低温SCR技术

低温SCR技术
低温SCR技术

低温SCR工业锅炉脱硝技术包括低温SCR催化剂配方与蜂窝状整体催化剂成型技术、工业锅炉SCR装备设计和系统模拟技术、SCR脱硝系统控制技术和工程安装技术。该成套技术隶属于环境工程所属领域,可以应用于工业锅炉、冶金烧结炉、化工裂解炉等水泥和玻璃窑炉等窑炉的NOx排放控制,也应用于硝酸生产、己内酰胺生产以及酸洗等工业过程,该项技术填补了我国低温SCR技术空白。北京工业大学针对大气污染控制领域的重大需求,在五年前就开始对锅炉脱硝的原理、工艺技术、发展和应用工程范例的深入研究,在掌握和分析大量文献的基础上,提出开发适合工业锅炉脱硝的低温SCR催化剂和其工艺技术。经过几年的努力工作,我们成功的掌握了低温SCR催化剂的配方技术和蜂窝状整体催化剂成型技术,并在燃煤锅炉、LED玻璃窑炉和钛板酸洗废气等领域完成了四项脱硝系统工程的建设,结果表明该系列技术具有比较高的脱硝性能和技术经济性。北京工业大学开发的低温SCR催化剂具有很好的低温活性,在160℃时,NO的转化率为80-97%,在大部分配方的催化剂上,160℃的NO净化率为90以上。如此高活性的SCR催化剂尚未见文献报道。该技术的创新点是:(1)利用TiO2的修饰技术,提高了V2O5-W/TiO2 催化剂的低温活性,使之可以用于工业锅炉等脱硝工程;(2)采用具有自主知识产权的成型配方技术,可以生产各种规格的SCR催化剂; (3) 避免使用尿素分解炉,降低的脱硝设备的投资。该技术生产SCR催化剂的性能指标为:脱硝效率:>80%;SO2氧化率:<1% 催化剂层压降:(300~700Pa)2层;氨逃逸率:<5 mg/Nm3;催化剂寿命:28000小时;工作温度:165~380 ℃;空速:3000-6000 h-1;接触时间:200ms。

低温SCR技术的开发

2.1 燃煤电站SCR技术原理

目前世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR两种。此两种方法都是利用氨对NOx的还原功能,在催化剂的作用下将NOx(主要是NO)还原为对大气没有多少影响的N2和H2O。

在SCR反应器内,NO通过以下反应过程被还原:

图2-1 SCR反应原理图

反应式如下:4NO+4NH3+O2→4N2+6H2O

6NO+4NH3→5N2+6H2O

2NO2+4NH3+O2→3N2+6H2O

6NO2+8NH3→7N2+12H2O

SCR系统NOx脱除效率通常很高,通过使用适当的催化剂,上述反应可以在280~420℃的温度范围内有效进行,可以达到80%~90%以上的脱硝效率。

2.2SCR催化剂

在工程应用中,按照催化剂适用的烟气温度条件分类,一般按照不同的温度使用窗口可以将SCR 工艺分为:高温、中温、低温三种不同的SCR 工艺。高温SCR催化剂一般指的是催化剂的适用温度在450~600 ℃及以上,中温SCR 催化剂是指催化剂的适用温度在320~450 ℃,而低温SCR催化剂是指催化剂的适用温度在120~300 ℃。目前商业上应用比较广泛的是运行温度处于320~450 ℃的中温催化剂,该催化剂以TiO2 为载体,上面负载钒、钨和钼等主催化剂或助催化剂,适用于火电行业使用的大型燃煤锅炉烟气NO X治理。

2.3低温SCR技术

研究开发出具有低温特性的SCR的意义所在:

(1)以工业锅炉、玻璃炉窑,水泥炉窑和冶金烧结炉等为主的中小型燃煤锅炉排放的烟气温度普遍处于120-300 ℃,远低于催化剂工艺成熟的V2O5-WO3-MoO3/TiO2 催化剂的活性温度,导致工业锅炉、玻璃炉窑,水泥炉窑和冶金烧结炉等为主的中小型燃煤锅炉不具有成熟的催化剂工艺,无法按照国家排放标准进行NOX减排工作的顺利实施。开发出催化剂活性温度区间介于工业窑炉烟气温度范围内(120-300 ℃)的低温SCR技术可以应用于工业锅炉、冶金烧结炉、化工裂解炉等水泥和玻璃窑炉等窑炉的NOx排放控制,也应用于硝酸生产、己内酰胺生产以及酸洗等工业过程,无需按照原有中温SCR工艺烟气进入SCR反应器前需要经过预热器再热,减少了能量的不必要损害,填补了我国低温SCR技术空白,将带来巨大的经济效益和环境效益。

(2)按照SCR 装置所布设的位置不同进行分类,SCR 工艺可以划分为高灰段、低灰段和尾部布置三种类型。安装于空预器和ESP(电除尘)前、空预器前但高温ESP 后、FGD之后三种形式(见图2-2)。高灰分工艺要求催化剂适用于中温条件,有较强的抗阻塞能力,有较强的抗碱金属毒性、抗SO2毒性等。低灰份催化剂适用中温条件,仍然要求具有抗SO2毒性。尾部布置虽然使催化剂免受高粉尘和SO2的毒害,但中温的催化剂需要再热而浪费大量能耗。研究和开发具有低温特性的SCR 显然具有十分重要的意义。

