知识讲解_双曲线的简单性质_基础

知识讲解_双曲线的简单性质_基础
知识讲解_双曲线的简单性质_基础

双曲线的简单性质

【学习目标】

1.知识与技能

理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念.

2.过程与方法

锻炼学生观察分析抽象概括的逻辑思维能力和运用数形结合思想解决实际问题的能力.

3.情感态度与价值观

通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对双曲线对称美的感受,激发学生对美好事物的追求.

【要点梳理】

【高清课堂:双曲线的性质356749 知识要点二】

要点一:双曲线的简单几何性质

双曲线

22

22

1

x y

a b

-=(a>0,b>0)的简单几何性质

范围

2

21

x a ≥,即22

x a

∴x a

≥,或x a

≤-.

双曲线上所有的点都在两条平行直线x= -a和x= a的两侧,是无限延伸的.因此双曲线上点的横坐标满足∴x a

≥,或x a

≤-.

对称性

对于双曲线标准方程

22

22

1

x y

a b

-=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,

方程都不变,所以双曲线

22

22

1

x y

a b

-=(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为

对称中心的中心对称图形,这个对称中心称为双曲线的中心.顶点

①双曲线与它的对称轴的交点称为双曲线的顶点.

②双曲线

22

22

1

x y

a b

-=(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为

A1(-a,0),A2(a,0)

,顶点是双曲线两支上的点中距离最近的点.

③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,- b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴.实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b.a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长.

①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆.

②双曲线的焦点总在实轴上.

③实轴和虚轴等长的双曲线称为等轴双曲线.

离心率

①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作

2

2

c c

e

a a

==.

②因为c>a>0,所以双曲线的离心率1

c

e

a

=>.

由c2= a 2+b2,可得

22

22

2

()11

b c a c

e

a a a

-

==-=-,所以

b

a

决定双曲线的开口大小,

b

a

越大,e也越大,双曲线开口就越开阔.所以离心率可以用来表示双曲线开口的大小程度.

③等轴双曲线a b

=,所以离心率2

e=.

渐近线

经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是

b

y x

a

=±.

我们把直线

b

y x

a

=±叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交.

22

||

b b

MN x a x

a a

=--

22

22

b

x a x

a

x x a

=--

=→

+-

【高清课堂:双曲线的性质 356749知识要点一、3】 要点二:双曲线两个标准方程几何性质的比较

标准方程

22

221x y a b -=(0,0)a b >> 22

221y x a b

-=(0,0)a b >> 图形

性质

焦点 1(,0)F c -,2(,0)F c 1(0,)F c -,2(0,)F c 焦距 2212||2()F F c c a b ==+

2212||2()F F c c a b ==+

范围 {}x x a x a ≤-≥或,y R ∈ {}y y a y a ≤-≥或,x R ∈

对称性

关于x 轴、y 轴和原点对称

顶点 (,0)a ± (0,)a ±

轴 实轴长=2a ,虚轴长=2b

离心率 (1)c

e e a

=

> 渐近线方程

b

y x a

a y x b

要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x 2、y 2的系数,如果x 2项的系数是正的,那么焦点在x 轴上;如果y 2项的系数是正的,那么焦点在y 轴上.

对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上. 要点三:双曲线的渐近线

(1)已知双曲线方程求渐近线方程:

若双曲线方程为22221x y a b -=,则其渐近线方程为22220x y a b -=?0x y a b ±=?b y x a =±

已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程. (2)已知渐近线方程求双曲线方程:

若双曲线渐近线方程为0mx ny ±=,则可设双曲线方程为2222m x n y λ-=,根据已知条件,求出λ即可.

(3)与双曲线22

221x y a b

-=有公共渐近线的双曲线

与双曲线2

2221x y a b -=有公共渐近线的双曲线方程可设为22

22(0)x y a b

λλ-=≠(0λ>,焦点在x 轴上,

0λ<,焦点在y 轴上)

(4)等轴双曲线的渐近线

等轴双曲线的两条渐近线互相垂直,为y x =±,因此等轴双曲线可设为22(0)x y λλ-=≠. 要点四:双曲线中a ,b ,c 的几何意义及有关线段的几何特征

双曲线标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c >b >0,c >a >0,且c 2=a 2+b 2.

