二项分布高考试题

二项分布高考试题
二项分布高考试题

二项分布练习题目:

1.某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为

2.加工某种零件需经过三道工序。设第一、二、三道工序的合格率分别为10

9、9

8、8

7,且各道工序互不影响。

(1) 求该种零件的合格率;

(2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。 (Ⅰ)解:9877

109810

P =

??=; (Ⅱ)解法一:该种零件的合格品率为10

7

,由独立重复试验的概率公式得:

恰好取到一件合格品的概率为12373()0.1891010

C ??=,

至少取到一件合格品的概率为.973.0)10

3(13=-

解法二:

恰好取到一件合格品的概率为12373()0.1891010

C ??=,

至少取到一件合格品的概率为122233

3

3373737()()()0.973.1010101010

C C C ?

?+?+=

3. 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这

个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。

(Ⅰ)求甲坑不需要补种的概率;

(Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率。

(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为

8

1)5.01(3=-,所以甲坑不需要补种的概率为.875.08

7

8

11==-

(Ⅱ)解:3个坑恰有一个坑不需要补种的概率为

.041.0)8

1(8

721

3=??C

(Ⅲ)解法一:因为3个坑都不需要补种的概率为3)8

7(,

所以有坑需要补种的概率为.330.0)8

7(13=-

解法二:3个坑中恰有1个坑需要补种的概率为

,287.0)8

7(8

121

3=??C

恰有2个坑需要补种的概率为,041.08

7)8

1(223=??C

3个坑都需要补种的概率为.002.0)8

7()8

1(0333=??C

4.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13

,遇到红

灯时停留的时间都是2min.

(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;

(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间x 的分布列.

(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事

件A 的概率为()111

4

11333

27

P A ????=-?-?=

? ??

??

?. (Ⅱ)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).

事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),

∴()()441220,1,2,3,433k

k

k P k C k ξ-????

=== ? ?

????

∴即ξ的分布列是

5.某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为23

和12

,且各株大树是

否成活互不影响.求移栽的4株大树中:

(Ⅰ)两种大树各成活1株的概率; (Ⅱ)成活的株数ξ的分布列及期望值。

解:设k A 表示甲种大树成活k 株,k =0,1,2

l B 表示乙种大树成活

l 株,l =0,1,2

则k A ,l B 独立. 由独立重复试验中事件发生的概率公式有

2221()()()33

k k k k P A C -=

, 2211

()()()22

l l l l P B C -=

.

高考数学选修-随机变量及其分布-二项分布及其应用

高考数学选修 二项分布及其应用 知识点 一、条件概率 1.一般的,设A,B 为两个事件,且0)(>A P ,则称) () ()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的条件概率。)|(A B P 读作:A 发生的条件下B 发生的概率。 2.条件概率的性质: (1)1)|(0≤≤A B P ; (2)必然事件的条件概率为1;不可能事件的条件概率为0. (3)若事件B 与C 互斥,)|()|()|(A C P A B P A C B P +=Y 二、相互独立事件 1.设A ,B 为两个事件,若)()()(B P A P AB P =,则称事件A 与事件B 相互独立。 2.条件概率的性质: (1)若事件A 与B 相互独立,则)()|(B P A B P =,)()|(A P B A P =,)()()(B P A P AB P =。 (2)如果事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 三、独立重复试验与二项分布 1.独立重复试验: 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2.二项分布: 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 n k p p C k X P k n k k n ,,2,1,0,)1()(Λ=-==-。此时称随机变量X 服从二项分布,记作),(~p n B X

题型一 条件概率 【例1】已知P (B |A )=13,P (A )=2 5,则P (AB )等于( ) A.56 B.910 C.2 15 D.1 15 【例2】抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于 ( ) A.25 B.12 C.35 D.4 5 【例3】任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间????0,1 3内的概率是多少? (2)在(1)的条件下,求该点落在???? 15,1内的概率. 【过关练习】 1.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了1 5 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A .0.75 B .0.60 C .0.48 D .0.20 2.设A ,B 为两个事件,若事件A 和B 同时发生的概率为3 10,在事件A 发生的条件下,事件B 发生的概率 为1 2 ,则事件A 发生的概率为________. 3.如图,EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

