2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题

2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题
2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题

2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题

智康·刘豪

【前言】第一讲和第二讲我们探讨了有关中考几何综合题的静态问题,相信很多同学已经有所掌握了。但是静态问题的难度最多也就是中等偏上,真正让人抓狂的永远是动态问题。从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。在这一讲,我们着重研究一下动态几何问题的解法,代数方面的动态问题我们将在第七,第八讲来解决。由于有些题目比较难和繁琐,建议大家静下心来慢慢研究,在这些题上花越多时间,中考中遇到类似题目就会省下越多的时间。

第一部分 真题精讲 【例1】(xx ,密云,一模) 如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).

C

M B

(1)当时,求的值;

(2)试探究:为何值时,为等腰三角形.

【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当、运动到秒时,如图①,过作交于点,则四边形是平行四边形.

A

B M C

N

E D

∵,.

∴. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题)

∴. (这个比例关系就是将静态与动态联系起来的关键) ∴ .解得.

【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】

(2)分三种情况讨论:

① 当时,如图②作交于,则有即.(利用等腰三角形底边高也是底边中线的性质) ∵, ∴, ∴, 解得.

A

B M C

N

F D

② 当时,如图③,过作于H . 则, ∴. ∴.

A

B M C

N H

D

③ 当时, 则. .

综上所述,当、或时,为等腰三角形.

【例2】(xx ,崇文,一模)

在△ABC 中,∠ACB=45o.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .

(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证

明你的结论.

(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么? (3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)

【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个

“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。 【解析】:

(1)结论:CF 与BD 位置关系是垂直;

证明如下:AB=AC ,∠ACB =45o,∴∠ABC=45o.

由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90o, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90o.即 CF ⊥BD .

【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。 (2)CF ⊥BD .(1)中结论成立.

理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45o ∠BCF=∠ACB+∠ACF= 90o. 即CF ⊥BD 【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。分类讨论之后利用相似三角形的比例关系即可求出CP.

(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,

∵∠BCA=45o,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴ , ∴, .

②点D 在线段BC 延长线上运动时,

∵∠BCA=45o,可求出AQ= CQ=4,∴ DQ=4+x . 过A 作交CB 延长线于点G ,则. CF ⊥BD , △AQD ∽△DCP ,∴ , ∴, .

【例3】(xx ,怀柔,一模)

已知如图,在梯形中,24AD BC AD BC ==∥,,,点是的中点,是等边三角形. (1)求证:梯形是等腰梯形;

(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式; (3)在(2)中,当取最小值时,判断的形状,并说明理由.

【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方

面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例1一样是双动点问题,所以就需要研究在P,Q 运动过程中什么东西是不变的。题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关

G A

B C D E

F A D C B P M

Q 60

系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢? 当然是利用角度咯.于是就有了思路. 【解析】

(1)证明:∵是等边三角形

∴60MB MC MBC MCB ===?,∠∠ ∵是中点 ∴ ∵ ∴ ∴ ∴

∴梯形是等腰梯形. (2)解:在等边中,

∴120BMP BPM BPM QPC +=+=?∠∠∠∠ (这个角度传递非常重要,大家要仔细揣摩) ∴ ∴ ∴ ∵ ∴

∴ ∴

(设元以后得出比例关系,轻松化成二次函数的样子)

【思路分析2】第三问的条件又回归了当动点静止时的问题。由第二问所得的二次函数,很轻易就可以求出当X 取对称轴的值时Y 有最小值。接下来就变成了“给定PC=2,求△PQC 形状”的问题了。由已知的BC=4,自然看出P 是中点,于是问题轻松求解。 (3)解: 为直角三角形 ∵

∴当取最小值时, ∴是的中点,而 ∴ ∴

以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.

【例4】xx ,门头沟,一模

已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;

(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,.

你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.