双曲线22

221x y a b

-=(0,0)a b >>,如图:

(1)实轴长12||2A A a =,虚轴长2b ,焦距12||2F F c =;

(2)离心率:2

1211222121122||||||||11||||||||PF PF A F A F c b e e PM PM A K A K a a

=

=====+>; (3)顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+;

(4)12PF F ?中结合定义122PF PF a -=与余弦定理,将有关线段1PF 、2PF 、12F F 和角结合起来; (5)与焦点三角形12PF F ?有关的计算问题时,常考虑到用双曲线的定义及余弦定理(或勾股定理)、三角形面积公式121211

sin 2

PF F S PF PF F PF ?=

?∠相结合的方法进行计算与解题,将有关线段1PF 、2PF 、12F F ,有关角12F PF ∠结合起来,建立12PF PF -、12PF PF ?之间的关系.

要点五:直线与双曲线的位置关系 直线与双曲线的位置关系

将直线的方程y kx m =+与双曲线的方程22

221x y a b

-=(0,0)a b >>联立成方程组,消元转化为关于x

或y 的一元二次方程,其判别式为Δ.

222222222()20b a k x a mkx a m a b ----=.

若2220,b a k -=即b

k a

,直线与双曲线渐近线平行,直线与双曲线相交于一点(实质上是直线与渐近线平行时的两种情况,相交但不相切).

若2220,b a k -≠即b k a

≠±

, ①Δ>0?直线和双曲线相交?直线和双曲线相交,有两个交点; ②Δ=0?直线和双曲线相切?直线和双曲线相切,有一个公共点; ③Δ<0?直线和双曲线相离?直线和双曲线相离,无公共点. 直线与双曲线的相交弦

设直线y kx m =+交双曲线22

221x y a b

-=(0,0)a b >>于点111222(,),(,)P x y P x y 两点,则弦长

12||PP

12|x x -

同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:

12||x x -=;

12||y y -

双曲线的中点弦问题

遇到中点弦问题常用“韦达定理”或“点差法”求解.

在双曲线22

221x y a b

-=(0,0)a b >>中,以00(,)P x y 为中点的弦所在直线的斜率2020b x k a y =-;

涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.

解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.

【典型例题】

类型一:双曲线的简单几何性质

【高清课堂:双曲线的性质 356749例1】

例1.求双曲线22169144x y -=的实轴长和虚轴长、顶点坐标、焦点坐标、渐近线方程与离心率.

【思路点拨】本题的关键是将双曲线化为标准方程22

221x y a b -=(0,0)a b >>.

【解析】双曲线的方程可化为:22

1916

y x -=,由此可知

实半轴长3a =,虚半轴长4b =

,∴5c ==

∴实轴长26a =,虚轴长28b =,顶点坐标(0,3),(0,3)-,焦点坐标(0,5),(0,5)-,离心率5

3

e =,

渐近线方程3

4

y x =±.

【总结升华】在几何性质的讨论中要注意a 和2a ,b 和2b 的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示.

举一反三:

【变式1】双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )

A .14-

B .-4

C .4

D .14

【答案】A

【变式2】已知双曲线8kx 2-ky 2=2的一个焦点为3

(0,)2-,则k 的值等于( )

A .-2

B .1

C .-1

D .3

2-

【答案】C

类型二:双曲线的渐近线

例2.已知双曲线方程,求渐近线方程.

(1)22

1916x y -=;

(2)22

1916x y -=-.

【解析】

(1)双曲线221916x y -=-的渐近线方程为:220916x y -=,即4

3y x =±.

(2)双曲线221916x y -=的渐近线方程为:220916x y -=,即4

3y x =±.

【总结升华】不同形式双曲线的渐进线方程为:

(1)双曲线22221(0,0)x y a b a b -=>>的渐近线方程为b

y x a =±;

(2)双曲线22221y x a b -=的渐近线方程为b x y a =±,即a

y x b

=±;

(3)若双曲线的方程为22

22x y m n λ-=(00m n λ>>、,,焦点在x 轴上,0λ<,焦点在y 轴上),则其

渐近线方程为22220x y m n -=?0x y m n ±=?n

y x m

=±.

举一反三:

【变式1】求下列双曲线方程的渐近线方程:

(1)22

11636x y -=;

(2)2228x y -=;

(3)22272y x -=.

【答案】(1)3

2

y x =±;(2

)y x =;

(3

)y = 【变式2】中心在坐标原点,离心率为5

3

的圆锥曲线的焦点在y 轴上,则它的渐近线方程为( )

A .54y x =±

B .45y x =±

C .43y x =±

D .3

4y x =±

【答案】D

例3. 根据下列条件,求双曲线方程.

