算法大全第08章 层次分析法

算法大全第08章  层次分析法
算法大全第08章  层次分析法

-167-

第八章 层次分析法

层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

§1 层次分析法的基本原理与步骤

人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

运用层次分析法建模,大体上可按下面四个步骤进行: (i )建立递阶层次结构模型;

(ii )构造出各层次中的所有判断矩阵; (iii )层次单排序及一致性检验; (iv )层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点

应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类:

(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过9个。这是因为支配的元素过多会给两两比较判断带来困难。

下面结合一个实例来说明递阶层次结构的建立。 例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。 在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。可以建立如图1的层次结构模型。

图1 层次结构模型

-168-

1.2 构造判断矩阵

层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的心目中,它们各占有一定的比例。

在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的重要性程度不相一致的数据,甚至有可能提出一组隐含矛盾的数据。为看清这一点,可作如下假设:将一块重为1千克的石块砸成n 小块,你可以精确称出它们的重量,设为n w w ,,1L ,现在,请人估计这n 小块的重量占总重量的比例(不能让他知道各小石块的重量),此人不仅很难给出精确的比值,而且完全可能因顾此失彼而提供彼此矛盾的数据。

设现在要比较n 个因子},,{1n x x X L =对某因素Z 的影响大小,怎样比较才能提供可信的数据呢?Saaty 等人建议可以采取对因子进行两两比较建立成对比较矩阵的办法。即每次取两个因子i x 和j x ,以ij a 表示i x 和j x 对Z 的影响大小之比,全部比较结果用矩阵n n ij a A ×=)(表示,称A 为X Z ?之间的成对比较判断矩阵(简称判断矩阵)。容易看出,若i x 与j x 对Z 的影响之比为ij a ,则j x 与i x 对Z 的影响之比应为

ij

ji a a 1

=

。 定义1 若矩阵n n ij a A ×=)(满足 (i )0>ij a ,

(ii )ij

ji a a 1

=(n j i ,,2,1,L =) 则称之为正互反矩阵(易见1=ii a ,n i ,,1L =)。

关于如何确定ij a 的值,Saaty 等建议引用数字1~9及其倒数作为标度。表1列出了1~9标度的含义:

表1 标度的含义

标度

含 义

1 3 5 7 9

2,4,6,8 倒数

表示两个因素相比,具有相同重要性 表示两个因素相比,前者比后者稍重要 表示两个因素相比,前者比后者明显重要 表示两个因素相比,前者比后者强烈重要 表示两个因素相比,前者比后者极端重要 表示上述相邻判断的中间值

若因素i 与因素j 的重要性之比为ij a ,那么因素j 与因素i 重要性之比为ij ji a a /1=。

从心理学观点来看,分级太多会超越人们的判断能力,既增加了作判断的难度,又容易因此而提供虚假数据。Saaty 等人还用实验方法比较了在各种不同标度下人们判断结果的正确性,实验结果也表明,采用1~9标度最为合适。

-169-

最后,应该指出,一般地作

2

)

1(?n n 次两两判断是必要的。有人认为把所有元素都和某个元素比较,即只作1?n 次比较就可以了。这种作法的弊病在于,任何一个判断的失误均可导致不合理的排序,而个别判断的失误对于难以定量的系统往往是难以避免的。进行

2

)

1(?n n 次比较可以提供更多的信息,通过各种不同角度的反复比较,从而导出一个合理的排序。

1.3 层次单排序及一致性检验

判断矩阵A 对应于最大特征值max λ的特征向量W ,经归一化后即为同一层次相应因素对于上一层次某因素相对重要性的排序权值,这一过程称为层次单排序。

上述构造成对比较判断矩阵的办法虽能减少其它因素的干扰,较客观地反映出一对因子影响力的差别。但综合全部比较结果时,其中难免包含一定程度的非一致性。如果比较结果是前后完全一致的,则矩阵A 的元素还应当满足:

n k j i a a a ik jk ij L ,2,1,,,=?= (1) 定义2 满足关系式(1)的正互反矩阵称为一致矩阵。

需要检验构造出来的(正互反)判断矩阵A 是否严重地非一致,以便确定是否接受A 。

定理1 正互反矩阵A 的最大特征根max λ必为正实数,其对应特征向量的所有分量均为正实数。A 的其余特征值的模均严格小于max λ。

定理2 若A 为一致矩阵,则 (i )A 必为正互反矩阵。

(ii )A 的转置矩阵T

A 也是一致矩阵。

(iii )A 的任意两行成比例,比例因子大于零,从而1)(rank =A (同样,A 的任意两列也成比例)。

(iv )A 的最大特征值n =max λ,

其中n 为矩阵A 的阶。A 的其余特征根均为零。 (v )若A 的最大特征值max λ对应的特征向量为T

n w w W ),,(1L =,则j

i

ij w w a =

,n j i ,,2,1,L =?,即

?

??

?????