(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成

立?(不要求证明)

图3

图2

图1

F

E

A

B

C

D

A

B

C

D

E

F

G

G

F

E

D C

B

A

【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。第二问将△BEF 旋转45°之后,很多考生就想不到思路了。事实上,本题的核心条件就是G 是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线。于是两个全等的三角形出现了。 (1)

(2)(1)中结论没有发生变化,即.

证明:连接,过点作于,与的延长线交于点. 在与中, ∵AD CD ADG CDG DG DG =∠=∠=,,,

∴. ∴. 在与中,

∵DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,, ∴. ∴

在矩形中,

在与中, ∵, ∴. ∴. ∴

M N

图2

A

B

C

D

E

F

G

【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。但是我们不应该止步于此。将这道题放在动态问题专题中也是出于此原因,如果△BEF 任意旋转,哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在△BEF 的旋转过程中,始终不变的依然是G 点是FD 的中点。可以延长一倍EG 到H ,从而构造一个和EFG 全等的三角形,利用BE=EF 这一条件将全等过渡。要想办法证明三角形ECH 是一个等腰直角三角形,就需要证明三角形EBC 和三角形CGH 全等,利用角度变换关系就可以得证了。 (3)(1)中的结论仍然成立.

G

图3

F

E

A

B

C

D

【例5】(xx ,朝阳,一模)

已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处.

(1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值;

(3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).

【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。这一题是朝阳卷的压轴题,第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。同学们需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化。一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。尤其注意的是,本题中给定的比例都是有两重情况的,E 在BC 上和E 在延长线上都是可能的,所以需要大家分类讨论,不要遗漏。

【解析】

(1)CF= 6 cm ; (延长之后一眼看出,EAZY ) (2)① 如图1,当点E 在BC 上时,延长AB ′交DC 于点M , ∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . C A

D

B

∵ =2,∴ CF=3.

∵ AB∥CF,∴∠BAE=∠F.

又∠BAE=∠B′ AE,∴∠B′ AE=∠F.∴ MA=MF.

设MA=MF=k,则MC=k -3,DM=9-k.

在Rt△ADM中,由勾股定理得:

k2=(9-k)2+62,解得 k=MA=.∴ DM=.(设元求解是这类题型中比较重要的方法)

∴ sin∠DAB′=;

②如图2,当点E在BC延长线上时,延长AD交B′ E于点N,

同①可得NA=NE.

设NA=NE=m,则B′ N=12-m.

在Rt△AB′ N中,由勾股定理,得

m2=(12-m)2+62,解得 m=AN=.∴ B′ N=.

∴ sin∠DAB′=.

(3)①当点E在BC上时,y=;

(所求△A B′ E的面积即为△ABE的面积,再由相似表示

出边长)

②当点E在BC延长线上时,y=.

图2

【总结】通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.为更好的帮助考生,笔者总结这种问题的一般思路如下:

第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。

第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。

第三、做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式,如本讲例5当中的比例关系意味着两种不一样的状况,是否能想到就成了关键。

第二部分发散思考

【思考1】xx,石景山,一模

已知:如图(1),射线射线,是它们的公垂线,点、分别在、上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合),在运动过程中始终保持,且.

(1)求证:∽;

(2)如图(2),当点为边的中点时,求证:;

(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.

第25题(1)第25题(2)

【思路分析】本题动点较多,并且是以和的形式给出长度。思考较为不易,但是图中有多个直角三角形,所以很自然想到利用直角三角形的线段、角关系去分析。第三问计算周长,要将周长的三条线段分别转化在一类关系当中,看是否为定值,如果是关于M的函数,那么就是有关,如果是一个定值,那么就无关,于是就可以得出结论了。

【思考2】xx,西城,二模

△A B C是等边三角形,P为平面内的一个动点,B P=B A,若<∠P B C<180°,且∠PBC平分线上的一点D满足DB=DA,

(1)当BP与BA重合时(如图1),∠BPD=°;

(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;

(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.