(1) 与双曲线22

1916x y -=

有共同的渐近线,且过点(3,-;

(2)一渐近线方程为320x y +=

,且双曲线过点M .

【思路点拨】求双曲线的方程,应先定型,再定量.本题中“定型”是顺利解题的关键:

(1)与双曲线有221916x y -=有公共渐进线的双曲线方程可设为()22

0916

x y λλ-=≠;

(2)320023x y x y +=?±=,以023x y

±=为渐进线的双曲线方程可设为2249x y λ-=()0λ≠.

【解析】 (1)解法一:

当焦点在x 轴上时,设双曲线的方程为22

221x y a b -=

由题意,得22

4

3(3)1

b a a ?=???-?=??,解得2

94a =,24b = 所以双曲线的方程为22

4194

x y -=.

当焦点在y 轴上时,设双曲线的方程为22

221y x a b

-=

由题意,得2

24

3(3)1

a b b ?=??--=,解得24a =-,2

94b =-(舍去) 综上所得,双曲线的方程为22

4194

x y -=

解法二:设所求双曲线方程为22

916x y λ-=(0λ≠)

将点(3,-代入得1

4

λ=,

所以双曲线方程为2219164x y -=即22

4194

x y -=

(2)依题意知双曲线两渐近线的方程是

023

x y

±=. 故设双曲线方程为22

49x y λ-=,

∵点M 在双曲线上,

∴ 284λ=,解得4λ=,

∴所求双曲线方程为22

11636

x y -=.

【总结升华】求双曲线的方程,关键是求a 、b ,在解题过程中应熟悉各元素(a 、b 、c 、e 及准线)之间的关系,并注意方程思想的应用.若已知双曲线的渐近线方程0ax by ±=,可设双曲线方程为2222a x b y λ-=(0λ≠).

举一反三:

【变式1】中心在原点,一个焦点在(0,3),一条渐近线为2

3

y x =

的双曲线方程是( ) A .225513654x y -= B .22

5513654x y -

+= C .22131318136x y -= D .22

131318136x y -+=

【答案】D

【变式2】过点(2,-2)且与双曲线2

212x y -=有公共渐近线的双曲线是 ( )

A . 22124y x -=

B . 22

142x y -=

C . 22142y x -=

D . 22

124x y -=

【答案】A

【变式3】设双曲线22

21(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为

A .4

B .3

C .2

D .1 【答案】C

【变式4】双曲线22221x y a b -=与22

22(0)x y a b λλ-=≠有相同的( )

A .实轴

B .焦点

C .渐近线

D .以上都不对 【答案】C

类型三:求双曲线的离心率或离心率的取值范围

例4. 已知12,F F 是双曲线22

221(0)x y a b a b -=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左

支交于A 、B 两点,若2ABF ?是正三角形,求双曲线的离心率.

【解析】∵12||2F F c =,2ABF ?是正三角形,

∴12||2tan30AF c ==,224||2tan30cos30c AF c ==

=,

∴21||||2AF AF a -===,

∴c

e a

=

= 【总结升华】双曲线的离心率是双曲线几何性质的一个重要参数,求双曲线离心率的关键是由条件寻求a 、c 满足的关系式,从而求出c e a

=

举一反三:

【高清课堂:双曲线的性质 356749例2】 【变式1】

(1) 已知双曲线22

221(0,0)x y a b a b

-=>>的离心率e =,过点A (0,-b )和B (a ,0)的直线与原点间的距

,求双曲线的方程. (2) 求过点(-1,3),且和双曲线22

149x y -=有共同渐近线的双曲线方程.

【答案】(1)22

13x y -=; (2)2241273y x -=

【变式2】 等轴双曲线的离心率为_________

【变式3】已知a 、b 、c 分别为双曲线的实半轴长、虚半轴长、半焦距,且方程ax 2+bx +c =0无实根,则双曲线离心率的取值范围是( )

A .1

B .1< e <2

C .1< e <3

D .1< e <2

【答案】D

类型五:双曲线的焦点三角形

例5.已知双曲线实轴长6,过左焦点1F 的弦交左半支于A 、B 两点,且||8AB =,设右焦点2F ,求2

ABF ?的周长.

【思路点拨】将2ABF ?的周长分拆成2211|||||||AF BF AF BF ,

,,的和,利用双曲线的定义及条件||8AB =可求得周长.

【解析】由双曲线的定义有: 21||||6AF AF -=,21||||6BF BF -=,

∴2211(||||)(||||)12AF BF AF BF +-+=. 即22(||||)||12AF BF AB +-= ∴22||||12||20AF BF AB +=+=.