图2-2 高灰段、低灰段和尾部布置SCR 工艺流程

2.3.1 SCR催化剂的研发

在国内外很多研究单位开展了对低温SCR催化剂的研究,主要研究内容包括了低温催化剂和催化剂载体。

(1)针对不同的载体,如碳材料、金属氧化物催化剂Al2O3、TiO2和金属离子交换分子筛催化剂ZSM- 5等开发高效的低温SCR催化剂;

(2)SCR催化剂原材料表面改性技术和配方。即调整催化剂表面酸碱性,以获得更多的酸性活性基团,增强对还原剂NH3的吸附。或者在高效的载体上配合不同的活性物质,如V、W、Mn、Cu、Ni和Pt等金属氧化物,使催化剂具有高的抗SO2和水蒸气活性。表2-1列举了使用不同载体以及表面阳阳离子修饰技术制备的不同催化剂在较低温度下(150~250℃)的脱硝活性。

表2-1 几种催化剂的低温SCR性能

催化剂

(活性物质/载体)活性物质

负载量/%

反应

温度/℃

催化能力

/cm3s-1g-1

NO转化率

/%

Mn/NaY-沸石15.0 150 32.5 82.0 V2O5/C 5.0 250 69.9 79.7 Fe/C 10.0 180 20.74 97.0 Mn/C 5.3 150 46.6 73.0 V/C 2.0 180 15.0 78.6

Mn/Al2O3 11.6 150 18.90 55.0

从表中可以看出,目前国内外在低温SCR催化剂的研究和开发基本上集与过渡金属氧化物的催化作用。以Al2O3负载锰氧化物为SCR催化剂在温度为100~200℃表现出了高的选择性和催化活性。国外文献报道的Mn-Ce-Ox是目前报道的低温SCR催化剂中活性最高的催化剂。实验研究表明,在Mn/(Mn+Ce)的比例为0.3时,该催化剂在低温(120℃)和很高的流速下能保持近乎100%的脱硝效率。由于炭的高表面积和化学稳定性,被很多学者作为低温SCR NOx催化剂的载体。并将它们制成具有大量孔结构的模块,传统的固定床反应器有诸多优势(易处理,压降低等) 。

2.3.2低温SCR催化剂的应用实例

Shell公司于20世纪90年代开发出了低温DENOx系统(SDS) ,它包括一种专有的V/ Ti颗粒状催化剂和一个低压降的侧流反应器(LFR)。典型的商业应用级SDS ,操作温度在120℃~350℃;空速在2 500~40 000/ h ;可以在很小的氨逃逸率下达到高于95 %的NOx转化率。SDS较适用于处理燃气或天然气在加热器、窑炉、锅炉、燃气发动机和燃气轮机中燃烧产生的含NOx烟气;同时适用于处理化工厂的含NO的废气,如表2-2所示。

表2-2 SDS在20世纪90年代的应用实例

用户类型安装地点操作温度/℃运行情况投运年份

工业窑炉德国—稳定运行时间超过6 a 1989

1991 工业窑炉美国200 NOx转化率>90%,成功运

行4 a

1991 化工厂比利时260 取得了超过99%的NOx

转化率

1992 化工厂荷兰—出口NOx低于0. 01%,成

功运行2 a

化工厂南非180 达到95%的NOx转化率1995

燃气发动机荷兰120 NOx转化率为75% 1996

燃气发动机奥地利200~300 转化率为83% 1996

2.3.4低温SCR发展

针对目前低温SCR催化剂的开发和应用情况, 应在以下一些方面作进一步的研究,以期开发出适合工业应用的低温催化剂。

(1)提高催化剂的活性和选择性,使之在较低的温度(< 200℃) 和较宽的温度窗口内具有较高的NOx转化率。

(2)使催化剂在低温下具有良好的抗SO2和水等物质毒化的性质和机械强度、水热稳定性,延长其使用寿命。

低温SCR催化剂课件资料

低温SCR催化剂 催化剂是SCR技术的核心,其中MMNOx/TiO2、 MNOx-CeO2/TiO2,MNOx/AI2O3、CuO/Tio2等在中低温范围内都表现良好的脱硝活性。研究表明,以锰铈氧化物为活性组分的催化剂具有较高的催化活性和N2选择性,是低温SCR催化剂研究的焦点。 活性组分 催化剂的活性组分在低温SCR反应过程中,对反应物的吸附以及电子传递起着至关重要的作用,直接决定着反应能否顺利进行,影响着催化活性和N2选择性的高低。常见的低温SCR催化剂活性组分主要有活性氧化锰和二氧化铈二种。 活性氧化锰 MNOx的晶格中含有大量的活性氧,能有效促进低温SCR脱硝反应的进行。常见的锰的氧化物主要有MnO2、Mn2O3、M3O4和Mn5O8等,它们在SCR脱硝反应中的作用各不相同。Kapteijn等研究发现MnO2催化剂具有较好的低温活性,而Mn2O3则具有较高的N2选择性。锰氧化物的催化活性顺序为: MnO2>Mn5O8>Mn2O3>Mn3O4。研究发现,虽然纯的MNOx低温活性较高,但其N2选择性较差,且易受烟气中SO2和H2O的影响导致催化剂中毒。通常将MNOx与其他氧化物结合,制备双金属或复合氧化物催化剂,以提高催化剂的活性和N2选择性,延长催化剂的使用寿命。 二氧化铈