高考数学考点解析及分值分布

高考数学考点解析及分值分布 1.集合与简易逻辑。分值在5~10分左右(一道或两道选择题),考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。 2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。 3.不等式;一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。 4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对

高考理科数学练习训练题n次独立重复试验与二项分布含解析理

高考理科数学复习训练题 (建议用时:60分钟) A 组 基础达标 一、选择题 1.甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛没有平局,在每一场比赛中,甲胜乙的概率为23,甲胜丙的概率为14,乙胜丙的概率为1 5.则甲获第一名且丙 获第二名的概率为( ) A.11 12 B.16 C.130 D.215 D [设“甲胜乙”“甲胜丙”“乙胜丙”分别为事件A ,B ,C ,事件“甲获第一名且丙获第二名”为A ∩B ∩–C ,所以P (甲获第一名且丙获第二名)=P (A ∩B ∩–C )=P (A )P (B )P (– C )=23×14×45=215 .] 2.甲、乙两人练习射击,命中目标的概率分别为12和1 3,甲、乙两人各射击一次,有下列 说法:①目标恰好被命中一次的概率为12+13;②目标恰好被命中两次的概率为12×1 3;③目标 被命中的概率为12×23+12×13;④目标被命中的概率为1-12×2 3 ,以上说法正确的是( ) A .②③ B .①②③ C .②④ D .①③ C [对于说法①,目标恰好被命中一次的概率为12×23+12×13=1 2,所以①错误,结合选项 可知,排除B 、D ;对于说法③,目标被命中的概率为12×23+12×13+12×1 3,所以③错误,排除 A.故选C.] 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3 4,两个零件是否加工 为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512

C.14 D.16 B [设事件A :甲实习生加工的零件为一等品; 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=3 4 , 所以这两个零件中恰有一个一等品的概率为 P (A B -)+P (A -B )=P (A )P (B -)+P (A - )P (B )= 23×? ????1-34+? ????1-23×34=5 12.] 4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 C [设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )= P AB P A =2 5 ,故选C.] 5.(2018·绵阳诊断)某射手每次射击击中目标的概率是2 3,且各次射击的结果互不影 响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为( ) A.89 B.7381 C.881 D.19 C [因为该射手每次射击击中目标的概率是23,所以每次射击不中的概率为1 3,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3–A 4– A 5)+P (–A 1A 2A 3A 4–A 5)+P (–A 1– A 2A 3A 4A 5) =? ????233 ×? ????132 +13×? ????233 ×13+? ????132 ×? ????233 =881 .] 二、填空题

二项分布专题练习

二项分布专题练习 1.已知随机变量X 服从二项分布,X ~B 16,3?? ??? ,则P (X =2)=( ). A . 316 B . 4243 C . 13 243 D . 80 243 2.设某批电子手表正品率为 34,次品率为1 4 ,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ). A .223 13C 44??? ??? B .2 2331C 44 ??? ? ?? C .2 1344 ??? ??? D .2 3144 ??? ??? 3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ). A .0.6k - 1×0.4 B .0.24k -1×0.76 C .0.4k -1×0.6 D .0.76k - 1×0.24 4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ). A .2191010n k -???? ? ? ???? B . 191010k n k -???? ? ? ???? C .1119C 1010k n k k n ---???? ? ????? D .1 1119C 1010k n k k n ----???? ? ??? ?? 5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为 65 81 ,则事件A 在1次试验中发生的概率为( ). A . 13 B . 25 C . 56 D . 34 6.某一批花生种子,如果每一粒发芽的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是__________. 7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答) 8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

