某型无人机导航_飞控系统设计与仿真

某型无人机导航_飞控系统设计与仿真
某型无人机导航_飞控系统设计与仿真

无人机设计手册及主要技术

无人机设计手册及主要技术 内容简介 独家《无人机设计手册》分上、下两册共十二章。 上册包括无人机系统总体设计,气动、强度、结构设计,动力装置,发射与回收系统,飞行控制与管理系统。 下册包括机载电气系统,指挥控制与任务规划,测控与信息传输,有人机改装无人机,综合保障设计,可靠性、维修性、安全性和环境适应性以及无人机飞行试验等。有关无人机任务设备、卫星中继通信的设计以及正在发展的无人机技术等内容,有待手册再版时编入,使无人机设计手册不断成熟和丰富。 适用人群 本手册是国内第一部较全面系统阐述无人机设计技术的工具书,不仅可作为无人机的设计参考,也可以作为院校无人机教学、无人机行业的工程技术人员和管理人员的参考书,并可供无人机部队试验人员使用。希望本手册的出版能对我国无人机研制工作的技术支持有所裨益。 作者简介 祝小平,现任西北工业大学无人机所总工程师,主要从事无人机总体设计、飞行控制与制导系统设计等研究工作。主持了工程型号、国防预研等国家重点项目多项,获国家和部级科学技术奖9项,其中国家科技进步一等奖1项,国防科技进步一等奖4项,获技术发明专利10项,荣立“国防科技工业武器装备型号研制”个人一等功,发表论著150多篇。先后入选国家级“新世纪百千万人

才工程”、国防科技工业“511人才工程”和教育部“新世纪优秀人才支持计划”,获得“ 国防科技工业百名优秀博士、硕士”、“国防科技工业有突出贡献的中青年专家”、“陕西省有突出贡献专家”和“科学中国人(2009)年度人物”等荣誉称号。 无人机相关GJB标准-融融网 gjb 8265-2014 无人机机载电子测量设备通用规范 gjb 4108-2000 军用小型无人机系统部队试验规程 gjb 5190-2004 无人机载有源雷达假目标通用规范 gjb 7201-2011 舰载无人机雷达对抗载荷自动测试设备通用规范 gjb 5433-2005 无人机系统通用要求 gjb 2347-1995 无人机通用规范 gjb 6724-2009 通信干扰无人机通用规范 gjb 6703-2009 无人机测控系统通用要求 gjb 2018-1994 无人机发射系统通用要求 无人机主要技术 一、动力技术 续航能力是目前制约无人机发展的重大障碍,业内人士也普遍认为消费级多旋翼续航时间基本维持在20min左右,很是鸡肋。逼得用户外出飞行不得不携带多块电池备用,造成使用操作的诸多不便,为此有诸多企业在2016年里做出了新的尝试。

无人机地面站

无人机地面站 地面站作为整个无人机系统的作战指挥中心,其控制内容包括 :飞行器的飞行过程,飞 行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。 中文名:无人机地面站 外文名: UAV ground station 目录 概述 地面站的配置和功能概述 ?地面站的典型配置 ?地面站的典型功能 关键技术及典型解决方案 ?友好的人机界面 ?操作员的培训 ?一站多机的控制 ?开放性、互用性与公共性 ?地面站对总线的需求 ?可靠的数据链 无人机地面站发展的趋势 概述 近20 年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全 自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面 控制站 (GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理 能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开 放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的 功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素 的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。

无人机地面站发展综述

无人机地面站发展综述 [摘要]主要介绍了无人机地面站的发展,包括无人机地面站典型的配置、功能及其关键技术。并展望了未来无人机地面站发展趋势。 1、概述 20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS: Ground Contrul Station) 将具有包括任务规划,数字地图,卫星数据链,图像处理能力在内的集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群:地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展;相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程,飞行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据,接收指令,在网络化的现代作战环境中发挥独特作用。 2典型地面站的配置和功能概述 2.1地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。其相互间的关系如图1所示。

(1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能: —用于给飞行器发送命令和有效载荷; —接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元:包括一台或多台计算机,主要功能如下: —获得并处理从UAV来的实时数据: —显示处理; —确认任务规划并上传给UAV; 一一电子地图处理; —数据分发: —飞行前分析; —系统诊断。 2.2地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面控制站根据任务要求实现对有效载荷的控制,并通过对有效载荷状态的显示来实现对任务执行情况的监管。 (3)任务规划、飞行器位置监控、及航线的地图显示。任务规划主要包括处理战术信息、研究任务区域地图、标定飞行路线及向操作员提供规划数据等。飞行器位置监控及航线的地图显示部分主要便于操作人员实时地监控飞行器和航迹的状态。 (4)导航和目标定位。无人机在执行任务过程中通过无线数据链路与地面控制站之间保持着联系。在遇到特殊情况时,需要地面控制站对其实现导航控制,使飞机按照安全的路线飞行。随着空间技术的发展,传统的惯性导航结合先进的GPS导航技术成为了无人机系统导航的主流导航技术。目标定位是指飞行器发送给地面的方位角,高度及距离数据需要附加时间标注,以便这些量可与正确的飞行器瞬时位置数据相结合来实现目标位置的最精确计算。为了精确确定目标的位置,必须通过导航技术掌握飞行器的