CeO2在低温SCR反应中具有良好的活性,在催化加入Ce元素,可提高催化剂的储氧能力,从而提高催化剂的活性。贺泓等通过浸渍法制备了Ce/TiO2催化剂并考察了反应性能。吴忠标等通过溶胶-凝胶法在MNOx/TiO2中添加Ce元素制备了MNOx-CeO2/TiO2催化剂,研究发现Ce的添加有助于提高NO的转换率。顾婷婷等研究硫酸化改性后CeO2催化剂活性。前人研究表明,CeO2具有较强的表面酸性和储存氧的能力,可以促进NH3在催化剂表面的活化和吸附。 催化剂载体 载体是催化剂成型的关键,良好的催化剂载体不仅可以促进底物的吸附,提高催化活性,而且有助于催化剂的规模化生产和工业应用。低温SCR催化剂的载体主要有二氧化钛、氧化铝活性炭、沸石分子筛等。 二氧化钛 TiO2是常见的催化剂载体,不易被酸化,且能提高低温SCR催化反应的活性、N2选择性和抗硫性。TiO2通常有锐钛矿、金红石和板钛矿三种晶型,其中锐钛矿型TiO2常被用来选作脱硝催化剂的载体。Qi等将Mn、Cu、V、Fe等过渡金属负载在TiO2上考察催化剂的活性,其中通过浸渍法把Mn负载在TiO2上的催化剂活性较好。吴忠标采用溶胶-凝胶法制备了Mn/TiO2催化剂并用Fe、Cu、Zn、V等过渡金属对其进行改性,结果表明,催化剂活性在150度时均能达到95%以上。徐文青等通过浸渍法制备了Ce/TiO2催化剂,在

SCR低温脱硝催化剂

SCR低温脱硝催化剂 一、技术背景 我国烟气脱硝市场中,选择性催化还原(SCR)技术是电站锅炉NO X排放控制的主要技术,SCR反应的完成需要使用催化剂。目前商业上应用比较广泛的是运行温度处于320-450℃的中温催化剂,因此催化还原脱硝的反应温度应控制在320- 400℃。当反应温度低于300℃时,在催化剂表面会发生副反应,NH3与S03和H20反应生成(NH4)2S04或NH4HSO4减少与NOx的反应,生成物附着在催化剂表面,堵塞催化剂的通道和微孔,降低催化剂的活性。另外,如果反应温度高于催化剂的适用温度,催化剂通道和微孔发生变形,从而使催化剂失活。因此,保证合适的反应温度是选择性催化还原法(SCR)正常运行的关键。 由于电站锅炉在大气温度较低和低负荷运行时,烟气温度会低于SCR适用温度。由于锅炉设计方面的原因,在低气温和低负荷条件下亚临界和超高压汽包锅炉烟气温度的缺口可以达到20℃以上,比直流和超临界锅炉更大,此时SCR 停运,烟气排放浓度将不能满足国家环保要求。我国目前尚没有成熟的低温SCR 脱硝技术,需要使用复杂的换热系统才能应用SCR脱硝增加了能耗和设备投资,因此面临着艰巨的NO X减排困难。 根据环保部《火电厂大气污染物排放标准》是国家强制标准,火电厂在任何运行负荷时,都必须达标排放。脱硝系统无法运行导致的氮氧化物排放浓度高于排放限值要求的,应认定为超标排放,并依法予以处罚。目前全工况脱硝技术已经成熟,火电厂现有脱硝系统与运行负荷变化不匹配、不能正常运行、造成超标排放的,应进行改造,提高投运率和脱硝效率。 二、技术现状

SCR低温脱硝催化剂,是洛阳万山高新技术应用工程有限公司为了解决汽包锅炉某些工况烟气温度过低和SCR低负荷运行时,导致SCR脱硝无法正常运行的技术难题,该技术是结合现有SCR脱硝工艺,从而实现SCR低温脱硝催化剂低温脱硝,SCR低温脱硝催化剂最为简单有效,由于烟气中的氮氧化物主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,很容易通过碱液喷淋等手段将其从烟气中脱出。将烟气中的NO转化为高价态,需引入较强的SCR低温脱硝催化剂,在众多催化剂中,SCR低温脱硝催化剂是最环保最清洁的SCR低温脱硝催化剂,它以低温脱硝催化技术最为简单有效,在高效转化NO至高价态的过程中不遗留任何二次污染物,另外不同于其它催化剂,工作环境恶劣,自由基存活时间非常短,能耗较高,SCR低温脱硝催化剂的生存周期相对较长,能将少量氧气或空气电离后产生催化氧化,然后送入烟气中,可显著降低能耗。 三、技术原理 SCR低温脱硝催化剂具有很强的催化性,完全有能力将烟气恶劣环境中的NO氧化成高价态,提高烟气中氮氧化物的水溶性,从而将NO脱除。利用SCR 低温脱硝催化剂将NO催化为高价态的氮氧化物后,需要进一步地吸收。常见的吸收液有Ca(OH)2、CaCo3等碱液。不同的吸收剂脱除的NO效果会有一定的差异。例如有人在利用水吸收尾气时,NO的脱除效率可达到80%以上,这是利用气体在水中的溶解度进行吸收,也有试验利用吸收液将高价氮氧化物还原成为N2后直接排入大气中。 四、技术性能 采用SCR低温脱硝催化剂脱硝技术可得到较高的NO X脱除率,典型的低温

铁基中低温SCR脱硝催化剂性能研究.