【思路分析】本题中,和动点P相关的动量有∠PBC,以及D点的位置,但是不动的量就是BD是平分线并且DB=DA,从这几条出发,可以利用角度相等来找出相似、全等三角形。事实上,P点的轨迹就是以B为圆心,BA为半径的一个圆,那D点是什么呢?留给大家思考一下~

【思考3】xx,怀柔,二模

如图:已知,四边形ABCD中,AD//BC,DC⊥BC,已知AB=5,BC=6,cosB=.

点O为BC边上的一个动点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点M,交射线BC于点N,连结MN.

(1)当BO=AD时,求BP的长;

(2)点O运动的过程中,是否存在BP=MN的情况?若存在,请求出当BO为多长时BP=MN;若不存

在,请说明理由;

(3)在点O 运动的过程中,以点C 为圆心,CN 为半径作⊙C,请直接写出当⊙C 存在时,⊙O 与⊙C 的位置关系,以及相应的⊙C 半径CN 的取值范围。

【思路分析】这道题和其他题目不同点在于本题牵扯到了有关圆的动点问题。在和圆有关的问题当中,时刻不要忘记的就是圆的半径始终相等这一个隐藏的静态条件。本题第一问比较简单,等腰梯形中的计算问题。第二问则需要用设元的方法表示出MN 和BP ,从而讨论他们的数量关系。第三问的猜想一定要记得分类分情况讨论。

【思考4】xx ,北京

在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF(如图1) (1)在图1中画图探究:

①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;

②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.

(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S=,求与之间的函数关系式,并写出自变量

的取值范围.

【思路分析】本题是去年中考原题,虽不是压轴,但动点动线一起考出来,难倒了不少同学。事实上就在于如何把握这个旋转90°的条件。旋转90°自然就是垂直关系,于是又出现了一堆直角三角形,于是证角,证线就手到擒来了。第二问一样是利用平行关系建立函数式,但是实际过程中很多同学依然忘记分类讨论的思想,漏掉了很多种情况,失分非常可惜。建议大家仔细研究这道中考原题,按照上面总结的一般思路去拆分条件,步步为营的去解答。

A B C D O P

M N A B C D

(备用图)

第三部分 思考题解析

【思考1解析】

(1)证明:∵ ,∴ .∴ . 又∵ ,∴ . ∴ .∴ ∽.

(2)证明:如图,过点作,交于点, ∵ 是的中点,容易证明. 在中,∵ ,∴ . ∴ .

∴ . (3)解:的周长,. 设,则. ∵ ,∴ .即. ∴ . 由(1)知∽,

∴ m

a a m a --=

22

2. ∴ 的周长的周长.

∴ 的周长与值无关.

【思考2答案】

解:(1)∠BPD= 30 °; (2)如图8,连结CD .

解一:∵ 点D 在∠PBC 的平分线上,

∴ ∠1=∠2.

∵ △ABC 是等边三角形, ∴ BA=BC=AC ,∠ACB= 60°. ∵ BP=BA , ∴ BP=BC . ∵ BD= BD , ∴ △PBD ≌△CBD . ∴ ∠BPD=∠3.

∵ DB=DA ,BC=AC ,CD=CD ,

第25题

∴△BCD≌△ACD.

∴.

∴∠BPD =30°.

解二:∵△ABC是等边三角形,

∴BA =BC=AC.

∵DB=DA,

∴CD垂直平分AB.

∴.

∵BP=BA,

∴BP=BC.

∵点D在∠PBC的平分线上,

∴△PBD与△CBD关于BD所在直线对称.

∴∠BPD=∠3.

∴∠BPD =30°.

(3)∠BPD= 30°或 150°.

图形见图9、图10.

【思考3解析】

解:(1)过点A作AE⊥BC,在Rt△ABE中,由AB=5,cosB=得BE=3.∵CD⊥BC,AD//BC,BC=6,

∴AD=EC=BC-BE=3.

当BO=AD=3时,在⊙O中,过点O作OH⊥AB,则BH=HP

∵,∴BH=.

∴BP=.

(2)不存在BP=MN的情况-

假设BP=MN成立,

∵BP和MN为⊙O的弦,则必有∠BOP=∠DOC.

