发电厂电气主接线课程设计

发电厂电气主接线课程设计
发电厂电气主接线课程设计

发电厂电气主接线课程设计

题目:2*300MW火电厂主接

线设计

学生姓名:

学号:

专业:

班级:

指导教师:

摘要

随着我国经济发展,对电的需求也越来越大。电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。

本文将针对某火力发电厂的设计,主要是对电气方面进行研究。对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。

关键词:发电厂;火电厂;电气主接线;

目录

摘要 (2)

发电厂课程设计任务书 (4)

第一章引言 (5)

1.1研究背景及意义 (5)

1.2电气主接线的基本要求及形式 (6)

第二章电气主接线设计 (9)

2.1设计步骤 (9)

2.2设计方案 (9)

2.3方案分析 (10)

第三章厂用电设计 (11)

3.1厂用电 (11)

3.2厂用电分类 (12)

3.3厂用电设计原则 (13)

3.4厂用电源选择 (13)

3.5厂用电接线形式 (14)

第四章电气设备的选择 (15)

4.1电气设备选择的一般规则 (15)

4.2按正常工作条件选择电器 (15)

4.3按短路情况校验 (17)

4.4断路器的选择 (17)

4.5隔离开关的选择 (18)

4.6电流互感器的选择 (18)

4.7电缆的选择 (20)

第五章设计感想 (21)

发电厂课程设计任务书

设计题目:2*300MW火电厂主接线设计

设计原始资料:1、厂用电为总容量7%

2、两台主变

3、220KV 5回出线

4、110KV 7回出线

设计内容:1、对水电站电气主接线进行论述

2、选择水电站电气主接线方式,并说明

3、对主接线主要电气设备选型计算,校验计算

4、主要点短路电流计算

5、对主变保护进行论述

设计要求:1、主接线论证,方案比较

2、主接线设计正确

3、设备选型科学并有依据

4、图纸规范

5、独立完成

6、参阅相关资料

设计时间安排:1、主接线初步设计1天

2、短路电流计算1天

3、设备选择2天

4、汇制图纸书写说明书2天

第一章引言

1.1研究背景及意义

电力工业是国民经济的重要部门之一,是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,作为国民经济的其他各部门的快速,稳定发展提供足够的动力,其发展水平是反映国家经济发达程度的重要标志,又和广大人民群众的日常生活有着密切的关系。电力是工业的先行,电力工业的发展必须优先于其他的工业部门,整个国民经济才能不断前进。

近几年随着我国工业的高速发展,我国电力工业超常规发展,每年装机容量超过6000万千瓦,30万千瓦、60万千瓦亚临界火电机组成为我国电网的主力

机组,百万千瓦的超超临界火电机组已经在建。目前,我国30万千瓦、60万千瓦的火力发电机组,70万千瓦的水力发电机组,在国际招标中中标成功率大于90%以上。这几年电力工业之所以能飞速发展,其重要原因是,为中国电力市场提供的火力发电设备主要立足于国内生产。这一观点得到国内各发电公司以及电厂老总们的认同。今天电气制造企业的国内用户率已达到75%以上。

但是我国人均用电水平远低于发达国家,与完成其工业化进程国家的电力指标相比,我国经济发展正处于工业化进程的中后期,我国用电远低于国际水平.因此我国电力工业必须持续,稳步地大力发展,一方面要加强电源建设,搞好“西电东送”,确保电力先行,另一方面要深化电力体制改革,实施厂网分家。

本设计要求能运用电机、发电厂、变电所电气部分,高电压技术,电力系统自动化,电力系统继电保护等专业知识解决实际问题,为本次设计做了充分的知识原料准备。

1.2电气主接线的基本要求及形式

要求:

(1)保证必要的供电可靠性和电能质量

安全可靠是电力生产的首要任务,停电不仅使发电厂造成损失,而且对国民经济各部门带来的损失将更严重,往往比少发电能的损失大几十倍,至于导致人身伤亡、设备损坏、产品报废、城市生活混乱等经济损失和政治影响,更是难以估量。因此,主接线的接线形式必须保证供电可靠。

(2)具有一定的灵活性和方便性

主接线不仅正常运行时能安全可靠地供电,而且在系统故障或设备检修及故障时,也能适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使停电时

间最短,影响范围最小。

(3)具有经济性

在主接线设计时,在满足供电可靠的基础上,尽量使设备投资费和运行费为最少,注意节约占地面积和搬迁费用,在可能和允许条件下应采取一次设计,分期投资、投产,尽快发挥经济效益。

(4)具有发展和扩建的可能性

在设计主接线时应留有余地,不仅要考虑最终接线的实现,同时还要兼顾到分期过渡接线的可能和施工的方便。

形式:

1)单母线及其分段或带旁路的单母线接线

A 单母线:特点是整个配电装置只有一组母线,所有电源和出线都在同一组母线上。有简单、清晰、设备少、投资少、运行操作且有利于扩建等优点,但可靠性及灵活性较差。适用于出线较少、电压等级较低6~10kv的配电装置。

B 单母线分段:段数分得越多,故障是造成的停电范围越小,但使用的断路器的数量越多,且配电装置和运行也越复杂,通常以2~3段为宜。这种接线广泛用于中、小容量发电厂和变电站的6~10kv接线中。

C 单母线带旁路接线:断路器经过长期运行和切断数次短路电流后都需要检修。为了能使采用单母线分段的配电装置检修断路器时,不至中断该回路供电,可采用单母线分段带有专用旁路断路器的旁路母线接线,这可以极大地提高供电的可靠性,但会增加爱一台旁路断路器的投资。