英文摘要 铁基中低温SCR脱硝催化剂性能研究 摘要 氮氧化物(NOx)对人体、环境的危害很大,是目前国内外急需解决的问题之一。选择性催化还原法具有脱硝效率高、N2选择性好等优点,得到广泛使用。商业化的脱硝催化剂存在价格昂贵,活性温窗窄,活性窗口温度较高且废弃的催化剂易造成二次污染等问题,所以,开发廉价、低温、高效的环境友好型催化剂具有十分重要的意义。铁的氧化物具有环境友好、价格低廉以及还原性强等优点,在NOx 选择催化还原(SCR)脱除领域已经受到了国内外学者的广泛关注。本文主要针对氧化铁脱硝催化剂的制备、表征等各方面进行了研究。 本文首先考察了制备方法、助剂CeO2含量两个因素对非负载型Fe2O3催化剂性能的影响。通过XRD、XPS、H2-TPR、BET比表面积测试、UV-vis DRS等表征手段,对催化剂进行了表征,并且对催化剂的脱硝活性和对氨气的氧化率进行评价。然后,通过XRD、XPS、XRF、BET比表面积测试的表征手段,分析了一种工业级多元金属氧化物(MO)的基本性质,研究了其基础脱硝活性。以XO为催化剂基体,TiO2为载体,Fe2O3为活性组分制备了负载型脱硝催化剂。考察了XO及不同助剂对SCR催化活性的影响。利用XRD、H2-TPR、BET比表面积测试等技术对制备的催化剂进行了表征。 对非负载型Fe2O3催化剂研究表明:模板法比共沉淀制备的催化剂具有更大的比表面积,更强的氧化性和酸性,促进了催化剂脱硝活性的升高;前者比后者的活性温区宽,并且具有较好的高温脱硝活性。对不同含量CeO2催化剂的表征比较发现,当CeO2含量为2 %和4%时具有相对较高的催化活性和相对较小的氨气氧化率,这主要是由催化剂中铁物种氧化性的变化导致的。 对多元金属氧化物基本性质的研究表明,多元金属氧化物中主要有Fe、Si、Al等多种元素,颗粒表面存在Si、Na、Al、V等元素的富集。多元金属氧化物比表面积极低,基础脱硝活性较低,不适合直接作为脱硝催化剂或者活性组分。 制备了XO为催化剂基体,TiO2为载体,Fe2O3为活性组分的催化剂,考察基体对催化剂的影响。实验结果表明,加入多元金属氧化物后,催化剂比表面积减小、氧化性增强。在250 ℃-350 ℃内催化剂的脱硝活性在90 %以上,但是活性温窗较窄。分别使用CeO2、MoO3、WO3对催化剂进行掺杂,实验结果表明:掺杂后催化剂比表面积增大,有利于氨气的吸附,促进SCR反应的进行;CeO2掺杂后催化剂的脱硝活性在整体上提高,但是最佳活性温窗没有变宽或者变化;MoO3、WO3掺杂后催化剂的中低温活性降低,高温活性提高,活性温窗宽,并向高温移动。 III

【CN109999891A】一种低温SCR脱硝催化剂及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910379422.7 (22)申请日 2019.05.08 (71)申请人 四川大学 地址 610064 四川省成都市一环路南一段 24号 (72)发明人 郭家秀 李晶 袁山东 李建军  楚英豪 文新茹  (74)专利代理机构 成都正华专利代理事务所 (普通合伙) 51229 代理人 郭艳艳 (51)Int.Cl. B01J 29/03(2006.01) B01J 29/04(2006.01) B01J 35/10(2006.01) B01J 37/02(2006.01) B01J 37/08(2006.01)B01D 53/90(2006.01)B01D 53/56(2006.01) (54)发明名称 一种低温SCR脱硝催化剂及其制备方法 (57)摘要 本发明公开了一种低温SCR脱硝催化剂及制 备方法。该催化剂包括载体以及负载在该载体上 的活性组分和掺杂改性组分,其中载体为MCM -41 或锶或锆或铝掺杂改性的MCM -41,所述活性组分 为锰。本发明采用等体积浸渍发制备的催化剂具 有介孔有序结构,制备工艺简单易行,具有良好 的应用前景,其中Mn/Al -MCM -41在180~400℃宽 温度窗口中保持优异的SCR脱硝活性,氮氧化物 去除率达60%以上,200~400℃维持100%的氮 氧化物去除率。权利要求书1页 说明书5页 附图4页CN 109999891 A 2019.07.12 C N 109999891 A