无人机系统建设方案设计(初稿子)--李仁伟--2018.09.21

实用标准文案 监管场所无人机系统 建设方案 北京创羿兴晟科技发展有限公司 2018.9

目录 目录 目录 (1) 一、概述 (2) 1.1、背景 (2) 1.2、应用 (2) 1.3、方案依据标准规范 (3) 二、系统介绍 (5) 2.1、系统功能 (5) 2.2、功能及产品介绍 (5) 2.2.1、六旋翼无人机主机 (5) 2.2.2、航拍摄像 (12) 2.2.3、空中抛投 (25) 2.2.4、通信中继..................................... 错误!未定义书签。 2.3、无人机综合管控指挥平台 (29) 2.3.1、平台内容 (30) 2.3.2、软件架构 (31) 2.3.3、通信架构 (31) 2.3.4、客户端界面 (32)

一、概述 1.1、背景 无人机产业发展至今,已经成长为了一个完整的体系,在这个体系之下,无人机从功能上细分到了各个领域,除了航拍、植保等功用之外,无人机也在勘察、安检等领域拥有不错的发挥,其中安全巡逻无人机已经成为无人机市场中的一匹迅速崛起的黑马,并且还在不断地快速成长。运用高科技手段对监狱工作提供技术支持已刻不容缓。作为高度戒备监狱,监狱押犯规模大、在押罪犯刑期长、犯群结构复杂,为积极整合资源、推动高新技术应用、完善综合保障机制、增强突发事件应对能力。 无人机可完成包括巡航、实时监控、取证拍摄等一体化飞行及监控任务,并能将高清视频或高像素照片实时传输到执法终端。今后,它不仅会用于监管设施及周边区域的隐患排查,维护监管安全,为监狱指挥中心作出实时部署提供第一手资料;它还对开展隐蔽督察、视频督察、掌握狱情灾情和处置突发事件发挥重要作用。

无人机导航定位技术简介与分析

无人机导航定位技术简介与分析 无人机导航定位工作主要由组合定位定向导航系统完成,组合导航系统实时闭环输出位置和姿态信息,为飞机提供精确的方向基准和位置坐标,同时实时根据姿态信息对飞机飞行状态进行预测。组合导航系统由激光陀螺捷联惯性导航、卫星定位系统接收机、组合导航计算机、里程计、高度表和基站雷达系统等组成。结合了SAR 图像导航的定位精度、自主性和星敏感器的星光导航系统的姿态测定精度,从而保证了无人飞机的自主飞行。 无人机导航是按照要求的精度,沿着预定的航线在指定的时间内正确地引导无人机至目的地。要使无人机成功完成预定的航行任务,除了起始点和目标的位置之外,还必须知道无人机的实时位置、航行速度、航向等导航参数。目前在无人机上采用的导航技术主要包括惯性导航、卫星导航、多普勒导航、地形辅助导航以及地磁导航等。这些导航技术都有各自的优缺点,因此,在无人机导航中,要根据无人机担负的不同任务来选择合适的导航定位技术至关重要。 一、单一导航技术 1 惯性导航 惯性导航是以牛顿力学定律为基础,依靠安装在载体(飞机、舰船、火箭等)内部的加速度计测量载体在三个轴向运动加速度,经积分运算得出载体的瞬时速度和位置,以及测量载体姿态的一种导航方式。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪。三自由度陀螺仪用来测量飞行器的三个转动运动;三个加速度计用来测量飞行器的三个平移运动的加速度。 计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。惯性导航完全依靠机载设备自主完成导航任务,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,不受气象条件限制,是一种自主式的导航系统,具有完全自主、抗干扰、隐蔽性好、全天候工作、输出导航信息多、数据更新率高等优点。实际的惯性导航可以完成空间的三维导航或地面上的二维导航。 2 定位卫星导航 定位卫星导航是通过不断对目标物体进行定位从而实现导航功能的。目前,全球范围内有影响的卫星定位系统有美国的GPS,欧洲的伽利略,俄罗斯的格拉纳斯。这里主要介绍现阶段应用较为广泛的GPS全球定位系统导航。