??????????=n n n n n n w w w w w w w w w w w w w w w w w w A L L L L L L

L

2

1

2221

212111 定理3 n 阶正互反矩阵A 为一致矩阵当且仅当其最大特征根n =max λ,且当正互反矩阵A 非一致时,必有n >max λ。

根据定理3,我们可以由max λ是否等于n 来检验判断矩阵A 是否为一致矩阵。由

-170-

于特征根连续地依赖于ij a ,故max λ比n 大得越多,A 的非一致性程度也就越严重,

max λ对应的标准化特征向量也就越不能真实地反映出},,{1n x x X L = 在对因素Z

的影响中所占的比重。因此,对决策者提供的判断矩阵有必要作一次一致性检验,以决定是否能接受它。

对判断矩阵的一致性检验的步骤如下: (i )计算一致性指标CI

1

max ??=

n n

CI λ

(ii )查找相应的平均随机一致性指标RI 。

对9,,1L =n ,Saaty 给出了RI 的值,如表2所示。

表2 RI 的值 n 1 2 3 4 5 6 7 8 9 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

RI 的值是这样得到的,用随机方法构造500个样本矩阵:随机地从1~9及其倒数中抽取数字构造正互反矩阵,求得最大特征根的平均值max 'λ,并定义

1

'max ??=

n n

RI λ。

(ⅲ)计算一致性比例CR

RI

CI CR = 当10.0

正。

1.4 层次总排序及一致性检验

上面我们得到的是一组元素对其上一层中某元素的权重向量。我们最终要得到各元素,特别是最低层中各方案对于目标的排序权重,从而进行方案选择。总排序权重要自上而下地将单准则下的权重进行合成。 表3 层次总排序合成表

设上一层次(A 层)包含m A A ,,1L 共m 个因素,它们的层次总排序权重分别为

m a a ,,1L 。又设其后的下一层次(B 层)包含n 个因素n B B ,,1L ,它们关于j A 的层

-171-

次单排序权重分别为nj j b b ,,1L (当i B 与j A 无关联时,0=ij b )。现求B 层中各因素关于总目标的权重,即求B 层各因素的层次总排序权重n b b ,,1L ,计算按表3所示方式进行,即∑==

m

j j

ij i a

b b 1

,n i ,,1L =。

对层次总排序也需作一致性检验,检验仍象层次总排序那样由高层到低层逐层进行。这是因为虽然各层次均已经过层次单排序的一致性检验,各成对比较判断矩阵都已具有较为满意的一致性。但当综合考察时,各层次的非一致性仍有可能积累起来,引起最终分析结果较严重的非一致性。

设B 层中与j A 相关的因素的成对比较判断矩阵在单排序中经一致性检验,求得单排序一致性指标为)(j CI ,(m j ,,1L =),相应的平均随机一致性指标为)(j RI ()()(j RI j CI 、已在层次单排序时求得),则B 层总排序随机一致性比例为

∑∑===

m

j j

m

j j

a

j RI a

j CI CR 1

1

)()(

当10.0

§2 层次分析法的应用

在应用层次分析法研究问题时,遇到的主要困难有两个:(i )如何根据实际情况抽象出较为贴切的层次结构;(ii )如何将某些定性的量作比较接近实际定量化处理。层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据。但层次分析法也有其局限性,主要表现在:(i )它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维过程中的严重非一致性,却无法排除决策者个人可能存在的严重片面性。(ii )比较、判断过程较为粗糙,不能用于精度要求较高的决策问题。AHP 至多只能算是一种半定量(或定性与定量结合)的方法。

在应用层次分析法时,建立层次结构模型是十分关键的一步。现再分析一个实例,以便说明如何从实际问题中抽象出相应的层次结构。

例2 挑选合适的工作。经双方恳谈,已有三个单位表示愿意录用某毕业生。该生根据已有信息建立了一个层次结构模型,如图2所示。

图2 层次结构模型

准则层的判断矩阵如表4所示。

表4 准则层的判断矩阵

A B1 B2 B3 B4 B5 B6

B1 1 1 1 4 1 1/2 B2 1 1 2 4 1 1/2 B3 1 1/2 1 5 3 1/2 B41/4 1/4 1/5 1 1/3 1/3 B5 1 1 1/3 3 1 1 B6 2 2 2 3 3 1 方案层的判断矩阵如表5所示。

表5 方案层的判断矩阵

B1C1 C2 C3 B2C1 C2 C3 B3C1 C2 C3

C1 1 1/4 1/2 C1 1 1/41/5C1 1 3 1/3

C2 4 1 3 C2 4 1 1/2C2 1/3 1 1/7

C3 2 1/3 1 C3 5 2 1 C3 3 1 1

B4C1 C2 C3 B5C1 C2 C3 B6C1 C2 C3

C1 1 1/3 5 C1 1 1 7 C1 1 7 9

C2 3 1 7 C2 1 1 7 C2 1/7 1 1

C3 1/5 1/7 1 C3 1/71/7 1 C3 1/9 1 1

层次总排序的结果如表6所示。

表6 层次总排序

准则研究发展待遇同事地理单位课题前途情况位置名气

准则层权值0.1507 0.1792 0.1886 0.0472 0.1464 0.2879 总排序权值

方案层单排序权值工作1

工作2

工作3

0.1365 0.0974 0.2426 0.2790 0.4667 0.7986

0.6250 0.3331 0.0879 0.6491 0.4667 0.1049

0.2385 0.5695 0.6694 0.0719 0.0667 0.0965

0.3952

0.2996

0.3052

根据层次总排序权值,该生最满意的工作为工作1。

计算的Matlab程序如下:

