛顿和德国数学家莱布尼兹(Leibniz,1646-1716)首创了微积分.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数y=x n的导数的: (x+v x)n=x n+n#x n-1#v x+n(n-1) 2 #x n-2#(v x)2+,+(v x)n,然后把函数的增量v y除以自变量的增量v x,得 v y v x= (x+v x)n-x n v x =n#x n-1+ n(n-1) 2 #x n-2#v x +,+nx#(v x)n-2+(v x)n-1, 最后,扔掉其中所有含v x的项,就得到函数y= x n的导数为nx n-1. 哲学家以眼光税利、思维敏捷而著称.贝克莱(Berkelg)就是这样的哲学家.他一针见血地指出:先以v x为除数,说明v x不等于零,后来又扔掉所有含v x的项,可见v x等于零,这岂不自相矛盾吗?这就是著名的/贝克莱悖论0. 现在我们知道,自变量x的增量v x是一个无穷小量.但在当时,贝克莱悖论的出现,咄咄逼人,逼得数学家们不得不认真地对待/无穷小量0,设法克服由此引起的思维上的混乱. 十九世纪,许多数学家投入到了这一工作之中,柯西(Cauchy,1789-1857)和维尔斯特拉斯的贡献最为突出.1821年,柯西建立了极限的理论,提出了/无穷小量是以零为极限但永远不为零的变量0,维尔斯特拉斯又作了进一步的改进,终于消除了贝克莱悖论,把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机. 第二次数学危机的解除,与第一次数学危机的解除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除了. 一波未平,又起一波.前两次数学危机解决后不到三十年,又卷起了第三次数学危机的轩然大波. 十九世纪末和二十世纪初,德国数学家康托尔(Cantor,1845-1918)创立了集合论,初衷是为整个数学大厦奠定牢实的基础.正当人们为集合论的诞生而欣然自慰时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安.其中,英国数学家罗素(Russell,1872-1970)于1902年提出的

历史上三大数学危机之三

第三次数学危机 一、起因 魏尔斯特拉斯用排除无穷小量的办法来解决贝克莱悖论,而在本世纪60年代,鲁滨逊又把无穷小量请了回来,引进了超实数的概念,从而建立了非标准分析,同样也能精确地描述微积分,进而也解决了贝克莱悖论。但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。 二、经过 经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。1918年,罗素把这个悖论通俗化,成为理发师悖论。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。

罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。 产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。 三、影响 第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。 为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。 为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

数学的三次危机——第三次数学危机

三、第三次数学危机 数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。 1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。 罗素,英国人,哲学家、逻辑学家、数学家。1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。他关心社会现象,参加和平运动,开办学校。1968~1969年出版了他的自传。 罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。 罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。 自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。集合论的现代悖论与逻辑的几个古代悖论有关系。例如公元前四世纪的欧伯利得悖论:“我现在正在做的这个陈述是假的”。如果这个陈述是真的,则它是假的;然而,如果这个陈述是假的,则它又是真的了。于是,这个陈述既不能是真的,又不能是假的,怎么也逃避不了矛盾。更早的还有埃皮门尼德(公元前6世纪,克利特人)悖论:“克利特人总是说谎的人”。只要简单分析一下,就能看出这句话也是自相矛盾的。 集合论中悖论的存在,明确地表示某些地方出了毛病。自从发现它们之后,人们发表了大量关于这个课题的文章,并且为解决它们作过大量的尝试。就数学而论,看来有一条容易的出路:人们只要把集合论建立在公理化的基础上,加以充分限制以排除所知道的矛盾。 第一次这样的尝试是策梅罗于1908年做出的,以后还有多人进行了加工。但是,此程序曾受到批评,因为它只是避开了某些悖论,而未能说明这些悖论;此外,它不能保证将来不出现别种悖论。