高考数学分值表

数学内容在高考中题型及所占分值 高一上 内容题型所占分数备注 第一章:集合与简易逻辑选择题一道5分 1、集合与集合运算 2、不等式的解法 3、逻辑联接词、四种命题 与充分必要条件第二章:函数选择题两道10分 1、映射与函数 2、函数的单调性、奇偶 性、周期性 3、反函数 4、指数函数与对数函数 5、函数的图像 6、函数的值域和最值 7、函数的应用 第三章:数列1、选择题一道 2、大题一道 1、5分 2、12分或14 分 1、数列的概念 2、等差数列和等比数列 3、数列的应用 高一下第四章:三角函数1、填空题一道 2、大题一道 1、5分 2、12分 1、三角函数的概念、同角 三角函数的基本关系式、 诱导公式 2、两角与差、二倍角公式 3、三角函数的化简求值和 证明 4、三角函数的图象和性质 5、函数y=Asin(ωx+φ) 的图象和性质 6、三角函数的最值 7、三角函数的应用 第五章:平面向量单独一题5分 1、向量的概念、向量的基 本运算 2、向量的数量积 3、两点间距离公式、线段 的定比分点与图形的 平移 4、解斜三角形 第六章:不等式1、选择题一道 2、填空题一道 1、5分 2、5分 1、不等式的概念和性质 2、不等式的证明 3、含绝对值不等式和含参 数不等式的解法 4、不等式的应用 1、直线的方程、两直线的

高二上 第七章:直线和圆的方程 1、填空题一道 2、大题一道 1、5分 2、12分 位置关系 2、简单的线性规划 3、圆的方程、直线和圆的位置关系 第八章:圆锥曲线方程 1、填空题一道 2、大题一道 1、5分 2、13分或14分 1、椭圆 2、双曲线 3、抛物线 4、直线与圆锥曲线的位置 5、曲线和方程 6、圆锥曲线的综合问题 7、解析几何与向量 高二下 第九章:直线、平面、简单 几何体 1、选择、填空题各一道 2、大题一道 1、9分 2、12分 1、平面及其基本性质 2、空间两直线 3、直线与平面的位置关系 4、直线与平面所成的角、三垂线定理 5、两个平面平行的判定和性质 6、两面角与两个平面垂直 7、棱柱和棱锥 8、球 9、空间距离 10、平面图形的翻折 11、空间向量 第十章:排列、组合、二项 式定理和概率 1、选择题一道 2、填空题一道 1、5分 2、4分 1、分类计数原理与分步计数原理 2、排列与组合 3、二项式定理 4、随机事件的概率 5、互斥事件有一个发生的概率 6、相互独立事件同时发生的概率 高三 第十一章:统计 选择题一道 5分 统计 第十二章:导数 大题一道 14分 1、 导数的概念及性质 2、 导数的应用

高考数学-随机变量及其分布-2-二项分布及其应用

专项- 二项分布及其应用 知识点 一、条件概率 1.一般的,设A,B 为两个事件,且0)(>A P ,则称) () ()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的条件概率。)|(A B P 读作:A 发生的条件下B 发生的概率。 2.条件概率的性质: (1)1)|(0≤≤A B P ; (2)必然事件的条件概率为1;不可能事件的条件概率为0. (3)若事件B 与C 互斥,)|()|()|(A C P A B P A C B P +=Y 二、相互独立事件 1.设A ,B 为两个事件,若)()()(B P A P AB P =,则称事件A 与事件B 相互独立。 2.条件概率的性质: (1)若事件A 与B 相互独立,则)()|(B P A B P =,)()|(A P B A P =,)()()(B P A P AB P =。 (2)如果事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 三、独立重复试验与二项分布 1.独立重复试验: 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2.二项分布: 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 n k p p C k X P k n k k n ,,2,1,0,)1()(Λ=-==-。此时称随机变量X 服从二项分布,记作),(~p n B X

题型一 条件概率 【例1】已知P (B |A )=13,P (A )=2 5,则P (AB )等于( ) A.56 B.910 C.2 15 D.1 15 【例2】抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于 ( ) A.25 B.12 C.35 D.4 5 【例3】任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间????0,1 3内的概率是多少? (2)在(1)的条件下,求该点落在???? 15,1内的概率. 【过关练习】 1.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了1 5 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A .0.75 B .0.60 C .0.48 D .0.20 2.设A ,B 为两个事件,若事件A 和B 同时发生的概率为3 10,在事件A 发生的条件下,事件B 发生的概率 为1 2 ,则事件A 发生的概率为________. 3.如图,EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.