clc,clear

fid=fopen('txt3.txt','r');

n1=6;n2=3;

a=[];

for i=1:n1

tmp=str2num(fgetl(fid));

a=[a;tmp]; %读准则层判断矩阵

end

for i=1:n1

str1=char(['b',int2str(i),'=[];']);

str2=char(['b',int2str(i),'=[b',int2str(i),';tmp];']); eval(str1);

for j=1:n2

tmp=str2num(fgetl(fid));

eval(str2); %读方案层的判断矩阵

end

-172-

-173-

end

ri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; %一致性指标 [x,y]=eig(a);

lamda=max(diag(y));

num=find(diag(y)==lamda); w0=x(:,num)/sum(x(:,num)); cr0=(lamda-n1)/(n1-1)/ri(n1) for i=1:n1

[x,y]=eig(eval(char(['b',int2str(i)]))); lamda=max(diag(y));

num=find(diag(y)==lamda);

w1(:,i)=x(:,num)/sum(x(:,num)); cr1(i)=(lamda-n2)/(n2-1)/ri(n2); end

cr1, ts=w1*w0, cr=cr1*w0

纯文本文件txt3.txt 中的数据格式如下:

1 1 1 4 1 1/

2 1 1 2 4 1 1/2 1 1/2 1 5

3 1/2 1/

4 1/4 1/

5 1 1/3 1/3 1 1 1/3 3 1 1 2 2 2 3 3 1

1 1/4 1/

2 4 1

3 2 1/3 1 1 1/

4 1/

5 4 1 1/2 5 2 1 1 3 1/3 1/3 1 1/7 3 7 1 1 1/3 5 3 1 7 1/5 1/7 1 1 1 7 1 1 7 1/7 1/7 1 1 7 9 1/7 1 1 1/9 1 1

习 题 八

1. 若发现一成对比较判断矩阵A 的非一致性较为严重,应如何寻找引起非一致性的元素?例如,设已构造了成对比较判断矩阵

?????

?

??????=1613

1615

35

11

A

(1)对A 作一致性检验。

-174-

(2)如A 的非一致性较严重,应如何作修正。

2. 你已经去过几家主要的摩托车商店,基本确定将从三种车型中选购一种,你选择的标准主要有:价格、耗油量大小、舒适程度和外观美观情况。经反复思考比较,构造了它们之间的成对比较判断矩阵。

?????

????

???=13/15/18/1315/17/15513/18731

A 三种车型(记为c b a ,,)关于价格、耗油量、舒适程度和外表美观情况的成对比较判

断矩阵为 (价格) (耗油量)

??????????12

/13/1212/1321 c b a c b

a ????

??????17/127152/15/11 c b a c

b a

(舒适程度)

(外表)

??????????14/15/1413/1531 c b a c b

a ????

??????17/13/171535/11 c b a c

b

a (1)根据上述矩阵可以看出四项标准在你心目中的比重是不同的,请按由重到

轻顺序将它们排出。 (2)哪辆车最便宜、哪辆车最省油、哪辆车最舒适、哪辆车最漂亮? (3)用层次分析法确定你对这三种车型的喜欢程度(用百分比表示)。

层次分析法步骤介绍

层次分析法整个计算过程包括以下五个部分。 (1)建立递阶层次结构 应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。[25] 通常,递阶层次结构包括以下三个基本层次: 1.目标层:通过分析,明确目标就是什么,将其作为最高层的元素,必须就是唯一的, 如:选择最合适的供应商 2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂 程度增多。这时,需要详细分析各准则元素间的相互关系(就是同级关系还就是隶属关系)。如果就是隶属关系,则需要构建子准则层甚至更下一层准则。 3.措施层:即方案层。分析解决问题的方案有哪些,并将其作为最底层因素。 (2)构造判断矩阵并赋值 1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位 于左上角),隶属于它的各个元素依次排列在其后的第一行与第一列。 2.填写判断矩阵:最常用的方法就是咨询专家,将两个元素两两比较,按照重要性程 度表赋值(见下表)。 表3 重要性标度含义表 设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质: 1.a ii=1 2.a ji=1/a ij 3.a ij>0 (3)层次单排序与检验 1.层次单排序 利用数学方法将专家填写后的判断矩阵进行层次排序。层次单排序就是将每一个因素对于其准则的重要性进行排序,实际就就是计算权向量。计算权向量有特征根法、与法等,以下详细介绍特征根法的计算方法。 A.计算判断矩阵每一行元素的乘积