美军无人机地面控制系统最新发展

美军无人机地面控制系统最新发展 对于无人机系统来说,设计焦点大多都是集中在飞机本身,包括有效载荷。但根据数据统计表明,地面系统所需成本非常高,往往是单架无人机成本的 0.5 ~ 4 倍之间。这说明研制一个能够控制多种类型无人机的通用地面控制系统,不仅可以极大地降低无人机系统的开发、后勤支持和训练费用,也可以较大程度地改进无人机系统作战的灵活性,从而实现无人机系统之间的互操作性。 地面控制站一般由三部分组成,包括:操作员工作站,用于操作无人机发射、回收和控制软件;飞行用传感器载荷;视距和卫星数据链路无线电终端,用于传输飞行指挥命令和接收来自无人机的监视图像。美军的主要无人机系统,如美国空军的 " 捕食者 " 、 " 全球鹰 " 和美国陆军的 " 影子 200" 都是由不同的军种独立开发的,通用性和互操作性能很差,甚至没有。它们的地面控制站尤其如此。因此,空军的 " 捕食者 "/" 捕食者 B" 地面站是无法控制空军的 " 全球鹰" 或海军陆战队的 " 先锋 " 无人机,也无法接收他们的图像。但是,美国海军和陆军已经采取措施着力解决无人机间的互操作问题。而促进无人机互操作性发展的强大驱动因素就是与北约的标准化协议 STANAG4586 相兼容。 1 战术控制系统 战术控制系统( TCS ),是美国海军的通用无人机地面控制站,由海军的无人空中系统项目办公室( PMA-263 )管理、雷声公司情报和信息系统部门从 2000 年开始进行开发的。其研制目标就是提供一个开放式体系结构软件,能够控制多种不同类型的海上 / 岸上计算机硬件,实现任务规划、指挥与控制以及情报数据接收和分发等功能。 TCS 在 2003 年之前是一个联合军种项目,后来由于陆军和空军抵制将 TCS 用于它们的无人机系统,国会将其削减为海军一家的研制项目。 目前, TCS 已经研制成功。 PMA-263 希望将其应用于海军未来所有的无人机系统,包括预计将于 2008 年在美海军的第一艘 " 濒海战斗舰 " 上使用的垂直起降无人机 --" 火力侦察兵 " 在内。 TCS 的运行依靠的是基于 Unix 的计算机。该计算机的操作系统是 Sun 微系统公司开发的 Solaris 8 网络操作系统,尽管雷声公司曾经也开发了一个应用于该计算机的基于 Linux 的操作系统。 TCS 软件的最新版本是于 2006 年 6 月份交付给 " 火力侦察兵 " 的制造商诺思罗普· 格鲁门公司的,软件中增加了一系列的新功能,包括可以容纳多种不同的 " 即插即用 " 传感器载荷、在指挥、控制和信息分发时执行 STANAG 4586 标准等。 为了与 STANAG4586 兼容,雷声公司开发了一个可以操作多种美军和 NATO 无人机的 TCS 核心系统。不同无人机制造商开发的与 STANAG 4586 协同的无人机专用模块,可以与该核心系统接口,提供 TCS 的所有控制能力,实现各无人机系统之间的互操作。(如果未来需要在不同的无人机系统之间完全实现互操作,则各数据链必须互相兼容) 海军的 " 宽域海上监视 " ( BAMS )无人机计划于 2011 年进入制造,是TCS 的下一个潜在用户。目前,美国海军在演习中使用的是两架从美国空军采购的 " 全球鹰海上演示型 "(GHMD) 高空长航时无人机来帮助 BAMS 无人机开发操作概念和作战战术。由于美国国会削减了美国海军在 2004 年的预算中计划给 " 全球鹰 " 开发 TCS 能力的费用,这两架 GHMD 飞机使用的是美国空军现有的 " 全球鹰 " 地面站硬件和软件,而不是 TCS 。 PMA-263 的负责人,海军上校 Paul Morgan 称,洛克希德· 马丁公司和诺思罗普· 格鲁门公司正在开展 BAMS" 持久无人海上空中监视 " ( PUMAS )能力研究,包括评估 TCS 对于 BAMS 在该能力方面的适应性。