过P作PQ⊥BC,过点O作OH⊥AB,

∵CD⊥BC,则有△PQO∽△DOC-

设BO=x,则PO=x,由,得BH=,

∴BP=2B H=.

∴BQ=BP×cosB=,PQ=.

∴OQ=.

∵△PQO∽△DOC,∴即24

4

25

76

25

x

x

x

=

-

,得.

当时,BP==>5=AB ,与点P 应在边AB 上不符, ∴不存在BP=MN 的情况.

(3)情况一:⊙O 与⊙C 相外切,此时,0<CN <6;------7分 情况二:⊙O 与⊙C 相内切,此时,0<CN≤.-------8分

【思考4解析】 解:(1)①直线与直线的位置关系为互相垂直. 证明:如图1,设直线与直线的交点为.

∵线段分别绕点逆时针旋转90°依次得到线段,

∴111190PEG CEF EG EP EF EC ∠=∠===°,,.

∵,, ∴.

∴.

∴. ∵, ∴,

∴.

∴.

∴. ∴.

②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直. (2)∵四边形是平行四边形, ∴.

∵461

tan 3

AD AE B ===,,, ∴4

5tan tan 3DE EBC B =∠==,

. 可得.

由(1)可得四边形为正方形. ∴.

①如图2,当点在线段的延长线上时,

A B

C

D O

P

M

N Q H

F D C B A E 图1

G 2

G 1

P 1

H

P 2

∵111

4FG CP x PH x ===-,, ∴1111

1(4)

22

P FG x x S FG PH -=

??=△. ∴.

②如图3,当点在线段上(不与两点重合)时,

∵111

4FG CP x PH x ===-,, ∴1111

1(4)

22

P FG x x S FG PH -=

?=△. ∴2

12(04)2

y x x x =-+<<.

③当点与点重合时,即时,不存在.

综上所述,与之间的函数关系式及自变量的取值范围是或2

12(04)2

y x x x =-+<<.

2019-2020年中考数学重难点专题讲座 第二讲 图形位置关系

【前言】 在中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。综合整个xx 一模来看,18套题中有17套都是很明确的采用圆与三角形问题的一证一算方式来考察。这个信息告诉我们中考中这一类题几乎必考。由于此类题目基本都是上档次解答题的第二道,紧随线段角计算之后,难度一般中等偏上。所以如何将此题分数尽揽怀中就成为了每个考生与家长不得不重视的问题。从题目本身来看,一般都是采取很标准的两问式.第一问证明切线,考察切线判定定理以及切线性质定理及推论,第二问通常会给定一线段长度和一角的三角函数值,求其他线段长,综合考察圆与三角形的知识点。一模尚且如此,中考也不会差的太远。至于其他图形位置关系,我们将会在后面的专题中涉及到.所以本讲笔者将从一模真题出发,总结关于圆的问题的一般思路与解法。

第一部分 真题精讲

【例1】(xx ,丰台,一模)

已知:如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE ⊥BC 于点E . (1)求证:DE 为⊙O 的切线;

(2)若DE =2,tan C =,求⊙O 的直径.

A

B

【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证OD⊥DE。至于第二问则重点考察直径所对圆周角是90°这一知识点。利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。

【解析】

(1)证明:联结OD.∵ D为AC中点, O为AB中点,

A

∴ OD为△ABC的中位线.∴OD∥BC.

∵ DE⊥BC,∴∠DEC=90°.

∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D.

∴ DE为⊙O的切线.

(2)解:联结DB.∵AB为⊙O的直径,

∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°.

∵ D为AC中点,∴AB=AC.

在Rt△DEC中,∵DE=2 ,tanC=,∴EC=. (三角函数的意义要记牢)

由勾股定理得:DC=.

在Rt△DCB 中, BD=.由勾股定理得: BC=5.

∴AB=BC=5.

∴⊙O的直径为5.

【例2】(xx,海淀,一模)

已知:如图,为的外接圆,为的直径,作射线,使得平分,过点作于点.