数学史上的三次数学危机的成因分析

江西科技师范学院学年论文 数学史上的三次数学危机的成因分析 吕少珍(数学与应用数学 20081444)指导老师:王亚辉 摘要从哲学上来看,矛盾是无处不在的,即便是以确定无疑著称的数学也不例外。数学常常被人们认为是自然科学中发展的最完善的一门学科,它是自然中最基础的学科,是所有科学之父,没有数学,就不可能有其他科学的产生。但在数学的发展史中,却经历了三次危机,本文回顾了数学史上三次危机的产生和发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。 关键词:数学危机;无理数;微积分;无穷小量 1第一次数学危机 1.1背景 第一次危机发生在公元前580—568年之间的古希腊,当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知。数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派是一个宗教、政治、学术合一且组织严密,带有浓厚宗教色彩的学派,这个学派进行了大量的教学研究,并取得了众多的数学发现。在当时他们一致认为“数”的中心地位随时可见,他们还提出了“万物皆数”这一论断。后期毕达哥拉斯学派成员费洛罗斯将这一观点清晰表达为:“人们所知道的一切事物都包含数;因此,没有数就既不可能表达,也不可能理解任何事物。”世界上的万物和现象都只能通过数才能加以解释,唯有通过数和形,才能把握宇宙的本性,他们还指出“万物都可以归结为整数之比”并且相信宇宙的本质就在于这种“数的和谐”。 1.2 起源 1.2.1 “万物都可以归结为整数之比” 比较两条线段a与b的长度,当b恰好是a的正整数r倍时,我们可以直接用a作为这两条线段的共同度量单位。当b不是a的正整数倍时,我们就要去找第三条线段d,使得a可以正好分成d的正整数倍,同时b也可以分成d的正整数倍,我们可以假设a的长度是d的m倍,b的长度是d的n倍,这时,我们说d就是a与b的度量单位,并说线段a与b是可公约或可公度的。这个过程相当于用比较短的线段当尺子去量长的,如果一次量尽,则度量结束;如果一次量不尽,就用余下的那段线段作为新的尺子去量那个比较短的线段,如果量尽,度量结束,且度量单位就是那段余下的线段;如果还是量不尽,就用再余下的那段线段作为新的尺子去量之前余下的那一段…如此下去,直到量尽,度量结束,且度量单位就是最后余下的那段线段。对于任意两条线段,毕达哥拉斯学派的成员相信上面的操作过程总会在进行了有限步之后结束,他们相信,只要有耐心总能找到那个度量单位的。所以,任何两个同类量都是可通约的,即万物都归结为整数之比 1.2.2 希帕索斯悖论 希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈

数学史上的三大危机

数学史上的三大危机 无理数危机、无穷小是零危机和悖论危机 无理数的发现-第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?-第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了

简述中国数学发展史

中国数学发展史 【摘要】数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。该论文就围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 【关键词】中国数学;数学发展史;数学思想 一、中国数学的发展历程 1.1中国数学的起源与早期发展 据《易·系辞》记载:“伏羲作结绳”,“上古结绳而治”,后世圣人易之以书契。其中有十进制制的记数法,出现最大的数字为三万。这是位值制的最早使用。算筹是中国古代的计算工具,这种方法称为筹算。筹算在春秋时代已很普遍。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。在公元前2500年,我国已有圆、方、平、直的概念。对几何工具也有深刻认识。 算术四则运算在春秋时期已经确立,乘法运算已广为流行。“九九表”一直流行了约1600年。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题。《庄子》中则强调抽象的数学思想。其中几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 1.2 中国数学体系的形成与奠基 这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期。在这一时期,数学知识系统化、理论化,数学方面的专书陆续出现。 现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)分数、等差数列、勾股定理于测量术;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有比例知识。 《九章算术》是一部经几代人整理、删减补充和修订而成的古代数学经典著作,约成书于东汉初年。全书编排方法是:先举出例子,然后给出答案,通过对一类问题解法的考察和研究,最后给出“术”。它的成书标志着我国传统数学理论体系——初等数学理论体系的形成。比欧洲早了1400多年。

古今中外数学名人介绍(国内部分)

古今中外数学名人介绍(国内部分) |刘徽|贾宪|秦九韶|李冶|朱世杰|祖冲之|祖暅|杨辉|赵爽|华罗庚|陈景润| 刘徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作. 《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目. 刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人. 刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富. 贾宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶

(整理)数学史上的三次危机.

数学史上的三次危机 张清利 第一次数学危机 在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。这是数学史上的一个里程碑。毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。后来,又发现数轴上还存在许多点也不对应于任何有理数。因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。 例如, ,22,8,6,2等都是无理数。无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。 第一次数学危机表明,当时希腊的数学已经发展到这样的阶段: 1. 数学已由经验科学变为演绎科学; 2. 把证明引入了数学; 3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有 更加重要的地位。这种状态一直保持到笛卡儿解析几何的诞生。 中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。即算术阶段。希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。 在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。 总之,第一次数学危机是人类文明史上的重大事件。 无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。而毕达哥拉斯学派的比例和相似形的全部理论都是建立在这一假设之上的。突然之间基础坍塌了,已经建立的几何学的大部分内容必须抛弃,因为它们的证明失效了。数学基础的严重危机爆发了。这个“逻辑上的丑陋”是如此可怕,以致毕达哥拉斯学派对此严守秘密。据说,米太旁登的帕苏斯把这个秘密泄漏了出去,结果他被抛进了大海。还有一种说法是,将他逐出学派,并为他立了一个墓,说他