权 利 要 求 书1/1页CN 109999891 A 1.一种低温SCR脱硝催化剂,其特征在于:所述催化剂包括载体以及负载于所述载体上的活性组分和改性组分;所述载体为MCM-41,所述活性组分为含锰化合物,所述改性组分为含锶化合物、含锆化合物或含铝化合物,且所述催化剂中锰的质量百分比为3%~7%,锶、锆或铝的质量百分比1%~4%。 2.根据权利要求1所述的低温SCR脱硝催化剂,其特征在于:所述活性组分为二氧化锰,且催化剂中锰的质量百分比为5%。 3.根据权利要求要求1所述的低温SCR脱硝催化剂,其特征在于:所述改性组分为氧化锶、氧化锆或氧化铝,且催化剂中锶、锆或铝的质量百分比为2%。 4.制备如权利要求1~3任一项所述低温SCR脱硝催化剂的方法,其特征在于,包括以下步骤: S1:取改性前体,将其配成浓度为0.02~0.50g/ml的改性溶液,然后将MCM-41以1g:0.5~2ml的料液比加入到改性溶液中,再搅拌15min,然后于100℃~120℃条件下烘干,得产物一;所述改性前体为Sr(NO3)2、Al(NO3)3·9H2O或Zr(NO3)4·5H2O; S2:将产物一于480~520℃下煅烧2~4h,得煅烧产物; S3:取活性前体,将其配成浓度为0.02~0.50g/ml的改性溶液,再将S2中得到的煅烧产物以1g:1ml的料液比加入到改性溶液中,再搅拌15min,然后于100℃~120℃条件下烘干,得产物二;所述活性前体为硝酸锰; S4:将产物二于400~600℃下煅烧2~3h,得低温SCR脱硝催化剂。 5.根据权利要求4所述的方法,其特征在于:S1中MCM-41与改性溶液的料液比为1g: 1ml,烘干温度为110℃。 6.根据权利要求4所述的方法,其特征在于:S2中煅烧温度为500℃,煅烧时间为3h。 7.根据权利要求4所述的方法,其特征在于:S4中煅烧温度为500℃,煅烧时间为3h。 8.根据权利要求4或5所述的方法,其特征在在于,所述MCM-41经过以下步骤制得: (1):将十六烷基三甲基溴化铵溶于水中并调节溶液的pH值为11~13,然后向溶液中加入正硅酸乙酯,搅拌均匀得混合液;混合液于60℃水浴下搅拌反应2h,得悬浊液;混合液中十六烷基三甲基溴化铵、正硅酸乙酯与水的摩尔比为0.1~0.5:1~2:70; (2):将悬浊液转移至聚四氟乙烯反应釜中,于130℃下反应24h,然后降至室温并抽滤,用去离子水将沉淀清洗至中性,110℃下烘干得白色粉末; (3):对步骤二所得到的白色粉末进行煅烧,得到有序介孔材料MCM-41。 9.根据权利要求8所述的方法,其特征在于:步骤(1)调节十六烷基三甲基溴化铵溶液的pH值为12;混合液中十六烷基三甲基溴化铵、正硅酸乙酯和水的摩尔比为0.1:1:70。 10.根据权利要求8所述的方法,其特征在于:步骤(3)中煅烧分两段进行,第一段煅烧温度为360℃,煅烧时间为1h;第二段煅烧温度为550℃,煅烧时间为6h。 2