无人机的图像处理综述

无人机图像处理综述 摘要:目标识别与跟踪技术是无人作战机实施攻击的关键步骤,本文从无人作战机的自动目标识别与跟踪的基本概念入手,以成像传感器的目标识别与跟踪为例,介绍目标识别、检测、跟踪等关键技术。 关键词:无人战斗机目标识别图像处理识别技术 一、引言 无人战斗机在最近几年成为无人机的发展热点。它的设计概念介于有人战斗机与导弹之间。无人战斗机不是孤立存在的,它是整个无人战斗机系统的一部分。无人战斗机系统有其独特的组成方式和管理模式。目前,无人战斗机的开发刚刚处于起步阶段。为了发展无人战斗机,有许多关键技术值得注意,特别是目标识别技术。它主要包括视觉图像预处理,目标提取、目标跟踪、数据融合等问题。其中,运动目标检测可采用背景差法、帧差法、光流法等,固定标志物检测可用到角点提取、边提取、不变矩、Hough 变换、贪婪算法等,目标跟踪可以分析特征进行状态估计,并与其他传感器融合,用到的方法有卡尔曼滤波、粒子滤波器和人工神经网络等。还有很多方法诸如全景图像几何形变的分析或者地平线的检测等没有进行特征提取,而是直接将图像的某一变量加到控制中去。 实际应用中,上述问题的进一步解决受到很多因素的制约。由于无人机的动力、载重、装配空间等物理条件的限制以及飞行速度更快,使得算法处理需要更少的延时。而且,无人机稀疏的室外飞行环境使得适用于地面机器人的算法不适用于无人机。同时,模型的不确定性,噪声和干扰,都限制了实物实验的成功。所以,如何将地面机器人的视觉导航成果应用到无人机视觉导航中去,如何提高无人机的算法速度并不过分损失导航精度,如何面对无人机自身模型的不确定度以及外界噪声的干扰,如何适应无人机所处的标志物稀疏的飞行环境,这些问题都需要更进一步的探讨。 二、无人机图像处理技术现状 1979年,Daliy等人首先把雷达图像和Landsat.MSS图像的复合图像用于地质解释,其处理过程可以看作是最简单的图像融合。1981年,Laner和Todd 进行了Landsat. RBV和MSS图像融合试验。 到20世纪80年代中后期,图像融合技术开始引起人们的重视,陆续有人将图像融合技术应用于遥感多谱图像的分析和处理。 到20世纪80年代末,人们才开始将图像融合应用于一般图像融合(可见光、红外等)。多波段SAR雷达相继开发使得对多波段的SAR图像数据融合技术的研究成为可能,特别是美国宇航局1993年9月成功发射了全世界第一部多波段(L,C, X波段)、多极化、多投射角空间SAR之后,为多波段的SAR图像融合提供了坚实的物质基础。 20世纪90年代后,图像融合技术的研究呈不断上升趋势,应用的领域也遍

无人机数据传输系统-手册

1.概论: 无人机,即无人驾驶的飞机。是指在飞机上没有驾驶员,只是由程序控制自动飞行或者由人在地面或母机上进行遥控的飞机。它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统可以实现远距离飞行并得以控制。无人机与有人驾驶的飞机相比而言,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务,因此被广泛应用。 二、无人机的特点及技术要求 无人机没有飞行员,其飞行任务的完成是由无人飞行器、地面控制站和发射器组成的无人机系统在地面指挥小组的控制一下实现的。据此,无人机具有以下特点: (1)结构简单。没有常规驾驶舱,无人机结构尺寸比有人驾驶飞机小得多。有一种无尾无人机在结构上比常规飞机缩小40%以上。重量减轻,体积变小,有利于提高飞行性能和降低研制难度。 (2)安全性强。无人机在操纵人员培训和执行任务时对人员具有高度的安全性,保护有生力量和稀缺的人力资源。可以用来执行危险性大的任务。 (3)性能提高。无人机在设计时不用考虑飞行员的因素。许多受到人生理和心理所限的技术都可在无人机上使用,从而突破了有人在机的危险,保证了飞行的安全性。 (4)一机多用,稍作改进后发展为轻型近距离对地攻击机。

(5)采用成熟的发动机和主要机载设备,以减少研制风险与经费投入,加快研制进度。联合研制以减小投资风险、解决经费不足有利于扩大出口及扬长技术与设备优势。 (6)研制综合训练系统。技术要求有: (1)信息技术包括信息的收集和融合,信息的评估和表达,防御性的信息战、自动目标确定和识别等; (2)设备组成包括低成本结构、小型化及模块化电子设备、低可见性天线、小型精确武器、可储存的高性能发动机及电动作动器等; (3)性能实现包括先进的低可见性和维护性技术、任务管理和规划、组合模拟和训练环境等。 三、无人机系统按照功能划分,主要包括四部分: (1)飞行器系统 包括空中和地面两大部分。空中部分包括:无人机、机载电子设备和辅助设备等,主要完成飞行任务。地面部分包括:飞行器定位系统、飞行器控制系统、导航系统以及发射回收系统,主要完成对飞行器的遥控、遥测和导航任务,空中与地面系统通过数据链路建立起紧密联系。 (2)数据链系统 包括:遥控、遥测、跟踪测量设备、信息传输设备、数据中继设备等用以指挥操纵飞机飞行,并将飞机的状态参数及侦察信息数据传到控制站。 (3)任务设备系统 包括:为完成各种任务而需要在飞机上装载的任务设备。