中国著名数学家生平事迹及卓著贡献

中国著名数学家生平事迹及卓著贡献 陈景润 个人履历 1953年~1954年在北京四中任教,因口齿不清,被拒绝上讲台授课,只可批改作业,后被“停职回乡养病”,调回厦门大学任资料员,同时研究数论,对组合数学与现代经济管理、科学实验、尖端技术、人类生活的密切关系等问题也作了研究。 1956年调入中国科学院数学研究所。 1980年当选中科院物理学数学部委员(院士)。 他研究哥德巴赫猜想和其他数论问题的成就,至今仍然在世界上遥遥领先,被称为哥德巴赫猜想第一人。 世界级的数学大师、美国学者安德烈·韦伊(AndréWeil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。” 历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授。 国家科委数学学科组成员,《数学季刊》主编等职。 发表研究论文70 余篇,并有《数学趣味谈》、《组合数学》等著作。 著作 《算术级数中的最小素数》 《表达偶数为一个素数及一个不超过两个素数的乘积之和》 《数学趣味谈》《组合数学》《哥德巴赫猜想》 荣誉 陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。 任第四、五、六届全国人民代表大会代表。 2009年9月14日,他被评为100位新中国成立以来感动中国人物之一。

人物生平 1933年5月22日生于福建福州。 1953年毕业于厦门大学数学系。 1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。 1965年称自己已经证明(1+2),由师兄王元审查后于1966年6月在科学通报上发表。 1974年被重病在身的周总理亲自推荐为四届人大代表,并被选为人大常委。 1979年完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到16,受到国际数学界好评。 1979年应美国普林斯顿高等研究院之邀前往讲学与访问,受到外国同行的广泛关注。 1981年当选为中科院学部委员。 1984年4月27日在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,诱发帕金森氏综合症。 1996年3月19日因病住院,经抢救无效逝世,享年62岁。 家庭:妻:由昆(1951- ) 子:陈由伟( 1981年12月生) 华罗庚(中科院院士、数学家) 人物简介 华罗庚(1910年11月12日—1985年6月12日),汉族,江苏太湖西北金坛县城镇人,他为中国数学的发展作出了举世瞩目的贡献。 美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。 被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。被誉为“人民科学家” 俗话说得好:“温室里难开出鲜艳芬芳耐寒傲雪的花儿,人只有经过苦难磨练才有望获得成功。” 我国著名大数学家华罗庚同志的成功就得益于他的坎坷经历。 1924年金坛中学初中毕业,但因家境不好,读完初中后,便不得不退学去当店员。 18岁时患伤寒病,造成左腿残疾。 1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。 1938年回国后任西南联合大学教授。 1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。 1955年被选聘为中国科学院学部委员(院士)。 中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常

简述数学史上的三大危机

简述数学史上的三大危机 世界曾经发生过金融危机,比如美国的金融危机席卷全球,造成了史无前例的影响。实际上,在数学界也发生过翻天覆地的变革,那就是数学史上的三次数学危机。 在古希腊,哲学家都是格外重视数学。像无论是最早的唯物主义哲学家泰勒斯,还是最早的唯心主义哲学家毕达哥拉斯,都特别推崇数学。在那些伟大的数学家中,在数学上成就最大的,当推毕达哥拉斯。 毕达哥拉斯建立了一个带有神秘色彩的团体,被称为毕达哥拉斯学派。这个学派传授知识,研究数学,还很重视音乐。“数”与“和谐”是他们的主要哲学思想。他们认为数是万物的本源,数产生万物,数的规律统治万物,也就是“万物皆数”的观点。“万物皆数”就是万物皆可用自然数或分数表示。然而,这一观点在后来确被毕达哥拉斯自己给推翻了。这还得从一个有趣的故事说起。有一次毕达哥拉斯去朋友家做客,他发现朋友家的地板上的方形图案很有意思,凭借着他数学家头脑的直觉,得出了我们今天所学的勾股定理以及证明。然而根据勾股定理,边长为1的正方形,其对角线的长度应当是根号2,毕达哥拉斯发现根号2既不是自然数,也不是分数。这个事实的发现,是毕达哥拉斯学派的一大成就,它标志着人类思维有了更高的抽象能力。 但这一发现引起了毕达哥拉斯学派的惶恐不安。因为他们心目中的数只有自然数与自然数之比---分数。如今发现边长为1的正方形的