颗粒状中低温SCR脱硝催化剂的制备及性能测试 王旭

颗粒状中低温SCR脱硝催化剂的制备及性能测试王旭 发表时间:2018-01-28T20:44:17.500Z 来源:《基层建设》2017年第32期作者:王旭 [导读] 摘要:随着社会的飞速发展,氮氧化物(NOx)对空气的污染日益严重,已经成为我国大气环境的主要污染物之一。 中国钢研集团上海金自天正信息技术有限公司上海 201900 摘要:随着社会的飞速发展,氮氧化物(NOx)对空气的污染日益严重,已经成为我国大气环境的主要污染物之一。本课题为实现低温SCR脱硝工艺,以改进Yoldas-滴球法制备的高比表面积、高强度和耐磨特性的γ-Al2O3为载体,以Fe、Ce和Mn三种过渡金属元素形成的复杂氧化物为活性组分,采用田口实验设计法制备并优化了一种低温下脱硝性能优良、抗SO2性能良好,使用寿命较长的脱硝催化剂 Fe0.05Mn0.09Ce0.05Ox/γ-Al2O3,并通过SEM、BET、XRD等表征技术和密置单层模型得出了该催化剂的基本理化特征。基于此,本文就针对颗粒状中低温S脱硝催化剂的制备及性能测试进行具体分析。 关键词:颗粒状;低温SCR;脱硝催化剂;制备;性能测试 1.概述 氨气选择性催化还原(NH3-SCR)烟气脱硝技术是最具潜力、应用最广泛的烟气脱硝技术,其最主要的化学反应式为: 4NH3+4NO+O2→4N2+6H2O (1) 另,在不同反应条件下,反应过程中还存在如下三个主要反应: 4NH3+2NO2+O2→4N2+6H2O (2) 4NH3+6NO→5N2+6H2O (3) 4NH3+4NO+3O2→4N2O+6H2O (4) 目前SCR脱硝催化剂的活性温度区间为300-400℃,属于高温SCR催化剂,具有优良的脱硝和抗SO2中毒能力,但在脱硝系统的使用过程中还存在以下问题①受工作温度的限制,高温催化剂必须布置在省煤器与空气预热器之间的高温高尘段,烟气中含有的粉尘、碱性金属、As化合物和高浓度SO2,极易导致催化剂中毒。另,由于SCR脱硝系统的应用在我国起步较晚,已建锅炉未预留SCR脱硝装置空间,故已建锅炉的脱硝工程改造复杂,投资巨大。②我国火电行业所用燃煤来源广泛,总体品质不高,燃煤飞灰对布置在高温高尘段的SCR装置和催化剂腐蚀严重,并且碱性金属和As化合物极易导致SCR催化剂中毒失活,一般情况下,催化剂在运行3-5年后必须更换,极大地增加了SCR系统的运行成本。 而低温 SCR脱硝催化剂具有工程建设成本低、运行工况温和催化剂寿命长等优势。国内30%的工业窑炉排放的尾气出口温度为 150~250℃,电厂锅炉低负荷运行时,烟气出口温度会低于 320℃。因此,开发 150~320℃宽活性温度窗口的烟气脱硝催化剂具有重要的意义。 利用由原位溶胶-凝胶技术制备的TiO2@V2O5作为复合载体,不改变现有的V2O5-WO3/TiO2三元催化剂制备方法,仍采用活性组分浸渍法,在三元催化剂V2O5-WO3/TiO2催化剂体系基础上,改用TiO2@V2O5作为复合载体,并引入活性助剂三氧化钼(MoO3),开发出四元中低温SCR催化剂,提高催化剂的脱硝效率并拓宽活性温度窗口至150-320℃,使其满足中低温脱硝特性,并制备成颗粒状便于性能测试。 2.颗粒状中低温脱硝催化剂性能要求 为适应复杂的烟气环境,满足脱硝设计要求,中低温脱硝催化剂应具备以下性能: (1)较高的脱硝效率 在SCR系统中,气体以较高的速度流经催化剂表面,SCR系统中空速约为4000 h-1-20000 h-1,催化剂与烟气中的NOx接触时间较短,催化剂必须具有较高的脱硝效率。 (2)良好的催化选择性 在SCR系统中,烟气由多种气体成分混合组成,通常均含有大量的CO2、H2O、O2、N2、SO2和CO,在气体与催化剂接触的有限时间内,为避免副反应发生,提高主反应速率,催化剂必须具有良好的催化选择性。 (3)较好的NOx浓度适应性 NOx浓度因系统运行工况的不同而复杂多变,浓度变化可以达到300-2000 ppm,为保证在较大NOx浓度变化范围内达到排放标准,催化剂必须具有较好的NOx浓度适应性。 (4)中低温脱硝温度窗口 众多工业炉窑烟气温度在150-320℃,如果使用高温SCR脱硝催化剂就需要对烟气进行再加热,为了降低脱硝温度、降低原有锅炉烟气工程改造难度和成本,需要开发中低温SCR脱硝催化剂。 (5)抗中毒能力 复杂的烟气成分会导致催化剂中毒,烟气中的碱金属会破坏催化剂表面的活性酸位,导致催化剂中毒,脱硝效率下降。烟气中的SO2经氧化变为SO3与烟气中的H2O或碱金属化合形成硫酸盐,破坏催化剂表面酸碱性,也会导致催化剂中毒,催化剂必须具有良好的抗中毒能力。 3.颗粒状催化剂常用制备方法 目前制备颗粒状负载型催化剂的主要方法分为:浸渍法、沉淀法、离子交换法、溶胶凝胶法、混合法等。 3.1 浸渍法 浸渍法是将一种或几种活性物质通过载体浸渍附着于载体上的方法。通常采用载体侵入金属盐溶液中,通过多孔介质的毛细管吸力,使溶液中的金属盐类吸附或忙存在载体空隙内部,再经干燥、煅烧和活化制得催化剂。 3.2 沉淀法 将沉淀剂和金属盐溶液一同加入搅拌罐中混合,使之生成难溶的金属盐或金属水合氧化物,再经洗涤、过滤、干燥、煅烧制得催化剂。