故2ABF ?的周长22||||||28L AF BF AB =++=.

【总结升华】双曲线的焦点三角形中涉及了双曲线的特征几何量,在双曲线的焦点三角形中,经常运用正弦定理、余弦定理、双曲线定义来解题,解题过程中,常对定义式两边平方探求关系.

举一反三:

【变式1】已知双曲线的方程22

221x y a b -=,点A 、B 在双曲线的右支上,且线段AB 经过双曲线的右焦

点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )

A .2a +2m

B .4a +2m

C .a +m

D .2a +4m 【答案】B

【变式2】已知12F F 、是双曲线22

1916x y -=的两个焦点,P 在双曲线上且满足12||||32PF PF ?=,则

12F PF ∠=______

【答案】90

类型六:直线和双曲线的位置关系

例6. 已知双曲线x 2-y 2=4,直线l :y =k (x -1),讨论直线与双曲线公共点个数.

【思路点拨】直线与曲线恰有一个交点,即由直线方程与曲线方程联立的方程组只有一组解. 【解析】联立方程组??

?=--=4

)1(2

2

y x x k y 消去y ,并依x 项整理得:

(1-k 2)·x 2+2k 2x -k 2-4=0 ① (1)当1-k 2=0即k =±1时,方程①可化为2x =5,x =

2

5

,方程组只有一组解,故直线与双曲线只有一个公共点(实质上是直线与渐近线平行时的两种情况,相交但不相切).

(2)当1-k 2≠0时,即k ≠±1,此时有Δ=4·(4-3k 2)若4-3k 2>0(k 2≠1),

则k ∈???

?

???-????? ??--332,1)1,1(1,332,方程组有两解,故直线与双曲线有两交点. (3)若4-3k 2=0(k 2≠1),则k =±3

3

2,方程组有解,故直线与双曲线有一个公共点(相切的情况). (4)若

4-3k 2<0

且k 2≠1

则k ∈???

? ??+∞????? ??-∞-,332432,,方程组无解,故直线与双曲线无交点.

综上所述,当k =±1或k =±

3

3

2时,直线与双曲线有一个公共点; 当k ∈????

???-????? ??--332,1)1,1(1,332时,直线与双曲线有两个公共点; 当k ∈???

? ??+∞????? ??-

∞-,332332,时,直线与双曲线无公共点. 【总结升华】本题通过方程组解的个数来判断直线与双曲线交点的个数,具体操作时,运用了重要的数学方法——分类讨论,而且是“双向讨论”,既要讨论首项系数1——k 2是否为0,又要讨论Δ的三种情况,为理清讨论的思路,可画“树枝图”如图:

举一反三:

【变式1】过原点的直线l 与双曲线3

42

2y x -

=-1交于两点,则直线l 的斜率取值范围是 ( ) A .???? ??-23,23 B .???? ??+∞????? ??-∞-,2323, C .????????-23,33 D .???

?????+∞????? ??-∞-,2323, 【答案】B

【变式2】直线y =x +3与曲线-

x 1x ·|x |+9

1y 2=1的交点个数是 ( ) A .0 B .1 C .2 D .3 【答案】D

例7.(1)求直线1y x =+被双曲线2

2

14

y x -=截得的弦长; (2)求过定点(0,1)的直线被双曲线2

2

14

y x -=截得的弦中点轨迹方程. 【思路点拨】

(1)题为直线与双曲线的弦长问题,可以考虑弦长公式,结合韦达定理进行求解.

(2)题涉及到直线被双曲线截得弦的中点问题,可采用点差法或中点坐标公式,运算会更为简便.

【解析】由2

214

1y x y x ?-=???=+?

得224(1)40x x -+-=得2

3250x x --=(*) 设方程(*)的解为12,x x ,则有121225

,33

x x x x +=

=- 得,

12|d x x =-===. (2)方法一:若该直线的斜率不存在时与双曲线无交点,则设直线的方程为1y kx =+,它被双曲线截得的弦为AB 对应的中点为(,)P x y ,

由22

114

y kx y x =+???-

=??得22(4)250k x kx ---=(*) 设方程(*)的解为12,x x ,则22

420(4)0k k ?=+->

∴21680,||k k <<

且1212

22

25

,44k x x x x k k +=

=---, ∴121212

22

1114(),()()124224k x x x y y y x x k k =+==+=++=--, 2

2444k x k y k ?=??-?