对角线这个明明白白地摆在那里的东西竟不能用“数”表示。这难道不是自己否定自己信仰的真理吗?于是毕达哥拉斯学派千方百计封锁消息,但是纸包不住火终于还是传开了。当时研究数学的希腊学者们便对数的重要性有了怀疑。哲学家们认为世界上的量都可以用数表示,任何两个分数,无论多么近,他们之间还有无穷对个分数,这么多的数居然还不能表示出线段上某些点的长度,数的万能的力量因为根号2的出现被否定了,这就是所谓的第一次数学危机。 第二次数学危机 我们生活着的这个世界,在一刻不停地变化着。古希腊哲学家赫拉克利特说:人不能两次踏入同一条河流,因为河水在流动,当人第二次踏进同一条河流时,已经不是第一次踏进时的河水了。赫拉克利特用这个生动的比喻说明万物皆在不断变化之中,但严格说起来他的话在概念上存在疑问。当时他的对立者巴门尼德宣扬相反的观点,他主张存在是静止的,不变的,永恒的。他的得意门生芝诺还提出“飞矢不动”的诡论。然而数学是讲究概念严密的,他们的说法都在概念上存在漏洞。像什么叫“动”与“不动”,古代哲学家对于如何从逻辑上严格把握事物的运动与变化和相对静止与稳定的统一是不清楚的,直到17世纪,数学上出现了变量与函数的概念才找到了精确描述运动与变化的工具。 对于事物的运动与变化,哲学家常有这一种说法:“运动就是矛盾”,“矛盾”是一个定义的术语,它揭示出事物的共性,但没指出运动的特殊性,而数学中用映射或函数描述运动却能勾画出运动的特殊

中国最著名的五大数学家介绍

中国最著名得五大数学家 第一位:华罗庚 自学成材得天才数学家,中国近代 数学得开创人!在众多数学家里华罗 庚无疑就就是天分最为突出得一位! 华罗庚通过自学而成为世界级得数学 家,她就就是解析数论、矩阵几何学、 典型群、自守函数论、多复变函数论、 偏微分方程、高维数值积分等广泛数 学领域得中都做出卓越贡献。在这些数学领域她或就就是创始人或就就是开拓者!华罗庚得重大贡献,有许多用她得名字命名得定理,如华引理、华不等式、华算子与华方法。另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国著名数学家贝特曼著文称:“华罗庚就就是中国得爱因斯坦,足够成为全世界所有著名科学院院士”。 “华罗庚金杯少年数学邀请赛”(简称“华杯赛”)就就就是为了纪念与学习我国杰出得数学家华罗庚教授得。 第 二 位: 陈

省身 现代微分几何得开拓者,曾获数学界终身成就奖----沃尔夫奖!她对整体微分几何得卓越贡献,影响着半个多世纪得数学发展。她创办主持得三大数学研究所,造就了一批承前启后得数学家。 在微分几何领域有诸多贡献,如以她命名得“陈空间”,“陈示性类”,“陈纤维从”。一位数学家说“陈省身就就就是现代微分几何。”这就就是对她得最好评价! 第三位:苏步青 世界著名微分几何学家,射影微分几何学派得开拓者,40、50年代开始研究一般空间微分几何学,60年代又研究高维空间共轭网理论, 70年代以来在中国开创了新得研究方向——计算几何!为中国数学走向现代化做出巨大贡献!

第四位:陈景润 华罗庚得学生!数论学家,歌德巴赫猜想专家!离解决歌德巴赫猜想即“1+1”问题,最近得人,证明了“1+2” 陈景润一生只做一件事得人,那就就就是歌德巴赫猜想,她也一直只专注于这个领域而取得了举世瞩目得成就!迄今为止,歌德巴赫猜想依然就就是世界级难题!众多数学家认为用现有数学理论系统无法解决这一问题,除非出现新得数学观念,新得数学理论系统!