低温SCR脱硝催化剂研究现状

低温SCR脱硝催化剂研究现状 1 引言 氮氧化合物(NO,NO2,N2O)是空气污染的主要来源,他们能产生光化学烟雾,酸雨,臭氧空洞以及温室效应。几乎所有的NOx都来自于运输和火力发电厂。因此控制NOx在空气中的排放是一个亟待解决的问题。在我国的燃煤电站中大多采用低NOx燃烧技术,而脱硝效率较高的选择性催化还原(SCR)技术则相对应用较少[1]。在国外SCR脱硝技术应用十分广泛。SCR脱硝技术的核心是催化反应,成功开发用于催化反应的催化剂是关键。 商业上应用比较成功SCR脱硝催化剂主要是以钛钒基(V2O5/TiO2)与WO3或者MoO3的混合物[2]。虽然钒基催化剂有很高的活性和抵抗SO2的能力,但是还才存在很多缺点。这种催化剂在300-400℃这样一个很窄的温度区间有活性,在这个温度区间可以避免由NH4HSO4和(NH4)2S2O7这样的硫酸铵盐引起的毛孔堵塞[3]。这种高温SCR脱硝装置一把设在省煤器之后,空气预热器和脱硫装置之前,由于烟气未进行除尘处理,容易造成催化剂孔道堵塞,影响催化剂寿命。而低温SCR催化剂可以在能耗较低的情况下把催化剂布置在脱硫之后[4],这样可以降低能耗,防止催化剂孔道堵塞,提高催化剂寿命。所以近年来开发低温高效、性能稳定的SCR脱硝催化剂成为学者们研究的热点。 2 SCR的基本原理 选择性催化还原法(SCR)脱硝是在催化剂存在的条件下,采用氨、碳氢化合物或者H2等作为还原剂,将烟气中的NOx还原为N2。 以NH3作为还原剂用SCR还原NOx时的主要化学方程式为[5]: 4NO + 4NH3 + O24N2 + 6H2O 2NO2 + 4NH3 + O23N2 + 6H2O 当以碳氢化合物作为还原剂时,碳氢化合物种类的不同导致其反应过程中的中间产物有着明显的区别,但多数情况下都有CO2的生成。这时,SCR反应的化学方程式[6]可以表示为: CxHy + mNO + (2x + y/2–m)O2xCO2 + m/2N2 + y/2H2O 当以H2作为还原剂时,主要的化学方程式[7]为: 2NO + 4H2 + O2N2 + 4H2O H2O和SO2存在下催化剂失活[8-10]以及在低于200℃时较低的N2反应选择性使得碳水化合物作为还原剂(HC-SCR,T<200℃)的工业技术的发展变的不可能。

国内外SCR脱硝催化剂的研究对比

国内外SCR脱硝催化剂的研究对比 1国外SCR脱硝催化剂的研究现状 研究历史 SCR技术发展至今已有三十多年的历史,是目前国外应用比较广泛的一种烟气脱技术。但由于催化理论和反应机理研究上的欠缺,致使该项技术远未达到完善的程度。因此,对SCR技术的研究也从未停止过。近年来,在反应机理及反应动力学、抗毒性能、新型催化剂及载体的研究等方面又有了很大的发展。 研究机构 目前国外关于SCR催化剂的研究机构主要有:英国剑桥大学、英国雷丁大学、美国密歇根大学、日本九州大学、日本国立材料和化学研究所等等,其中密歇根大学主要致力于贵金属催化剂的研究,日本国立材料和化学研究所主要致力于金属氧化物催化剂制备方法的研究。 研究进展 贵金属催化剂 贵金属催化剂低温催化活性优良,对NOx还原及对NH3、CO氧化均具有很高的催化活性,因此在SCR过程中会导致还原剂大量消耗而增加系统运行成本。此外,催化剂造价昂贵,易发生氧抑制和硫中毒。目前研究人员主要致力于采用新制备技术和新型载体,针对某些含硫低的尾气开发出一些性能较好的低温催化剂。 在贵金属催化剂的制备方面,研究者不仅要考虑到贵金属活性组分的种类,还要考虑到所用载体的种类问题。在(NH3+H2)-NO 条件下,Evgenii V. Kondratenko 等对Ag/Al2O3 进行了SCR 研究,结果表明,在低温范围内,同时有O2 和H2 存在的情况下,该催化剂的活性能得到很大程度的提高。I. Salem 等就ZrO2 及SnO2 对SCR 催化剂Pt/Al2O3 催化活性的影响进行了研究;此外,关于不同还原剂对SCR 反应的影响也进行了探讨。研究结果指出,当采用C3H6 为还原剂时,在250 ℃左右,ZrO2 和SnO2 的添加,可以有效提高NOx 的转化率,同时还可以减少N2O 的产生;但是随着反应温度的升高,NOx 的转化率反而会降低。日本Ken-ichi Shimizu 等在尿素选择性催化还原NO 的过程当中,添加了%的H2,便使催化剂Ag/Al2O3 的催化活性大大增强。研究结果还指出,在200~500 ℃温度范围内,体积空速为75000 h-1 时,Ag/Al2O3 表现出最高的选择性催化还原活性,NO 的转化率可达84 % 以上,而且还没有N2O 生成。西班牙P. Bautista 等对富氧条件下硫酸盐掺杂Pd/ZrO 上进行的CH4

《SCR脱硝-技术方案2-采用低温板式催化剂》讲解

SCR 烟气脱硝 术技方案 (采用低温催化剂) 日12月9年2016. 一设计概述

1.1 设计背景 本设计方案为山东xxxx玻璃科技有限公司玻璃窑烟气SCR脱硝处理项目。 1.1.1烟气参数 33/h(标况)37000m73000Nm /h(工况);(1)烟气流量:(2)烟气温度:248~260℃; (3)氮氧化物含量:2769~2948 mg/m3 (4)SO2含量:226~738 mg/m3 (5)O2浓度:10~11.7% 1.1.2烟气排放指标: 氮氧化物含量:50 mg/Nm3(《山东省工业窑炉大气污染物排放标准》DB37/2375-2013) 1.2 SCR烟气脱硝技术介绍 1.2.1 SCR工艺原理: 选择性催化还原法(SCR)是指在催化剂的作用下,在锅炉排放的烟气中均匀地喷入氨气,从而将烟气中的NO还原生成N和HO。2x2SCR 是一个连续的化学工艺过程,其中含氮还原剂例(如氨气)加入到含NO的烟气中。x主要的化学反应如下: →4N+ 6HO 4NH+ 4NO + O (1.2-1) 23 22 →3N+ 6HO O (1.2-2) 4NH+ 2NO+ 23 222 4NH+ 6NO →5N+ 6H(1.2-3) O 22 3