二项分布经典例题+测验题资料

二项分布经典例题+测 验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】

1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球, 且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每 次投篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮 互不影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是 1 2 ,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

高考数学百大经典例题 正态分布

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP

正态分布及其经典习题和答案

专题:正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

高考数学复习题库 正态分布

高考数学复习题库正态分布 正态分布 一.选择题 1.已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)= 0.6826,则P(X>4)=( ) A.0.1588 B.0.1587 C.0.1586 D.0.1585 解析通过正态分布对称性及已知条件得 P(X>4)===0.1587,故选B. 答案 B 2. 设随机变量服从正态分布,则函数不存在零点的概率为( ) A. B. C. D. 解析函数不存在零点,则因为,所以答案 C 3.以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于( ). A.Φ(μ+σ)-Φ(μ-σ) B.Φ (1)-Φ(-1) C.Φ D.2Φ(μ+σ) 解析由题意得,P(|ξ-μ|<σ)=P=Φ (1)-Φ(-1). 答案 B 4.已知随机变量X~N(3,22),若X=2η+3,则D(η)等于( ). A.0 B.1 C.2 D.4 解析由X=2η+3,得D(X)=4D(η),而D(X)=σ2=4,∴D(η)=

1.答案 B 5.标准正态总体在区间(-3,3)内取值的概率为( ). A.0.9987 B.0.9974 C.0.944 D.0.8413 解析标准正态分布 N(0,1),σ=1,区间(-3,3),即(-3σ,3σ),概率 P=0.997 4. 答案 B 6.已知三个正态分布密度函数φi(x)=e-(x∈R,i=1,2,3)的图象如图所示,则( ). A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3 C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ3 解析正态分布密度函数φ2(x)和φ3(x)的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x)的对称轴的横坐标值比φ1(x)的对称轴的横坐标值大,故有μ1<μ2=μ 3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x)和φ2(x)的图象一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ 3. 答案 D 7.在正态分布N中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ). A.0.097 B.0.046 C.0.03 D.0.0026 解析∵μ=0,σ=∴P(X<1或x>1)=1-P(-1≤x≤1)=1-P(μ- 3σ≤X≤μ+3σ)=1-0.9974=0.002 6. 答案 D 二.填空题

江苏高考各科试卷题型及分值比例(终审稿)

江苏高考各科试卷题型 及分值比例 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

江苏省高考各科题型及分值比例 语文:(共200分,其中160分为必做部分40为附加分,附加题只有文科生才做,理科生不需要做) 语文试卷分为必做题和附加题部分(必做题为文理科都要做的题目,附加题只有文科生需要做,理科生不做) 必做题部分: 语言文字运用:共四题,其中前两题为选择题,主要考察学生的语音知识和成语的运用知识,(分值为每题五分)第三题为填空题,(四分)第四题是回答问题,有时还要根据要求写一段话。(五分) 第二部分:文言文阅读题(共四道题,前三道为选择题,每题三分,第四题为翻译题共十分) 第三部分:古诗词鉴赏。共十分 第四部分:名篇名句默写(八个空共8分) 第五部分:现代文阅读:文学类文本(23分) 第六部分:现代文阅读:论述类文本(15分 第七部分:作文(70分) 附加题部分:一、阅读材料,根据阅读材料完成题目(10分) 二、名着阅读题(15分) 三、材料概括分析题(15分) 数学:(共200分,其中160分为必做部分40为附加分,附加题只有理科生才做,理科生不需要做) 数学试卷分为填空题和简答题两部分 填空题共14题,每题5分,共70分。 简答题共6题,前三题每题14分,后三题每题16分,共90分 附加题部分:分为选做题和必做题,选做题共四题,考生可以任意选择其中的两道题做,共20分。必做题两题每题10分,共20分。附加题部分全为简答题。 英语:(共120分) 英语试卷分为第一卷和第二卷两部分,满分120分。 第一卷为听力部分,共20分 第二卷分为以下几部分: 1、单项选择共15题,每题一分,共15分。 2、完形填空,共20空,每空1分,共20分。 3、阅读理解,4篇,共15个选择题,每题2分,共30分。 4、任务型阅读,10个空,根据要求每空填一个单词,共10分。 5、写作:25分。 物理:总分120分,试卷共分为以下几个部分。 一、单项选择题:本题共5小题,每小题3分,共计15分, 二、多项选择题:本题共4小题,每小题4分,共计16分. 每小题有多个选项符合题意,全部选对的得4分,选对但不全的得2分,错选或不答得0分.