?=

?-?

得2

2

40(4x y y y -+=<-或0)y >.

方法二:设弦的两个端点坐标为1122(,),(,)A x y B x y ,弦中点为(,)P x y ,则

221122

2244

44

x y x y ?-=??-=??得:121212124()()()()x x x x y y y y +-=+-, ∴

121212124()y y x x x x y y +-=+-, 即41

y x

x y =-,

即2

2

40x y y -+=(图象的一部分)

【总结升华】(1

)弦长公式1212||||AB x x y y =-=-; (2)注意上例中有关中点弦问题的两种处理方法.

举一反三:

【变式】垂直于直线230x y +-=的直线l 被双曲线22

1205

x y -=截得的弦长为3,求直线l 的方程

【答案】210y x =±

(完整版)双曲线的简单性质练习题及答案

双曲线 1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射线 2.方程1112 2=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1->的左,右焦点分别为12,F F ,点P 在双曲线的右支上,

双曲线知识点复习总结

双曲线知识点总结复习 1.双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为: 22 1(0)x y mn m n -=>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线? 2.双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±;⑤离心 率:c e a =,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通 径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为: 等轴双曲线的渐近线方程为:,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

双曲线的简单几何性质总结归纳

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 cot 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中2 22b a c +=a PF PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) ④特别地当?=时b a 离心率2=e ?两渐近线互相垂直,分别为y=x ±,

双曲线的简单几何性质(教案)(精)

双曲线的简单几何性质 山丹一中周相年 教学目标: (1 知识目标 能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程等,熟练掌握双曲线的几何性质 . (2能力目标 通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质, 在老师的指导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强学生的自信心 . (3 情感目标 通过提问、讨论、合作、探究等主动参与教学的活动,培养学生自尊、自强、自信、自主等良好的心理潜能和主人翁意识、集体主义精神 . 教学重点:双曲线的几何性质 . 教学难点:双曲线的渐近线 . 教学方法:启发诱导、练讲结合 教学用具 :多媒体 教学过程: 一、复习回顾,问题引入: 问题 1:双曲线的定义及其标准方程?

问题 2:椭圆的简单几何性质有哪些?我们是如何研究的?双曲线是否也有类似性质?又该怎样研究? 二、合作交流,探究性质: 类比椭圆的几何性质的研究方法,我们根据双曲线的标准方程 0, 0(122 22>>=-b a b y a x 研究它的几何性质 1. 范围: 双曲线在不等式x ≥ a 与x ≤-a 所表示的区域内 . 2. 对称性: 双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是 双曲线的对称轴, 原点是双曲线的对称中心, 双曲线的对称 中心叫双曲线中心 . 3.顶点: (1 双曲线和它的对称轴有两个交点 A1(-a,0 、 A2(a,0, 它们叫做双曲线的顶点 . (2 线段 A1A2叫双曲线的实轴, 它的长等于 2a,a 叫做双曲线的实半轴长; 线段B1B2叫双曲线的虚轴,它的长等于 2b, b叫做双曲线的虚半轴长 .

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 22 1(0,0)x y a b a b -=>> 22 22 1(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M(0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M(0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c =26,∴c =13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 331916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e、a、b 、c四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c,直线l过点(a,0)和(0,b ),且点(1, 0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e的取值范围。 解:直线l 的方程为 1x y a b -=,级bx +ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

(完整版)双曲线简单几何性质知识点总结,推荐文档

北安一中高二数学导学案 主备人:陈叔彤 审阅人:高二数学组 备课日期 :2012-10-17 课题:§双曲线简单几何性质知识点总结 课时: 课时 班级: 姓名: 【学习目标】 知识与技能:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等 几何性质 2.掌握双曲线的另一种定义及准线的概念3.掌握等轴双曲线,共轭双曲线等概念 过程与方法:进一步对学生进行运动变化和对立统一的观点的教育情感态度与价值观:辨证唯物主义世界观。【学习重点】双曲线的几何性质及其应用。【学习难点】双曲线的知识结构的归纳总结。 【学法指导】 1.课前依据参考资料,自主完成,有疑问的地方做好标记. 2.课前互相讨论交流,课上积极展示学习成果. 【知识链接】双曲线的定义:_________________________________________________【学习过程】 1.范围: 由标准方程,从横的方向来看,直线x=-a,x=a 之间没有图 122 22=-b y a x 象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。 X 的取值范围________ y 的取值范围______2. 对称性: 对称轴________ 对称中心________3.顶点:(如图) 顶点:____________特殊点:____________实轴:长为2a, a 叫做半实轴长21A A 虚轴:长为2b ,b 叫做虚半轴长 21B B 双曲线只有两个顶点,而椭圆则有四个顶点, 这是两者的又一差异4.离心率: 双曲线的焦距与实轴长的比,叫做双曲线的离心率 a c a c e == 22范围:___________________ 双曲线形状与e 的关系:,e 越大,即渐112 222 2-=-=-= =e a c a a c a b k 近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔

双曲线知识点归纳总结

双曲线知识点归纳总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2121F F MF MF =-,当2 12 1F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2 AB By Ax =+的方程可化为11122=+ B y A x 当01 ,01 B A ,双曲线的焦点在y 轴上; 当01 ,01 B A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

双曲线知识点归纳总结

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向

右延伸的一条射线;当2 112 F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一 条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2πAB By Ax =+的方程可化为11122=+ B y A x 当01 ,01φπB A ,双曲线的焦点在y 轴上; 当01 ,01πφB A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 6. 离心率与渐近线之间的关系 22 2 22222 1a b a b a a c e +=+== 1)2 1?? ? ??+=a b e 2) 12-=e a b 7. 双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22 22b y a x 0(≠λ

《双曲线的简单几何性质》省优质课比赛一等奖教案

双曲线的简单几何性质 在人教版《普通高中课程标准实验教科书(数学选修2-1)》中,针对双曲线的简单几何性质第一课时内容,笔者从教材分析、学生分析、目标分析、过程分析、板书设计等方面设计这一节课的教学. 一、教材分析 (一)教材的地位与作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,利用双曲线的标准方程研究其几何性质.它是教学大纲要求学生必须掌握的内容,也是高考的一个重要的考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质. (二)教学重点与难点的确定及依据 对圆锥曲线来说,双曲线有特殊的性质,而学生对双曲线的简单几何性质及其性质的讨论方法接受、理解和掌握有一定的困难.因此,在教学过程中我把双曲线的简单几何性质及其性质的讨论方法作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地导出了双曲线的简单几何性质.这样处理将数学思想渗透于其中,学生也易接受.因此,我把双曲线的简单几何性质及其性质的讨论方法作为重点.根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的难点. 教学重点:双曲线的简单几何性质及其性质的讨论方法. 解决办法: 1.欣赏优美的几何画板图形,以激发学生强烈的学习兴趣; 2.利用“几何画板”进行数学问题的探索以培养学生的创新能力. 教学难点:双曲线渐近线概念与性质. 解决办法:本节课我先选择由教师借助“几何画板”,利用描点法画出较为准确的图形,由学生先观察它的直观性质,然后再从方程出发给予证明. 二、学情分析与学法指导 学情分析:由于刚学习了椭圆有关问题,学生已经熟悉了图形——方程——性质的研究过程,学生已基本具有由方程研究曲线性质的能力.

双曲线的性质A知识讲解

双曲线的性质 编稿:希勇审稿:霞 【学习目标】 1.理解双曲线的对称性、围、定点、离心率、渐近线等简单性质. 2.能利用双曲线的简单性质求双曲线的方程. 3.能用双曲线的简单性质分析解决一些简单的问题. 【要点梳理】 【高清课堂:双曲线的性质356749 知识要点二】 要点一、双曲线的简单几何性质 双曲线 22 22 1 x y a b -=(a>0,b>0)的简单几何性质 围 2 22 2 1 x x a a x a x a 即 或 ≥≥ ∴≥≤- 双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a. 对称性 对于双曲线标准方程 22 22 1 x y a b -=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线 22 22 1 x y a b -=(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 顶点

①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线22 221x y a b -=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为 A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,-b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b 。a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长。 ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。 ③实轴和虚轴等长的双曲线称为等轴双曲线。 离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a ==。 ②因为c >a >0,所以双曲线的离心率1c e a = >。 由c 2 =a 2 +b 2 ,可得2222 2()11b c a c e a a a -==-=-,所以b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。 ③等轴双曲线a b =,所以离心率2=e 。 渐近线 经过点A 2、A 1作y 轴的平行线x=±a,经过点B 1、B 2作x 轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是b y x a =± 。 我们把直线x a b y ± =叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。 22= --||b b MN x a x a a

双曲线的简单几何性质 (第二课时) 教案 2

课 题:8.4双曲线的简单几何性质 (二) 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方 向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭 圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的 平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ± =( 0=±b y a x ),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e x y Q B 1 B 2A 1A 2N M O