∏==n j ij i a M 1 (3、2) 式中: M i 第i 行各元素的乘积 a ij 第i 个元素与第j 个元素的关系比值

基于Matlab的层次分析法及其运用浅析

基于Matlab的层次分析法及其运用浅析 本文通过使用Matlab软件进行编程,在满足同一层次中各指标对所有的下级指标均产生影响的假定条件下,实现了层次分析法的分析运算。本程序允许用户自由设定指标层次结构内的层次数以及各层次内的指标数,通过程序的循环,用户只需输入判断矩阵的部分数据,程序可依据层次分析法的计算流程进行计算并作出判断。本程序可以方便地处理层次分析法下较大的运算量,解决层次分析法的效率问题,提高计算机辅助决策的时效性。 标签:Matlab层次分析法判断矩阵决策 在当前信息化、全球化的大背景下,传统的手工计算已不能满足人们高效率、高准确度的决策需求。因此计算机辅助决策当仁不让地成为了管理决策的新工具、新方法。基于此,本文在充分发挥计算机强大运算功能的基础上,选用美国MathWorks公司的集成数学建模環境Matlab R2009a作为开发平台,使用M语言进行编程,对计算机辅助决策在层次分析法中的运用进行讨论。试图通过程序实现层次分析法在计算机系统上的运用,为管理决策探索出新的道路。 1 层次分析法的计算流程 根据层次分析法的相关理论,层次分析法的基本思想是将复杂的决策问题进行分解,得到若干个下层指标,再对下层指标进行分解,得到若干个再下层指标,如此建立层次结构模型,然后根据结构模型构造判断矩阵,进行单排序,最后,求出各指标对应的权重系数,进行层次总排序。 1.1 构造层次结构模型在进行层次分析法的分析时,最主要的步骤是建立指标的层次结构模型,根据结构模型构造判断矩阵,只有判断矩阵通过了一致性检验后,方可进行分析和计算。其中,结构模型可以设计成三个层次,最高层为目标层,是决策的目的和要解决的问题,中间层为决策需考虑的因素,是决策的准则,最低层则是决策时的备选方案。一般来讲,准则层中各个指标的下级指标数没有限制,但在本文中设计的程序尚且只能在各指标具有相同数量的下级指标的假定下,完成层次分析法的分析,故本文后文选取的案例也满足这一假定。 1.2 建立判断矩阵判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较给判断矩阵的要素赋值时,常采用九级标度法(即用数字1到9及其倒数表示指标间的相对重要程度),具体标度方法如表1所示。 1.3 检验判断矩阵的一致性由于多阶判断的复杂性,往往使得判断矩阵中某些数值具有前后矛盾的可能性,即各判断矩阵并不能保证完全协调一致。当判断矩阵不能保证具有完全一致性时,相应判断矩阵的特征根也将发生变化,于是就可以用判断矩阵特征根的变化来检验判断的一致性程度。在层次分析法中,令判断矩阵最大的特征值为λmax,阶数为n,则判断矩阵的一致性检验的指标记为:

数学建模算法大全层次分析法

第八章 层次分析法 层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 §1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 运用层次分析法建模,大体上可按下面四个步骤进行: (i )建立递阶层次结构模型; (ii )构造出各层次中的所有判断矩阵; (iii )层次单排序及一致性检验; (iv )层次总排序及一致性检验。 下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点 应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类: (i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。 (ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。 (iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。 递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过9个。这是因为支配的元素过多会给两两比较判断带来困难。 下面结合一个实例来说明递阶层次结构的建立。 例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。 在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。可以建立如下的层次结构模型。 目标层O 选择旅游地 准则层C 景色 费用 居住 饮食 旅途 措施层P 1P 2P 3P 1.2 构造判断矩阵 层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的心目中,它们各占有一定的比例。 在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的

层次分析法的计算步骤教学提纲

层次分析法的计算步 骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。 图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵

数学建模浅谈层次分析法

浅谈层次分析法 摘要 本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 关键词:层次分析多目标多准则成对比较一致性检验

前言 数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。 众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。 数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。 从学术的角度来讲,数学建模就是利用数学技术去解决实际问题;从价值的角度来讲,数学建模是一个思维过程,它是一个解决问题的过程(创新),更是一个升华理论方法的过程(总结);从哲学的角度来讲,数学建模是认识世界和改造世界的过程。 1 数学建模过程和技巧 数学建模的过程是通过对现实问题的简化、假设、抽象,提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。若检验结果符合实际或基本符合,就可以用来指导实践;否则就再假设、再抽象、再修改、再求解、再应用。 构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤: ⑴模型准备 在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。 ⑵模型假设 在明确目的、掌握资料的基础上,抓住复杂问题的主要矛盾,舍去一些次要因素;对实际问题作出几个适当的假设,使复杂的实际问题得到必要的简化。 ⑶建立模型 首先根据主要矛盾确定主要变量;然后利用适当的数学工具刻划变量间的关系,从而形成数学模型。模型要尽量简化、不必复杂,以能获得实际问题的满意解为标准。 ⑷模型检验 建模后要对模型进行分析,用各种方法(主要是数学方法,包括解方程、逻辑推理、稳定性讨论等;同时利用计算机技术、计算技巧)求得数学结果;将所求得的答案返回到实际问题中去,检验其合理性;并反复修改模型的有关内容,使其更切合实际,从而更具有实用性。