八旋翼无人机系统

八旋翼无人机系统 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

八旋翼无人机系统技术文件 一、产品名称:X-8八旋翼无人机系统 X-8是全新研制的八旋翼无人机系统,具有载重量大、续航时间长、体积小、重量轻、目标特性小,使用快捷、机动灵活、操作使用及维修简便等特点,自成体系独立执行电力巡检任务。 简介: X-8 八旋翼是专业无人机技术研发团队经过多年研究、测试,最新推出的一款全球同类产品载重量最大、可垂直起降、拥有多项专利的无人飞行系统。 1)X-8选用自主驾驶设备,大大提高飞控稳定性。 2)可携带多种任务载荷。 3)可用于执行资料收集、测量、检测、侦查等多种空中任务,在电力巡检领域能发挥其高效、隐蔽性强的特点,能对目标物进行远距离监视。 产品特点: (1)飞行器具有遥控、自主飞行能力,可以实时修改飞行航路和任务设置;(2)测控与信息传输设备具有遥控、实时信息传输的功能,具有多机、多站兼容工作及一定的抗截获、抗干扰能力; (3)侦察任务设备能昼夜实时获取目标图像信息,具有手动、自动控制工作模式,可迅速发现、捕获、识别、跟踪目标; (4)飞行控制与信息处理站具有对飞行器进行遥控飞行和对机载任务设备进行操控的功能,具有飞行参数/航迹显示、航路规划和实时修改飞行计划、重新设置任务样式的能力;具有通过视频实现第一视角控制飞行的能力;具有接收标准视频信号、实时处理/存储图像、数据叠加等能力,具有目标定位和引导打击的能力,且能与上级指挥机关、情报处理中心和指挥系统相通连; (5)地面保障设备具有简易检测、维修与训练的能力,具有快速更换易 损件、备用动力电池组和双模态充电的功能; (6)全系统外场展开迅速,具有车载大范围机动和携行能力。 机体结构技术参数:

无人机武器系统及其发展应用综述+

无人机武器系统及其发展应用综述 摘要:主要介绍了无人机系统组成、发展历程、战场应用及其发展趋势,对 引言 21世纪,对战场信息的掌控程度主导着战争的成败,集侦察、情报传输和火力打击于一身的无人机已成为信息化战场的“新宠”。 1 无人机简介 1.1 无人机定义 无人机是一种由动力驱动、机上无人驾驶、可重复使用、利用无线电遥控设备或自备程序控制系统进行操纵的航空器。航空器的简称:英文常用Unmanned Aerial Vehicle表示,缩写为UA V。无人机与有人机、航模、导弹的区别见表1—3。 1.2 无人机系统组成及其功用 无人机武器系统是指无人机本身和完成战斗任务所用的必要设备、设施的全体,概括地讲,由飞行平台与任务设备两大部分组成。

机体通常由机翼、机身、尾翼等组成,为支持无人机在空中稳定飞行提供良好的 气动外形,为为其机载设备提供足够的装载空间。 起降装置用来保证无人机正常起飞和着陆。 动力装置包括发动机和保证其正常工作的附件和系统,它是无人机的动力源,使无人机获得速度和升力。 控制与导航系统是保障和规划无人机稳定地沿预定航线飞行,到达目标区域。其主要包括机载测量设备、飞行控制与管理设备、定位和导航设备、飞行指挥与航迹控制设备等。 数据链用来完成对无人机的遥控、遥测、跟踪定位及数据信息传输,构成天地回路,还能实现与上级及友邻部队的通信。分为机载和地面两部分,主要包括射频收发设备、调制解调设备、天线等。 任务设备是用来完成指定任务的装备,不同用途的无人机安装不同的任务设备。 此外,无人机武器系统一般还包括后勤保障系统,如运输设备、装卸设备、测试设备、地面电源、维修设备等。 1.3 无人机分类 历经70多年的发展,至今出现了各种各样的无人机。目前,从不同的角度出发对无人机的分类方法也多种多样。现介绍几种常用的分类方法,见图2。 图2 无人机分类 1.4 无人机的特点 与有人机相比,无人机有以下主要特点[无人机技术] :1)成本低廉;2)重量轻尺寸小;3)机动性好;4)隐形性好,生存力强;5)适应性强;6)可在危险条件下执行任务。 图1 无人机武器系统组成框图