经典双曲线知识点

双曲线:了解双曲线的定义、几何图形和标准方程;了解双曲线的简单几何性质。 重点:双曲线的定义、几何图形和标准方程,以及简单的几何性质. 难点:双曲线的标准方程,双曲线的渐进线. 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点 的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中 靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意: 1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点 坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,. 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、― y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a 或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

双曲线方程知识点总结_公式总结

双曲线方程知识点总结_公式总结 双曲线方程 1. 双曲线的第一定义: ⑴①双曲线标准方程:. 一般方程: . ⑴①i. 焦点在x轴上: 顶点:焦点:准线方程渐近线方程:或 ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或. ②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程 (分别为双曲线的左、右焦点或分别为双曲线的上下焦点) “长加短减”原则: 构成满足 (与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

⑴等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. ⑴共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. ⑴共渐近线的双曲线系方程:的渐近线方程为 如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程? 解:令双曲线的方程为:,代入得. ⑴直线与双曲线的位置关系: 区域①:无切线,2条与渐近线平行的直线,合计2条; 区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条; 区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线. 小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条. (2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号. ⑴若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

双曲线知识点总结 (1)

双曲线知识点 知识点一:双曲线的定义: 在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且) 的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意: 1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F 1 、F 2 为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F 1 F 2 的垂直平分线。 标准方程 图形 性质 焦点,, 焦距 范围,, 对称性关于x轴、y轴和原点对称 顶点

轴长实轴长 =,虚轴长= 离心率 渐近线方 程 1.通径:过焦点且垂直于实轴的弦,其长 a b2 2 2.等轴双曲线 :当双曲线的实轴长与虚轴长相等即2a=2b时,我们称这样的双曲线为等轴双曲线。其离心率,两条渐近线互相垂直为,等轴双曲线可设为 3.与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上) 4.焦点三角形的面积 2 cot 2 2 1 θ b S F PF = ? ,其中 2 1 PF F ∠ = θ 5.双曲线的焦点到渐近线的距离为b. 6.在不能确定焦点位置的情况下可设双曲线方程为:)0 (1 2 2< = +mn ny mx 7. 椭圆双曲线 根据|MF 1 |+|MF 2 |=2a 根据|MF 1 |-|MF 2 |=±2a a>c>0, a2-c2=b2(b>0) 0<a<c, c2-a2=b2(b>0) , (a>b>0) , (a>0,b>0,a不一定大于b)

双曲线知识点归纳总结

第二章 2.3 双曲线 双曲线 标准方程(焦点在x轴) )0 ,0 (1 2 2 2 2 > > = -b a b y a x 标准方程(焦点在y轴) )0 ,0 (1 2 2 2 2 > > = -b a b x a y 定义 第一定义:平面内与两个定点 1 F, 2 F的距离的差的绝对值是常数(小于 12 F F)的 点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M2 2 1 = -()21 2F F a< 第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e,当1 e>时, 动点的轨迹是双曲线。定点F叫做双曲线的焦点,定直线叫做双曲线的准线,常数 e(1 e>)叫做双曲线的离心率。 范围x a ≥,y R ∈y a ≥,x R ∈ 对称轴x轴,y轴;实轴长为2a,虚轴长为2b 对称中 心 原点(0,0) O x y P 1 F 2 F x y P x y P 1 F 2 F x y x y P 1 F 2 F x y x y P 1 F 2 F x y P

焦点坐 标 1 (,0) F c- 2 (,0) F c 1 (0,) F c- 2 (0,) F c 焦点在实轴上,22 c a b =+;焦距: 12 2 F F c = 顶点坐 标 (a -,0) (a,0) (0, a -,) (0,a) 离心率e a c e( =>1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离: c a2 2 顶点到 准线的 距离 顶点 1 A( 2 A)到准线 1 l( 2 l)的距离为 c a a 2 - 顶点 1 A( 2 A)到准线 2 l( 1 l)的距离为a c a + 2 焦点到 准线的 距离 焦点 1 F( 2 F)到准线 1 l( 2 l)的距离为 c a c 2 - 焦点 1 F( 2 F)到准线 2 l( 1 l)的距离为c c a + 2 渐近线 方程 x a b y± =x b a y± = 共渐近 线的双 曲线系 方程 k b y a x = - 2 2 2 2 (0 k≠)k b x a y = - 2 2 2 2 (0 k≠) ①当|MF1|-|MF2|=2a时,则表示点M在双曲线右支上; 当a MF MF2 1 2 = -时,则表示点M在双曲线左支上; ②注意定义中的“(小于 12 F F)”这一限制条件,其根据是“三角形两边 之和之差小于第三边”。 若2a=2c时,即 2 1 2 1 F F MF MF= -,当21 2 1 F F MF MF= -,动点轨迹是以2F为端点向右延伸的一条射线;当 2 1 1 2 F F MF MF= -时,动点轨迹是以1F为端点向左延伸的一条射线;