(1)求证:为的切线;

(2)若,,求的半径.

F

C

【思路分析】本题是一道典型的用角来证切线的题目。题目中除垂直关系给定以外,就只给了一条BA平分∠CBF。看到这种条件,就需要大家意识到应该通过角度来证平行。用角度来证平行无外乎也就内错角同位角相等,同旁内角互补这么几种。本题中,连OA之后发现∠ABD=∠ABC,而OAB构成一个等腰三角形从而∠ABO=∠BAO,自然想到传递这几个角之间的关系,从而得证。第二问依然是要用角的传递,将已知角∠BAD通过等量关系放在△ABC中,从而达到计算直径或半径的目的。

【解析】证明:连接.

F

C

∵ ,

∴ .

∵ ,

∴ . ∴ .

∴ ∥.(得分点,一定不能忘记用内错角相等来证平行)∵ ,

∴ .∴ .

∵ 是⊙O半径,

∴ 为⊙O的切线.

(2)∵ ,,,

∴ .

由勾股定理,得.

∴ .(通过三角函数的转换来扩大已知条件)

∵ 是⊙O直径,

∴ .∴ . 又∵ , ,

∴ . (这一步也可以用三角形相似直接推出BD/AB=AB/AC=sin ∠BAD ) 在Rt △中,==5. ∴ 的半径为.

【例3】(xx ,昌平,一模)

已知:如图,点是⊙的直径延长线上一点,点

在⊙上,且

(1)求证:是⊙的切线; (2)若点是劣弧上一点,与相交 于点,且,, 求⊙的半径长.

【思路分析】 此题条件中有OA=AB=OD ,聪明的同学瞬间就能看出来BA 其实就是三角形OBD 中斜边OD 上的中线。那么根据直角三角形斜边中线等于斜边一半这一定理的逆定理,马上可以反推出∠OBD=90°,于是切线问题迎刃而解。事实上如果看不出来,那么连接OB 以后像例2那样用角度传递也是可以做的。本题第二问则稍有难度,额外考察了有关圆周角的若干性质。利用圆周角相等去证明三角形相似,从而将未知条件用比例关系与已知条件联系起来。近年来中考范围压缩,圆幂定理等纲外内容已经基本不做要求,所以更多的都是利用相似三角形中借助比例来计算,希望大家认真掌握。

【解析】

(1)证明:连接.

∵, ∴.

∴是等边三角形.

∴. ∵, ∴.

∴.

∴ . (不用斜边中线逆定理的话就这样解,麻烦一点而已) 又∵点在⊙上, ∴是⊙的切线 .

(2)解:∵是⊙的直径, ∴.

在中, , ∴设则,

∴ .

C

C

∴ . (设元的思想很重要)

∵,

∴∽ .

∴ .

∵,

∴ .

∴.………………………………………5分

【例4】(xx,密云,一模)

如图,等腰三角形中,,.以为直径作交于点,交于点,,垂足为,交的延长线于点.

(1)求证:直线是的切线;

(2)求的值.

【思路分析】本题和前面略有不同的地方就是通过线段的具体长度来计算和证明。欲证EF 是切线,则需证OD垂直于EF,但是本题中并未给OD和其他线角之间的关系,所以就需要多做一条辅助线连接CD,利用直径的圆周角是90°,并且△ABC是以AC,CB为腰的等腰三角形,从而得出D是中点。成功转化为前面的中点问题,继而求解。第二问利用第一问的结果,转移已知角度,借助勾股定理,在相似的RT三角形当中构造代数关系,通过解方程的形式求解,也考察了考生对于解三角形的功夫。

【解析】

A

F

D

G

B

E

O

C

(1)证明:如图,连结,则.

∴.

∵ ,∴.

∴是的中点.

∵是的中点,

∴.

∵于F.

∴.

∴是的切线.

( 2 ) 连结,∵是直径, ∴.(直径的圆周角都是90°) ∴. ∴. 设,则. 在中,. 在中,.(这一步至关重要,利用两相邻RT △的临边构建等式,事实上也可以直接用直角三角形斜边高分比例的方法) ∴.解得.即. 在中. ∴ .