无人机的飞行控制与导航

无人机的飞行控制与导航 形形色色的无人机已经成为未来信息化、网络化战争基础性的作战装备,各国对于无人机系统的发展也不遗余力。然而很多人对于无人机系统及其技术全貌却并不一定有着清晰的了解。航空专家傅前哨将通过一系列文章,向你阐述无人机的相关技术及最新发展。 Q 无人驾驶飞行器系统都有些什么样的装备和设施? A 无人驾驶飞行器的使用需要一套专门的装置和设备。整个系统包括若干架无人驾驶飞机(或其它航空器)、地面控制系统(如遥控站)、地面支援保障设备以及起飞、回收装置等。例如,“猎人”军用无人机系统,共含8架可携带侦察设备的无人机、两个地面控制站、1个任务规划站、4个分离式接收站、1个发射回收装置等。无人驾驶的飞机、直升机、飞艇等主要由机体、动力装置、机载导航定位系统、飞行控制系统、起飞和回收装置以及有效载荷(如侦察设备、电子对抗设备、信息传输设备、机载武器等)组成。无人驾驶飞行器上没有乘员,因此领航员、驾驶员的任务需要由导航定位系统、飞行控制系统、自动驾驶仪等设备来完成。 Q 无人驾驶飞行器的控制方法有几种,各有什么优缺点? A 无人机的飞行控制方式较多,目前采用的主要有线控、有线电遥控、无线电遥控,程控等几种。 所谓线控,就是用手持的钢丝线对动力无人机进行操纵,此法多用于竞技航模。 有线电遥控是一种相对简单,且成本较低的操纵方式。地面站人员通过电缆或光缆将各种控制信号传输给无人机,操纵其飞行和工作,而无人机则通过电缆将侦测到的信息送回地面站。其缺点是受电缆长度,重量的限制,飞行器的航程和升限都不大,活动区域和观察范围较小。 一些小型的,微型的无人侦察机也采用目视遥控的方式进行操纵。这类无人机上大都安装有一部与手持式遥控器配套的小型多通道无线电接收机。机载接收机收到由地面遥控发射机发来的操纵指令后,将控制信号分配给各舵机,由其完成翼面,油门的控制,开启,关闭某些设备,完成对无人机的操纵。 超视距遥控的工作原理是,地面遥控站的人员通过目视、光学设备、雷达系统等,实时获取无人机的姿态,方位,距离,速度、高度等信息,并对其进行跟踪,定位和控制。当发现无人机偏离预定航线,空中姿态出现偏差或需要人为地改变其飞行状况时,地面站发出无线电遥控指令,操纵无人机恢复或调整其飞行轨迹,这种方式可称之为单向无线电遥控。某些无人机上装有机载数据采集与传输系统或专用的前视摄像装置,可通过数传电台或数据链向地面无线电测控站发送无人机自身的飞行数据等,并在地面站计算机上模拟显示出相关的仪表显示、飞机姿态、飞行航迹等。如果通过电视图像传输系统向地面遥控站发送现场的前视图像和座舱图像,地面站的人员还可根据无人机传回的图像和数据,监视、判断它的飞行情况,并通过遥控装置操纵其飞行,这种遥控方式被称为双向无线电遥控。现代无人机有许多机型都采用后一种遥控方式。而美国在20世纪70年代研制的F-15缩比自由飞模型和HiMAT无人驾驶研究机则采用了前一种遥控方式。 采用无线电遥控方式时,无人机的活动半径和飞行自由度主要受机载和地面遥控设备的发射功率、无线电波的传输距离以及飞行器本身性能的限制。受地球曲率、遥控设备发射功率等因素的影响,地面站的作用距离一般较短,往往只能用