双曲线知识点总结

双曲线知识点总结 一.双曲线的定义及其性质 1. 定义:平面上到两定点F 1(-c,0) ,F 2(c,0)的距离之差等于定值2a(a

④若点P (x 0,y 0)在双曲线122 22=-b y a x 上,则过点P 与双曲线相切的直 线方程为 12020=-b y y a x x ; ⑤若点P (x 0,y 0)双曲线上任一点,以PF 1为直径的圆一定与x 2+y 2=a 2相切。 二.双曲线的焦点三角形 (1)若|PF 1|=m , |PF 2|=n , ∠F 1PF 2= Θ ; mn=θcos 122-b ),[2 +∞∈b ;θθcos 1cos 2-= b n m ),[2+∞-∈b ;S?PF 1F 2=2 tan 2θb . 证明如下: ①(2c)2=m 2+n 2-2mncosΘ=(m -n)2-2mn(1-cosΘ)=4a 2+2mn(1-cosΘ) ? mn=θcos 122 -b ②S?PF 1F 2=21mnsinΘ= 2 tan 2sin 22cos 2 sin 2cos 1sin 2212 222 θθθ θ θθ b b b == - 三.双曲线的中点弦 (1)AB 是不平行于对称轴的弦,P 是AB 的中点,则K AB K OP =b 2/a 2 (2)若A 、B 关于原点O 对称,P 是椭圆上异于A 、B 的任一点,则K PA K PB =b 2/a 2 (3)A 、B 为渐近线上的两点,P 是AB 的中点则K AB K OP =b 2/a 2 (4)A 、B 为渐近线上关于原点O 对称的两点,P 为渐近线上任一点,则K PA K PB =b 2/a 2。

(完整版)双曲线经典知识点总结

双曲线知识点总结班级姓名 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0 且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上, 双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为, . 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成― x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。 (4)离心率:①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。 ②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得, 所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示 双曲线开口的大小程度。③等轴双曲线,所以离心率。 (5)渐近线:经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线 围成一个矩形(如图),矩形的两条对角线所在直线的方程是,我们把直线叫做双曲线的渐近线。 注意:双曲线与它的渐近线无限接近,但永不相交。 标准方程 图形 性质 焦点,, 焦距 范围,,

双曲线知识点归纳总结.

第二章 2.3 双曲线 双曲线 标准方程(焦点在x 轴) )0,0(122 22>>=-b a b y a x 标准方程(焦点在y 轴) )0,0(122 22>>=-b a b x a y 定义 第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M 22 1 =-()212F F a < 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e ,当1e >时,动点的轨迹是双曲线。定点F 叫做双曲线的焦点,定直线叫做双曲线的准线,常数e (1e >)叫做双曲线的离心率。 范围 x a ≥,y R ∈ y a ≥,x R ∈ 对称轴 x 轴 ,y 轴;实轴长为2a ,虚轴长为2b 对称中 心 原点(0,0)O 焦点坐标 1(,0)F c - 2(,0)F c 1(0,)F c - 2(0,)F c 焦点在实轴上,22c a b =+;焦距:122F F c = 顶点坐标 (a -,0) (a ,0) (0, a -,) (0,a ) x y P 1 F 2 F x y P x y P 1F 2F x y x y P 1 F 2 F x y x y P 1F 2F x y P

离心率 e a c e (= >1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离:c a 2 2 顶点到准线的 距离 顶点1A (2A )到准线1l (2l )的距离为c a a 2 - 顶点1 A (2A )到准线2l (1l )的距离为a c a +2 焦点到准线的 距离 焦点1F (2F )到准线1l (2l )的距离为c a c 2 - 焦点1F (2F )到准线2l (1l )的距离为c c a +2 渐近线 方程 x a b y ±= x b a y ±= 共渐近 线的双曲线系 方程 k b y a x =-2222(0k ≠) k b x a y =-22 2 2(0k ≠) 1. 双曲线的定义 ① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<.

相关文档
最新文档