层次分析法步骤介绍

层次分析法步骤介绍 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

层次分析法整个计算过程包括以下五个部分。 (1)建立递阶层次结构 应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。[25] 通常,递阶层次结构包括以下三个基本层次: 1.目标层:通过分析,明确目标是什么,将其作为最高层的元素,必须是唯一的, 如:选择最合适的供应商 2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂 程度增多。这时,需要详细分析各准则元素间的相互关系(是同级关系还是隶属关系)。如果是隶属关系,则需要构建子准则层甚至更下一层准则。 3.措施层:即方案层。分析解决问题的方案有哪些,并将其作为最底层因素。 (2)构造判断矩阵并赋值 1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位 于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。 2.填写判断矩阵:最常用的方法是咨询专家,将两个元素两两比较,按照重要性程度 表赋值(见下表)。 表3 重要性标度含义表

设填写后的判断矩阵为A=(a ij )n×n ,判断矩阵具有如下三个性质: 1. a ii =1 2. a ji =1/a ij 3. a ij >0 (3) 层次单排序与检验 1. 层次单排序 利用数学方法将专家填写后的判断矩阵进行层次排序。层次单排序是将每一个因素对于其准则的重要性进行排序,实际就是计算权向量。计算权向量有特征根法、和法等,以下详细介绍特征根法的计算方法。 A. 计算判断矩阵每一行元素的乘积 ∏==n j ij i a M 1 式中: M i 第i 行各元素的乘积 a ij 第i 个元素与第j 个元素的关系比值

层次分析法的计算步骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。 图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵 任何系统分析都以一定的信息为基础。AHP的信息基础主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判断矩阵。判断矩阵是AHP工作的出发点,构造判断矩阵是AHP的关键一步。 当上、下层之间关系被确定之后,需确定与上层某元素(目标A或某个准则Z)相联系的下层各元素在上层元素Z之中所占的比重。 假定A层中因素Ak与下一层次中因素B1,B2,…,Bn有联系,则我们构造的判断矩阵如表8.16所示。 Ak B1 B2 …Bn

层次分析法

一、概念概述 (一)层次分析法(Analytic Hierarchy Process 简称AHP) 是美国运筹学家匹茨堡大学教授萨蒂于本世纪70 年代初提出的一种层次权重决策分析方法。它是一种将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。它不仅可以直接用于多目标、多层次、难于完全用定量方法进行分析决策的系统工程问题,而且也是多目标决策问题中解析地确定各项指标权重的一种有效方法。它将人的主观判断用数量形式表达和处理的方法。 陈永安.基于层次分析法的高校中层干部绩效考评指标体系设计[J].龙岩学院学报2010(4):1 (二)层次分析法,即Analytic Hierarchy Process,简称AHP ,是由Satty提出的一种多准则决策方法,该种方法具有定量和定性相结合处理各种决策因素的特点,再加上其具有简洁、灵活以及系统等方面的优点,致使其被广泛的应用在经济、社会以及电网等众多领域中。层次分析法的原理表现为:建立清晰的层次结构,建立方案属性决策表,以此分析复杂的问题,然后引入测度理论,经过比较后,用相对标度把人的判断标准进行量化处理,形成判断矩阵,通过求解判断矩阵的权重,计算出决策方案的综合权重并排序。 刘华诚.层次分析法在城市电网规划中的应用[J].企业技术开发2014(5):61 (三)层次分析法(analytic hierarchy process, AHP)将多种因素层次化,并逐层比较其关联因素,为分析和预测事物的发展提供依据。层次分析法需要首先对复杂系统所包含的各类因素进行分析,并将这些因素按逻辑顺序进行分组,以形成有序的逐级层次结构。然后针对每一层中各因素的相对重要性进行比较,建立判断矩阵。通过计算该矩阵的最大特征值及其相应的特征向量,得到下一层次各要素对上一层次某要素的重要性次序,以建立相应的权重向量。 段若晨,王丰华.采用改进层次分析法综合评估500 kV 输电线路防雷改造效果[J].2014(01):133 (四)层次分析法在解决问题时,首先对问题所涉及的各因素进行分类,全部因素分为目标层、准则层、方案层(部分文献中也称作措施层),找出相互关系,构造一个有序的递阶层次结构,然后通过决策者对各因素的重要程度比较判断,计算各决策方案在不同准则及总准则下的相对重要程度,最后得出决策方案的优劣排序。整个流程符合人的决策思维过程,极大提高了决策效率。 薛居征.基于层次分析法的群决策方法及应用研究[D].哈尔滨:哈尔滨工业大学2011:11 二、AHP的假设共有九项,分别是: (1)一个系统可被分解成许多种类或成分并形成有向网络的层级架构; (2)每一层级的要素间均假设具独立性; (3)每一层级内的要素,可以用上一层内的某些或全部要素作为评准,进行评估; (4)成对比较时,可将绝对数值尺度转换成比例尺度; (5)成对比较后可使用正互反矩阵处理; (6)偏好关系满足传递性,这不仅优劣关系满足传递性,同时强度关系亦满足传递性;(7)由于偏好关系欲完全具备传递性并不容易,因此容许不具传递性的存在,但须测试其一致性的程度; (8)要素的优势程度,经由加权法则而求得; (9)任何要素只要出现在阶层结构中,不论其优势程度如何小,均被认为与整个评估结 构有关,而并非检核阶层结构的独立性。 劳兆利.基于层次分析法与模糊综合评判法的集中运维点选择优化研究[D].上海:上海交通大学2007:7-8 三、层次分析法的操作步骤 (1)构建判断矩阵。判断矩阵是以上一层的某一要素作为判断准则对下一层要素进行两两比较来