8NH+ 6NO →7N+ 12HO (1.2-4) 22 23 烟气中的NO主要是由NO和NO组成的,其中NO总量的95%x2x 为NO,其余的5%基本上为NO。所以脱硝反应的主要化学反应方2程式是(1.2-1),它的反应特性如下: ①NH和NO的反应摩尔比为1左右;3②脱硝反应中离不开O的参与;2③最为典型的反应温度窗口:300℃~400℃; 除了以上提及的化学反应方程式,其实脱硝反应中还存在着有害反应,具体如下: SO被氧化成SO的反应:32(1.2-5)SO?O?22SO322NH 的氧化反应:3(1.2-6)O?6H?4NH?5O??4NO223(1.2-7)ON?6H?ONH4?3??22223催化剂的选择性成分为NOx的还原反 应提供了很高的催化活性。 氮气和水是脱硝反应的主要产物。SCR技术需要的反应温度窗口为300℃~400℃。在反应温度较高的情况下,会导致催化剂产生结晶或着烧结等现象;在反应温度较低的情况下,硫酸铵在催化剂表面凝结,催化剂的微孔被堵塞,催化剂的活性会降低。 SCR技术具有脱硝效率高,氨消耗少、脱硝性能稳定、运行平稳、成熟等优点,是世界公认的烟气脱硝主流技术。 1.2.2 SCR烟气脱硝系统选择 1)SCR反应塔布置方案 )高温侧高飞灰烟气段布置。1(. 在设计的过程中,将SCR反应器直接安装在了省煤器出口和预热器

SCR低温催化剂

SCR低温脱硝催化剂 在国家科技部基金项目的支持下,上海瀚昱环保材料有限公司利用自主研发的技术,设计并制造均质的MnOx-CoOx(CeOx)/TiO2蜂窝催化剂和堆垛式棒状催化剂,应用于低温SCR脱硝工艺中。催化剂的适应温度为130℃~260℃。最高脱硝效率可达90%以上。 低温催化剂的特点: 低温SCR脱硝催化装置布置于锅炉或工业炉的尾部,具有以下优点: (1)布于地面上,受空间和管道的局限性小,易于与锅炉系统匹配,对其它相关装置影响小,建筑成本低,反应器材料耐温要求低,因此,脱硝装置总体成本可大幅度下降。特别适用于现有的电厂脱硝改造。 (2)由于其位于除尘装置之后,因此烟气具有低温、低尘(或低硫)的特性,解决了催化剂的堵塞、磨损等问题,维护成本降低,使用寿命提高。 (3)减轻飞灰中的K、Na、Ca、As等微量元素对催化剂的污染或中毒,若在脱硫之后还可缓解SO2引起的催化剂失活等问题。 根据烟气条件可以对催化剂形式和反应器结构进行不同的设计。本公司低温催化剂的结构有蜂窝式、三叶圆筒式、棒状、粒状等多种形式。 布置方式有两种堆垛横向式和蜂窝式。其中堆垛横向反应器由反应器箱体和高活性催化剂组成,烟气经过堆垛横向反应器处理可使氮氧化物排放值小于10~50ppmv,氨逃逸小于5~10ppmv。该系统为管道末端技术,由于采用低温下高活性的催化剂,可以方便安装在烟囱的前部,避免对前端设备及运行操作方面所产生的消极影响。独特的布置方式方便催化剂的在线再生处理。该系统可用于去除硝酸、己内酰胺制造厂以及燃气涡轮机、燃煤锅炉、垃圾焚烧炉、发动机尾气中的氮氧化物。

脱二恶英催化剂 城市生活垃圾焚烧处理方法目前已成为各国处理废弃物最主要的和最有效的技术之一。垃圾焚烧处理不但能将垃圾变废为宝,汽电共生使能量资源得到再生利用,而且能减少约90%的废物体积。但是,焚烧过程中不可避免地会产生大量的污染物,如颗粒物、酸性气体、重金属以及二恶英。这些污染物对人体健康存在着极大的危害,而尤以二恶英的毒害最大,去除难度也最高,因此世界各国的许多专业人士正不断地在寻找消除二恶英的行之有效的方法。 针对上述现实问题及环保技术发展要求,本公司研发团队2009年开始系统研究二恶英的形成机理及分解技术,并针对性地开发新型脱二恶英催化剂。在确保脱除效率的前提下,充分考虑工程应用的可行性与成本控制问题,将脱二恶英的催化剂制成蜂窝式、颗粒式,以及与PTFE纤维制成复合滤料。布置方式分为反应器式、内衬式和复合滤料式。在保证除尘效率达标排放的基础上,二恶英脱除率最高可达99%。适用温度为180-240℃。

相关文档
最新文档