三次数学危机的启示

数学风暴 -----从三次数学危机看数学如何影响世界观 摘要 美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关,这种关系在我们这个时代尤为明显。”数学用它的逻辑性影响着人们的思维,又以其简洁明了的公式对复杂世界进行了精辟而又深刻的描述。数学对人类的影响已经不仅仅是简单计数的应用,更是微积分在工程学的应用,拓扑学在航天领域的应用等。不仅如此,通过三次数学危机,还能让我们看到它对我们世界观的影响。 关键词:数学危机世界观辩证联系 正文: 古往今来,从毕达格拉斯直到伽利略、笛卡儿、开普勒等众多数学家一直认为世界是数学的体现,世界是按数学公式运行的,宇宙的书本是按数学写成的,数学与世界密不可分。20世纪的数学家兼哲学家庞加莱说:“没有数学这门语言,事物间大多数密切的关系将永远不会被我们发现;我们也无从发现世界内部的和谐,而这种和谐正是惟一真正的客观现实……” 美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关,这种关系在我们这个时代尤为明显。”数学不仅是一种方法、一门艺术或一种语言,更是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。1 当今世界被人们称为数字世界,经历了第一次工业革命,第二次电力革命,第三次信息革命后,人类已经进入了数字时代。数学的应用深入人心,就连超市买菜的婆婆都知道如何计算价格。而数学对人类影响的巨大,已经不是简简单单

数学史话(2)中国数学史

2、中国数学史 数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题. 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了 1

浅谈三次数学危机的启示

浅谈三次数学危机的启示 “经济危机”,我在生活中听得多,“数学危机”却是第一次听说。和经济危机发生的原因相似,数学危机发生也是由于数学基础和构架上存在本来就有的矛盾,在数学发展的过程中一点一点地显露出来。 在这三次数学危机中,我看到数学与哲学——无论是个人的哲学还是时代的哲学之间存在着千丝万缕的联系。正如哲学上说的:“世界观决定方法论。”——一个人对一件事的看法决定他处理这件事的方法。如希伯索斯发现边长为1的正方形的对角线不能用当时的任何一个数表示出来,希伯索斯勇于提出问题并认定这个问题是当时数学上的一个缺漏,希望能在众人的讨论中得到解决,但他的观点被认为是“荒谬”和违反常识的事,他遭到别人的打压,甚至最终被投入海中淹死。这个悲剧很大一个程度取决于当时人们的数的认识还不够全面和深入,于是去处决那些“离经叛道”的“异类”。 同时,也可以看到每一次数学危机都是一次传统和新锐的斗争。先觉者不断挑战这旧日的权威,顽固派不断想要扼杀新生的火焰,但星星之火早已有了燎原之势,烧尽腐朽落后的东西,随大江的海浪一波一波滚滚向前。所以,我们应该培养开拓创新、钻研探究、不畏权威、追求真理的精神,在自己从事的领域上开创一片新的天地。 三次数学危机也是三次数学革命,发现问题,提出问题之后就需要解决问题。人们经过多年不懈的讨论和研究,攻克了一个又一个的难关,数学危机给数学发展带来的动力,不断促进着数学理论基础的完善和成熟。 新的时代应该是开放、包容的时代,我们应该有一种允许不同的观点存在的心态:“虽然我不赞同你的说法,但我誓死捍卫你说话的权利。”只有大家都有机会发表看法,才能在碰撞中擦出火花,激发出新的灵感,才能推动时代的发展。百家争鸣,求同存异,共同进步才是文化领域上应有的风气。

数学史上的三次危机-最新学习文档

数学史上的三次危机 (文章转载自数学发展简史) 从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。 在数学史上,贯穿着矛盾的斗争与解决。当矛盾激化到涉及整个数学的基础时,就会产生数学危机。而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。 数学的发展就经历过三次关于基础理论的危机。 一、第一次数学危机 从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。它是一个唯心主义学派,兴旺的时期为公元前500年左右。他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。 整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。日常生活中,不仅要计算单个的对象,还要度量各

种量,例如长度、重量和时间。为了满足这些简单的度量需要,就要用到分数。于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。 有理数有一种简单的几何解释。在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。以q为分母的分数,可以用每一单位间隔分为q等分的点表示。于是,每一个有理数都对应着直线上的一个点。 古代数学家认为,这样能把直线上所有的点用完。但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。无理数的发现,是毕氏学派的最伟大成就之一,也是数学史上的重要里程碑。 无理数的发现,引起了第一次数学危机。首先,对于全部依靠整数的毕氏哲学,这是一次致命的打击。其次,无理数看来与常识似乎相矛盾。在几何上的对应情况同样也是令人惊讶的,因为与直观相反,存在不可通约的线段,即没有公共

相关文档
最新文档