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

高考数学考点解析及分值分布

高考数学考点解析及分值 分布 Prepared on 22 November 2020

高考数学考点解析1.集合与简易逻辑: 10-18分 主要章节:必修1第一章《集合》、第三章《函数的应用》 选修1-1(文)2-1(理)《常用逻辑用语》 考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。 2.函数与导数: 30分+ 主要章节:必修1第二章《基本初等函数》、第三章《函数的应用》必修4第一章《三角函数》 必修2第三章《直线与方程》、第四章《园与方程》 选修1-1(文)2-1(理)《圆锥曲线与方程》、《导数》 选修4-4《极坐标方程》《参数方程》 函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。以指数函数、对数函数、复合函数为载体,结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键。

3.不等式:5-12分 主要章节:必修5第三章《不等式》 选修4-5全书 一般不会单独命题,会在其他题型中“隐蔽”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。 4.数列:20-28分 主要章节:必修5第二章《数列》 数列是高中数学的重要内容,是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它知识的综合题。文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。证明题以考“错位相减法”比较多。 5.三角函数: 18-25分 主要章节:必修4第一章《三角函数》、第三章《三角恒等变换》必修5第一章《解三角形》

五年高考真题(数学理)10.5二项分布与正态分布

第五节二项分布与正态分布 考点一条件概率与相互独立事件的概率 1.(2015·新课标全国Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 解析该同学通过测试的概率为p=0.6×0.6+C12×0.4×0.62=0.648. 答案 A 2.(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.45 解析由条件概率可得所求概率为0.6 0.75 =0.8,故选A. 答案 A 3.(2011·湖南,15)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则 (1)P(A)=________. (2)P(B|A)=________.

解析圆的半径为1,正方形的边长为2,∴圆的面积为π,正方形面积为2, 扇形面积为π 4 .故P(A)= 2 π , P(B|A)=P(A∩B) P(A)= 1 2 π 2 π = 1 4 . 答案(1)2 π(2) 1 4 4.(2014·陕西,19)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表: (1)设X表示在这块地上种植1季此作物的利润,求X的分布列; (2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4, 因为利润=产量×市场价格-成本, 所以X所有可能的取值为

正态分布附其经典习题及答案

25.3正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是() A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.3413161010P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________。 ∴ (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ2μ,1σ2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2 :甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

高考数学总复习经典测试题解析版12.7 正态分布

12.7 正态分布 一、选择题 1.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P (X >4)=( ) A .0.1588 B .0.1587 C .0.1586 D .0.1585 解析 通过正态分布对称性及已知条件得 P(X >4)=1-2=1-0.6826 2 =0.1587,故选B . 答案 B 2. 设随机变量ξ服从正态分布 ),1(2σN ,则函数2()2f x x x ξ=++不存在零点的概率为( ) A.41 B. 31 C.21 D.32 解析 函数2()2f x x x ξ=++不存在零点,则440,1,ξξ?=-<> 因为2~(1,)N ξσ,所以1,μ=()11.2 P ξ>= 答案 C 3.以Φ(x )表示标准正态总体在区间(-∞,x )内取值的概率,若随机变量ξ 服从正态分布N (μ,σ2),则概率P (|ξ-μ|<σ)等于( ). A .Φ(μ+σ)-Φ(μ-σ) B .Φ(1)-Φ(-1) C .Φ? ?? ?? 1-μσ D .2Φ(μ+σ) 解析 由题意得,P (|ξ-μ|<σ)=P ? ???? |ξ-μσ|<1=Φ(1)-Φ(-1). 答案 B 4.已知随机变量X ~N (3,22),若X =2η+3,则D (η)等于( ). A .0 B .1 C .2 D .4 解析 由X =2η+3,得D (X )=4D (η),而D (X )=σ2=4,∴D (η)=1. 答案 B 5.标准正态总体在区间(-3,3)内取值的概率为( ). A .0.998 7 B .0.997 4 C .0.944 D .0.841 3 解析 标准正态分布N (0,1),σ=1,区间(-3,3),即(-3σ,3σ),概率 P =0.997 4.

相关文档
最新文档