层次分析法步骤.doc

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措

浅析运用层次分析法确定指标权重

浅析运用层次分析法确定指标权重 我们有很多事情要做,但我们只有那么点资源,我该怎么办?我们先来看两个例子:问题一:某企业准备推出一种新产品,而目前市场上已有几个类似的产品在销售。对该企业来说,要想在已有的市场上赢得一席之地就必须提供更具市场竞争力的新产品,可是究竟什么样的产品才是消费者青睐的呢?产品设计及研发部门比较苦恼: (1)对于这类产品,消费者更注重的是价格?包装?功能?品牌?还是…… (2)如果包装更加重要,他们更加关注的是外包装形状?颜色?大小?还是内部材质?如果功能更加重要,那是防水性?延伸性?自动化程度?还是准确性? 问题二:售后服务的好坏已经逐渐成为车主选车、购车时考虑的一大关键要素,而对于汽车制造商来说,提供良好的汽车保养维修售后服务便成为了当前厂商间竞争的另一焦点。而作为汽车售后服务体现的关键部门——4S店的服务流程与质量的好坏,将直接影响到消费者对该厂商的评价。那么,在售后服务的整个流程当中,哪些服务内容是车主更加关注呢?在有限的资源内,重点加强哪方面的服务会更容易赢得车主们的信赖呢? 实际上,一个企业经常会遇到以上说到的关于产品及服务提供优先顺序考虑的问题,这些问题看起来确实很烦琐,一堆需要考虑的因素放在那里,千头万绪,有时候甚至让人摸不着头脑,不知道该从何下手。而事实上,运用市场研究的方法,这些问题解决起来似乎就不像想象中那么棘手了,问题的关键就在于从消费者需求出发合理地判断出用来表征产品及服务各项属性的重要性。而重要性的判断,从市场研究的角度上分析,就是对各属性(即指标)在整个体系中进行权重的判定。 就一个产品或一项服务来说,我们可以用很多不同的指标从不同方面去评价,那么,在众多的评价指标当中,哪些方面在消费者看来更加重要,需要我们重点关注和提高?哪些不太重要,可以在对重要指标进行重点提升以后再逐步改进?哪些根本不重要,甚至可以忽略不计?这些都是企业在产品及服务提供过程中需要特别关注或了解的问题,只要清楚地界定了这些问题,就能有的放矢地进行针对性改进或提升,从而更好地服务于客户,同时最大程度地节省企业资源及投入。从市场研究统计分析方法的角度来看,有多种方法可以用来确定指标的权重,如直接评价法、相关分析法、回归分析法、专家测评法以及层次分析法等。而在众多的方法当中,层次分析法(AHP法)是目前市场调查中运用较多的、对于结果分析更为有效的一种方法。本文以帮助企业解决上述“问题二”为例,对此方法进行初步的介绍。 层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T.L.Saaty教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 运用层次分析法建模,大体上可按下面四个步骤进行: (1)建立递阶层次结构模型; (2)构造出各层次中的所有判断矩阵; (3)层次单排序及一致性检验; (4)层次总排序及一致性检验。 例如,针对“问题二”运用层次分析法必须先建立一个层次结构模型。假设4S店提供的服务包括预约、接待、保养维修、汽车交付、回访五大环节,每个环节当中各项具体的服务细项内容。根据此服务体系,所建立的层次结构模型如下所示:

层次分析法(AHP)法建模

层次分析法建模 层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法 70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。 传统的常用的研究自然科学和社会科学的方法有: 机理分析方法:利用经典的数学工具分析观察的因果关系; 统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、 社会现象)现象的规律。 基本内容:(1)多目标决策问题举例AHP建模方法 (2)AHP建模方法基本步骤 (3)AHP建模方法基本算法 (3)AHP建模方法理论算法应用的若干问题。 参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社 2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社 3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社 一、问题举例: A.大学毕业生就业选择问题 获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如: ①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉-Reputation); ⑤工作环境好(人际关系和谐等) ⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。 问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序? 工作选择 贡献收入发展声誉工作环境生活环境 可供选择的单位P1’P2 ‘----- P n