无人机编程技术及智能系统设计

无人机编程技术及智能系统设计 1.无人机编程技术 1.1.无人机编程技术综述 无人机本身是个非常综合性的系统。就基本的核心的飞行控制部分来说,一般包括内环和外环。内环负责控制飞机的姿态,外环负责控制飞机在三维空间的运动轨迹。高端的无人机,依靠高精度的加速度计和激光陀螺等先进的传感器(现在流行的都是基于捷连惯导而不是平台式),计算维持飞机的姿态。低端的型号则用一些MEMS器件来做姿态估算。但它们的数学原理基本是相同的。具体的算法根据硬件平台的能力,可能采用离散余弦矩阵/四元数/双子样/多子样. 高端的无人机,AHRS/IMU采用的基本都是民航或者军用的著名产品。例如全球鹰的利顿LN-100G/LN-200等。这些系统价格昂贵但精密,内部往往是零锁激光陀螺之类。例如LN-100G的GPS-INS组合,即使丢失GPS,靠惯性器件漂移仍可以控制在120m/min。低端的无人机就没那么精密讲究了,一般都依赖GPS等定位系统来进行外环控制,内环用MEMS陀螺和加速度计进行姿态估算。 如果把无人机看成一个完整的系统,那么还需要很多其他支持,例如任务规划,地面跟踪等等.进行无人机编程,得看你具体是指哪方面。如果是飞控系统,你得需要比较扎实的数学知识,对各种矩阵运算/控制率什么的有深刻的了解。如果只是希望现有的带飞控的平台去做一些任务,那么需要根据具体的平台来考虑。有些平台提供了任务编辑器,甚至更灵活的任务脚本。 1.2.无人机编程模块分类: 模块分类最粗的分法就是两个模块,一个模块负责飞行,维持飞机航线和姿态,以及和地面控制的通信,另一个模块就是功能模块,因为无人机总是要完成一些任务,具有一定功能的,如果再细分的话飞行模块里还有姿态控制,航线控制,GPS定位,电源或者燃料的管理等等。功能那一部分就看无人机要完成的任务了。如果说编程的话任何一个部分都可以通过程序自动划实现的。 1.硬件接口编程:如控制器和各传感器之间 2.控制算法程序实现,控制姿态调整的算法,编队飞行的算法,自主飞行智能算法等等。这些算法需要在主控器上通过机器语言(程序)实现。 3.传感器数据处理。如陀螺仪的角速度,强磁计的偏航信息,加速度计

无人机地面站

概述 近20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。 地面站的配置和功能概述 地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。 (1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能:用于给飞行器发送命令和有效载荷;接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元。包括一台或多台计算机,主要功能:获得并处理从UAV来的实时数据;显示处理;确认任务规划并上传给UAV;电子地图处理;数据分发;飞行前分析;系统诊断。 地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面

无人机概述与系统组成

无人机概述及系统组成 无人机( UAV)的定义 无人机驾驶航空器(UA: Unmanned Aircraft ),是一架由遥控站管理(包括远程操纵或自主飞行)、不搭 载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性和非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统( UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的 型号设计规定的任何其他部件组成的系统,无人机系统包括地面系统、飞机系统、任 务载荷和无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 无人机和航模的区别 一、定义不同 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航 空模型是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航 空器,就叫航空模型。 二、飞行方式不同 唯一的区别在于是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就是无人机的本身是带了“大脑”飞行,可能“大脑”受限于人 工智能,没有人脑灵光。但是航模的“大脑”始终是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,是中国技术顶尖

一种小型无人机飞控导航系统

一种小型智能化无人机飞控导航系统随着高新技术在武器装备上的广泛应用,无人机的研制正在取得突破性的进展。 世界上最近发生的几次局部战争,凸现出无人机在军事上的实用性。然而,飞控导航系统作为无人机的大脑和神经,在无人机的任务过程中扮演着关键角色。如何设计高可靠和智能化的飞控导航系统,是无人机设计师的终极目标。 目前,国内在起飞重量不超过300kg级的无人机上,飞行控制系统多采用PC104计算机结构或基于单片机两种分立式方案,重量重,体积大,集成化能力差。无人机的飞行控制主要采取两种形式:第一种是采取预先编制的控制程序,来自动控制飞行;第二种是由设置在地面、空中或舰船上的遥控指挥站来指挥。本文要给出了一种基于DSP集成式结构的小型智能型无人机导航飞控设计方案,将两种控制方式进行了有机结合,并已应用于某小型无人机上。经过试验,证明了该方法的可行性,为今后小型化、低成本无人机自动驾驶仪的设计提供了一种新的思路。 1. 系统设计原则 无人机系统应首先具备完整的惯性系统和定位系统,其次应当具有完备的飞行任务管理功能。为了增强飞行控制功能,应当保证不同飞行指令下的多模式的飞行控制能力,以便在人机交互的同时对飞机的稳定进行控制, 进行系统设计时,应当遵循在保证性能的同时尽量减小系统重量和缩小体积,硬件电路设计力求简捷和直接。要求性能与成本兼顾,并保证系统的可靠性。 2. 系统结构介绍 整个无人机系统由GPS/GLONASS接收天线及接收机、机载传感器、无线电接收系统、DSP机载计算机以及执行机构五部分组成。系统功能结构模块如图1所示。 其中GPS/GLONASS接收模块选用微小型接收装置;机载姿态传感器选用贴片式芯片;为了保证自主导航飞行时航向的精度,除了选取航向传感器外,还应用了一个光纤陀螺;无线电接收系统指的是无线电定位及与地面站(GCS)通讯时数据链路的机载接收装置;机载计算机包括3个DSP处理器:GPS接收解码DSP,导航DSP 和飞控DSP;舵机选用Futaba专用舵机。整个飞控导航系统体积仅为180×120×70 mm,总重量不超过1.5kg(包含安装壳体),如图2所示。