【例5】xx ,通州,一模

如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆交AD 于F ,交BC 于G ,延长

BA 交圆于E .

(1)若ED 与⊙A 相切,试判断GD 与⊙A 的位置关系,并证明你的结论; (2)在(1)的条件不变的情况下,若GC =CD =5,求AD 的长.

G F

E

D

C

B

A

【思路分析】本题虽然是圆和平行四边形的位置关系问题,但是依然考察的是如何将所有条件放在最基本的三角形中求解的能力。判断出DG 与圆相切不难,难点在于如何证明。事实上,除本题以外,门头沟,石景山和宣武都考察了圆外一点引两条切线的证明。这类题目最重要是利用圆半径相等以及两个圆心角相等来证明三角形相似。第二问则不难,重点在于如何利用角度的倍分关系来判断直角三角形中的特殊角度,从而求解。 【解析】

(1)结论:与相切6543

21G

F E

D

C

B

A

证明:连接 ∵点、在圆上, ∴

∵四边形是平行四边形, ∴ ∴ ∵ ∴

∴ (做多了就会发现,基本此类问题都是要找这一对角,所以考生要善于把握已知条件往这个上面引) 在和 12AE AG AD AD =??

∠=∠??=?

∴ ∴ ∵与相切 ∴ ∴ ∴

∴与相切

(2)∵,四边形是平行四边形 ∴,, ∵ ∴ ∴

∴ (很多同学觉得题中没有给出特殊角度,于是无从下手,其实用倍分关系放在RT 三角形中就产生了30°和60°的特殊角) ∴

∴ .

【总结】 经过以上五道一模真题,我们可以得出这类题型的一般解题思路。要证相切,做辅助线连接圆心与切点自不必说,接下来就要考虑如何将半径证明为是圆心到切线的距离,

即“连半径,证垂直”。近年来中考基本只要求了这一种证明切线的思路,但是事实上证明切线有三种方式。为以防遇到,还是希望考生能有所了解。

第一种就是课本上所讲的先连半径,再证垂直。这样的前提是题目中所给条件已经暗含了半径在其中。例如圆外接三角形,或者圆与线段交点这样的。把握好各种圆的性质关系就可以了。

第二种是在题目没有给出交点状况的情况下,不能贸然连接,于是可以先做垂线,然后通过证明垂线等于半径即可,就是所谓的“先证垂直后证半径”。例如大家看这样一道题,如图△ABC中,AB=AC,点O是BC的中点,与AB切于点D,求证:与AC也相切。

该题中圆0与AC是否有公共点是未知的,所以只能通过O做AC的垂线,然后证明这个距离刚好就是圆半径。如果考生想当然认为有一个交点,然后直接连AC与圆交点这样证明,就误入歧途了。

第三种是比较棘手的一种,一方面题目中并未给出半径,也未给出垂直关系,所以属于半径和垂直都要证明的题型。例如看下面一道题:

如图,中,AB=AC,=,O、D将BC三等分,以OB为圆心画,求证:与AC相切。

本题中并未说明一定过A点,所以需要证明A是切点,同时还要证明O到AC垂线的垂足和A是重合的,这样一来就非常麻烦。但是换个角度想,如果连接AO之后再证明AO=OB,AO⊥AC,那么就非常严密了。

(提示:做垂线,那么垂足同时也是中点,通过数量关系将AO,BO都用AB表示出来即可证明相等,而△AOC中利用直角三角形斜边中线长是斜边一半的逆定理可以证出直角。)

至于本类题型中第二问的计算就比较简单了,把握好圆周角,圆心角,以及可能出现的弦切角所构成的线段,角关系,同时将条件放在同一个RT△当中就可以非常方便的求解。总之,此类题目难度不会太大,所以需要大家做题速度快,准确率高,为后面的代几综合体留出空间。

相关主题
相关文档
最新文档