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

AHP层次分析法计算原理

AHP层次分析法计算原理 一般地,可以选用三层结构对发展战略作出整体评价。 第一层为目标层,它是企业要实现的战略目标,第二层是评价因素层,它包括战略目标实现进行评价的所考虑的各种因素以及各因素之间的相对比值,并求出各要素实现总体目标所占的权重。第三层是指标层,即个评价因素需考虑的具体指标。 首先,根据总目标确定各要素之间的相对重要关系,构建两两比较判断矩阵,其基本形式为: 其中,a j表示对于C来说,A对A相对重要性的数值体现,通常a j可取1、2、3……、9以及它们的倒数作为标度。其中, 1――表示两个元素相比,具有同样的重要性; 3――表示两个元素相比,一个元素比另一个元素稍微重要; 5――表示两个元素相比,一个元素比另一个元素明显重要; 7――表示两个元素相比,一个元素比另一个元素强烈重要; 9――表示两个元素相比,一个元素比另一个元素极端重要。 2、4、6、8为上述相邻判断的中值。 矩阵中的元素具有以下特征:①a j >0,②a j二丄,③a H=1o a ji 然后,根据判断矩阵计算相对于战略目标各评价元素的相对重要 性次序的权重,首先计算判断矩阵A的最大特征根入max和其对应的经归一化后的特征向量W=[W i, W2 , W3, , W n ]T,计算的公式为:(8 - 1)

归一化后的特征向量W=[W i, W2, W3, , W n]T即为各评价因素对于总目标的权重。 (8 - 2)W i - n W i i J 其 1 n 中,W = a j (8 - 3) 入max为判断矩阵A的最大特征根,计算公式为: (8 - 4) 其中,(AW)i表示AW的第i个元素。 最后,对矩阵A进行一致性检验。当a q二空时,称判断矩阵为a jk 致性矩阵。判断一致性的指标为C.R.的取值。 C.R.嚅 (8 - 5) (8 - 6) R丄为随机一致性指标,其值是通过多次重复进行随机判断矩阵特征值的计算后得到的。随机一致性指标R丄的取值见表8-2。 表8-2随机一致性指标R.I?的取值表 维数12 345 6 7 8 9 10 J (AW)i i吕nw

关于现代汉语中层次分析法的文献综述

关于层次分析法的文献综述 一、从基本要求和切分原则入手,介绍层次分析法的使用、功能。 层次分析的基本要求包括逐层分析和切分及定性。 1、逐层分析要求我们: (1)必须按“从大到小行( 或从小到大) 的顺序逐层分析。 (2)分析时不能漏掉某一层次的分析, 否则分析就不能算全对。注意不能用“从大到小”和“从小到大”两种方法交叉分析.这样层次分合就会乱套。 2 、切分和定性 对复杂短语进行层次分析时, 要指出每一层的直接成分及其结构关系, 用框框指示切分的范围、位置,也就是依次框出各层的直接成分, 再用文字指出各层次中直接成分间的结构关系。 层次分析的切分原则对复杂短语进行层次分析, 除了依照以上的基本要求之外, 还要遵循一定的准则.这些准则可以概括为 以下三个方面:

(1)结构的原则 结构的原则要求分出的每一部分如不是一个单词, 就应是一个合理结构, 否则切分不能成立。 (2 )功能的原则 功能的原则要求切分出来的两部分应该能够搭配组合, 有组合关系。 (3)语义原则 层次分析满足了以上三个条件, 切分就会正确, 如果不符合三个条件中的任何一个条件, 切分就会错误。 代表文献:《层次分析条件及切分原则》 《汉语语法层次分析法》 《从歧义看层次分析法》 二、回归本质,对层次分析法的“层次”进行解释。 1、在语法分析中层次分析法所确定的“层次”不同于I C 。以a、b两句为例进行说明: a、各级干部都必须参加集体生产劳动 共分了六次才分析到词, 说明这个句子的构造可以分六层。

b 、帝国主义的侵略打破了中国人学西方的迷梦。 这个句子一共包括五个结构层次。a、b 两例都切分出七对直接成分, 并且都不包含 联合关系。 若按I C 分析法的原则, 每两个直接成分构成一个层次, 两例应各有七个层次。可是, a 例说“分六层” , b 例说“包括五个结构层次”。显然, a 、b 两例把图解中每一横排上的成分都看作是属于同一层次的, 不管每个横排上的成分有多少,也不管这些成分是否属于直接成分。这样, 在a 例的第二横排和b例的第二、第五横排上, 平行的四个成分都被看作是属于同一层次的, 尽 管它们并非都是直接成分。a 、b两例的做法已使得“层次”与直接成分大不相对应, 从而在根本上脱离了直接成分, 变成与直 接成分无关的另一种东西。层次分析法同I C 分析法在层次观念上的重大分歧, 使我们 不得不把层次分析法看成是不同于I C 分析法的另一种方法。 2、在语法分析中, 结构体是复杂的还是简