九天无人机-地面控制系统简介

九天创新地面控制系统简介 深圳市九天创新科技有限责任公司 二零一六年八月

地面控制系统 1)概述 九天自主研发《地面控制系统》,实现人机实时交互连接,可分别操控固定翼无人机、四旋翼无人机和多旋翼无人机等多种机型。 地面控制系统是无人机的飞行控制终端,拥有友好的操作界面,是给无人机发送各种控制指令、规划飞行任务、实时显示各项飞行指标参数的控制系统。 通过对地面控制系统的操作,能够精准控制无人机的飞行,实时对无人机的飞行状态进行监测,以确保无人机安全起飞和降落,最终顺利地完成航拍作业任务和进行数据管理。 地面控制系统界面 在地面站软件的操作界面中主要包含工具栏、地图视图窗口,侧

边栏等。 工具栏主要是对地图缩放、定位、切换地图类型及目标航点。地图视图窗口可浏览飞行区域的航迹规划状况、飞行区域的地理信息等。而侧边栏主要包含飞行数据、航迹规划和飞行记录三项,分别能够对无人机进行实时监控、规划航迹及飞行记录的下载等。 2)工具栏 目标航点切换:飞行过程中切换飞行目标航点。 地图定位:将地图缩放并定位到回家点或者飞机定位点。 地图缩放:地图放大缩小控制指令。 地图类型:地图类型切换,卫星影像与矢量地图。 3)飞行数据监控 飞行数据监控是通过查看地面站软件右侧的重要飞行数据,对无人机飞行状态进行实时监控。其包括飞行状态、飞行参数。

4)飞行参数 飞行参数包括无人机当前飞行姿态参数、气压高度、目标航点等信息. 屏幕上直观显示飞行状态(横滚俯仰),以及机头指向、当前航飞高度(相对起飞高度)、目标航点(无人机要飞向的航点,到达目标航点后飞向下一航点)。 指令发送 航线规划 在地图中找到规划区域进行航线规划。

无人机导航系统综述

无人机导航系统综述 摘要:本文首先简要介绍几种适用于无人机的导航系统及其实现原理,然后根据各种导航系统的优缺点,阐述近年来已成功应用或正在广泛研究的组合导航方法,最后对无人机导航技术的发展趋势进行分析与预测。 关键词:无人机;导航系统;组合导航;综述 Abstract: Firstly this paper briefly describes some of the navigation systems applicable for UA Vs and their principles of realization. Then some approaches of integrated navigation that has been applied or under research these years are listed based on the advantages and disadvantages of different navigation systems. In the end we analyze and anticipate the development trend of the navigation technology for UA Vs. Key words: UA V, navigation system, integrated navigation, survey 中图分类号: V279+.2 文献标识码: A文章编号: 引言 无人机导航是指无人机在飞行过程中确定其位置和方向的方法或过程,涉及数学、力学、光学、电子学、自动控制及计算机等多个学科[1]。 导航系统的性能直接关系到航行任务的完成[2],因为无人机只能依靠飞行控制系统来实现自动飞行,而飞行控制系统的反馈输入来自于导航信号,即机载计算机对于当前位置和(或)速度的估计,如图1所示。 图1 无人机航迹跟踪工作方式示意图 虽然时至今日已有多种类型的无人机导航技术被研发和使用,但是在应用中需要根据实际需要选择最适合的导航技术。有时单一的导航技术不能满足性能指标的要求,此时需要借助于组合导航技术,将两种或两种以上的导航技术结合起来实现优势互补以提高导航系统的综合性能。 本文将首先简要介绍可应用于无人机的几种导航技术:惯性导航、卫星导航、多普勒导航、天文导航、地磁导航;然后列举出已被应用或理论上可行的组合导航方法;最后根据近年来对导航技术的研究成果分析和预测未来无人机导航技术的发展趋势。 2无人机导航技术的实现原理

无人机概述及系统组成

无人机概述及系统组成 无人机(UAV)的定义 无人机驾驶航空器(UA:Unmanned Aircraft),是一架由遥控站管理(包括远程操纵或自主飞行)、不搭载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性和非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统(UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的型号设计规定的任何其他部件组成的系统,无人机系统包括地面系统、飞机系统、任务载荷和无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 无人机和航模的区别 一、定义不同 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航空模型是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航空器,就叫航空模型。 二、飞行方式不同 唯一的区别在于是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就是无人机的本身是带了“大脑”飞行,可能“大脑”受限于人工智能,没有人脑灵光。但是航模的“大脑”始终是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,是中国技术顶尖的航测航拍无人机设计制造及航飞服务商。

相关文档
最新文档