算法大全第08章 层次分析法

-167- 第八章 层次分析法 层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 §1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 运用层次分析法建模,大体上可按下面四个步骤进行: (i )建立递阶层次结构模型; (ii )构造出各层次中的所有判断矩阵; (iii )层次单排序及一致性检验; (iv )层次总排序及一致性检验。 下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点 应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类: (i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。 (ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。 (iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。 递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过9个。这是因为支配的元素过多会给两两比较判断带来困难。 下面结合一个实例来说明递阶层次结构的建立。 例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。 在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。可以建立如图1的层次结构模型。 图1 层次结构模型

浅谈对层次分析法(AHP)的认识

浅谈对层次分析法(AHP的认识 层次分析法的简介及学习体会 层次分析法(AHP )就是将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。 短学期里,在有限的几节课上,老师给我们介绍了层次分析法的背景、基本步骤、应用与解法等。现在,我将在本文中浅谈一下自己上完课后对层次分析法的认识理解,阐述层 次分析法的基本步骤,并举出一个使用层次分析法的案例,最后对层次分析法的优缺点进行 评估。 层次分析模型是数学建模中常用的模型。在现实世界中,无论是日常工作还是生活,涉 及经济社会等因素,往往会遇到决策的问题,比如如何选择旅游景点的问题、选择升学志愿 的问题、对企业进行评估的实例等等。在决策者作出最后的决定以前,他必须考虑很多方面 的因素或者判断准则,最终通过这些准则作出选择。层次分析法是解决这类问题的行之有效的方法。层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为 分析、决策提供定量的依据。 层次分析法的基本步骤 1. 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标一准则或指标一方案或对象),上层受下层影响,而层内各因素基本上相对独立。 如在老师教案中的例子一一选择旅游地中,将决策问题分为3个层次:目标层0,准则 层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。通过相互比 较确定各准则对目标的权重,及各方案对每一准则的权重。将上述两组权重进行综合,确定各方案对目标的权重。 2. 构造成对比较阵 用成对比较法和1-9尺度,构造各层对上一层每一因素的成对比较阵。 3. 计算权向量并作一致性检验 对每一成对比较阵计算最大特征根和特征向量,作一致性检验,若通过,则特征向量为权向量。 4. 计算组合权向量(作组合一致性检验*) 组合权向量可作为决策的定量依据。 层次分析法的案例分析AHP建模实例

层次分析法excel

层次分析法(AnalytioHieacrrhyProcess,AHP),是一种定性与定量相结合的多目标决策方法,在许多工程领域都有应用。利用层次分析法进行风险识别的基本思路是:把复杂的风险问题分解为各个组成因素,将这些因素按支配关系分组形成有序的递阶层次结构,通过两两比较判断的方式确定每一层次中各因素相对于上一层或最高层总目标的相对重要性,并加以排序,从而判断出系统主要风险模式和风险因素。AHP体现了人们的决策思维的基本特征,即分解、判断、综合。 对于AHP的进一步定义、优缺点就不多说了,网上有很多的介绍。今天主要探讨一下如何用Excel来进行层次分析法的核心步骤——判断矩阵特征值与特征向量的计算。 首先,来看一下计算方法。这种计算方法来自同济大学巩春领博士的学位论文《大跨度斜拉桥施工风险分析与对策研究》。 数据分析你最喜欢的软件是哪个?可以说我最喜欢的是是Excel么~好多事情都可以用这个随处可以找到的方便快捷的工具完成,还可以与更多的人分享源文件,简直是人生一大快事。

AHP有很多计算工具,比如matlab(这个我也做了,稍后完善一下也分享出来),还有其他各种小软件。不喜欢黑箱软件,不能调整算法,还是先研究一下excel的实现吧。上面的系列公式,正好适合用excel做。 第一步,输入判断矩阵,拉出列和

继续地,根据上面的公式,先后按次序作出归一化后的矩阵、求行和、求归一化后的权重、计算矩阵乘积、矩阵对应元素与权重向量元素求商,最后得到最大特征值——话说这也是普通矩阵得到最大特征值的一种方式。 这里要介绍一个Excel命令:MMULT:求矩阵相乘 矩阵相乘,矩阵A乘以矩阵B=矩阵C,需要用命令指定两个矩阵,和一个结果矩阵的位置。 MMULT(array1,array2)函数介绍: 返回两个数组的矩阵乘积。结果矩阵的行数与数组array1的行数相同,矩阵的列数与数组array2的列数相同。 语法 MMULT(array1,array2)

层次分析法的优缺点

层次分析法的优缺点 优点: 1. 系统性的分析方法层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。 2. 简洁实用的决策方法这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。 3. 所需定量数据信息较少层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。 缺点: 1.不能为决策提供新方案层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够人家企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。 2. 定量数据较少,定性成分多,不易令人信服在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出

相关文档
最新文档