2)双母线及其分段或带旁路的双母线接线

A 双母线:有两组母线,一组为工作母线,一组为备用,任一电源和出线

的电路都经过一台断路器和两组母线隔离开关分别与两组母线连接,提高可靠性和灵活性。便于扩建,但接线比较复杂,隔离开关数目多,增大投资。适用于A:35-60KV出线数目超过8回;B:110-220KV出线数目为5回以上。

B 双母线分段:为缩小母线故障的影响范围,用分段断路器将工作母线分段,每段用母联断路器与备用母线相连,有较高的可靠性和灵活性,但投资较多。适用于配电装置进出线总数达10-14回时,一组母线分段,配电装置进出线总数达15回以上时,两组母线分段。

C 双母线带旁路接线:双母线接线可以用母联断路器临时代替出现断路器工作,但出线数目较多时,母联断路器经常被占用,降低了工作的可靠性和灵活性,为此可以设置旁路母线。

3) 一台半断路器接线

每一路经一台断路器接至一组母线,两回路间设一联络断路器,形成一个“串”,两回路共用三台断路器。

接线特点:

A:3/2接线兼有旁路环行接线和双母线接线的优点,有高的可靠性和灵活性。

B:与双母线带旁路相比它的配电装置结构简单,占地面积小,土建投资少。

C:隔离开关仅做隔离电源用,不易产生误操作。

第二章电气主接线设计

2.1设计步骤

电气主接线的一般设计步骤如下:

(1)对设计依据和基础资料进行综合分析;

(2)选择发电机台数和容量,拟定可能采用的主接线形式;

(3)确定主变压器的台数和容量;

(4)厂用电源的引接;

(5)论证是否需要限制短路电流,并采取什么措施;

(6)对选出来的方案进行技术和经济综合比较,确定最佳主接线方案。

2.2设计方案

300MW发电机G-1,G-2采用单元接线通过双绕组的变压器与220KV母线相连,220KV电压级出线为5回,因此其供电要充分考虑其可靠性,所以我们采用双母线接线。这样一来就避免了断路器检修时,不影响对系统的供电,断路器或母线故障以及母线检修时,减少停运的回路数和停运时间,保证了可靠的供电。有原始资料可知发电机不与110KV的母线相连,且110KV电压出线为7回,故在220KV、110KV及厂用电6KV的三个等级上采用的联络变压器为三相三绕

组变压器相连,110KV母线采用双母接线。

2.3方案分析

可靠性:1)接线简单,设备本身故障率少;

2)故障时,停电时间较长。

灵活性:1)运行方式相对简单,灵活性差;

2)各种电压级接线都便于扩建和发展。经济性:1)设备相对少,投资小。

电气主接线图:

第三章厂用电设计

3.1厂用电

发电厂中为了保证主要设备正常运行设置了许多辅助机械设备,它们大都是由电动机拖动的。数量多,容量大小不等,这些电动机以及运行、操作、试验、

修配、照明等用电设备的总耗电量,统称为厂用电或自用电。

厂用电系统的可靠性,对发电厂乃至整个电力系统的可靠运行都有直接的影响。

任何情况下,厂用电都是最重要的负荷,必须能满足发电厂正常运行、事故处理和检修试验等的需求,尽量缩小厂用电系统发生故障时的影响范围,避免因此造成全厂停电事故。

厂用电耗电量占同一时期发电厂全部发电量的百分数,称为厂用电率。一般凝汽式火电厂厂用电率为5%~8%,热电厂为8%~10%,水电厂为0.5%~2%。

厂用电率是发电厂的一项重要经济指标。降低厂用电率即可降低发电成本,增大对系统的售电量,有着巨大的经济效益

3.2厂用电分类

(1)I 类负荷

短时停电会造成人身伤亡或设备安全,机组停运或出力降低的负荷。如火电厂中的给水泵、凝结水泵、循环水泵、吸风机、送风机、给粉机以及水电厂中的调速器、压油泵、润滑油泵等。通常设置两套设备,互为备用,分别接到两个独立电源的母线上。要求有两个电源供电,采取自动投入方式。

(2)II类负荷

允许短时停电(几秒至几分钟),但较长时间的停电有可能损坏设备或影响机组的正常运行。如火电厂中的输煤设备、工业水泵、疏水泵、灰浆泵和化学水处理设备,水

电厂中的吊车、整流设备、漏油泵等。Ⅱ类负荷一般由两段母线供电,采用手动切换。

(3)III类负荷

允许较长时间停电而不会直接影响生产。如试验室、油处理室及中央修配厂的用电设备等。由一个电源供电。

(4)事故保安负荷

在200MW及以上机组的大容量电厂中,自动化程度较高,要求在事故停机过程中及停机后的一段时间内,仍必须保证供电,否则可能引起主要设备损坏、重要的自动控制失灵或危及人身安全的负荷,称为事故保安负荷。

(5)不间断供电负荷

在机组运行期间,以及正常或事故停机过程中,甚至在停机后的一段时间内,需要连续供电并具有恒频、恒压特性的负荷,称为不间断供电负荷。

3.3厂用电设计原则

厂用电的设计原则与主接线的设计原则基本相同,主要有:

(1)接线应保证对厂用负荷可靠和连续供电,使发电厂主机安全运转。

(2)接线应灵活的适应正常、事故、检修等各种运行方式的要求。

(3)厂用电源的对应供电性。

(4)设计还应适当注意其经济性和发展的可能性并积极慎重的采用新技术、新设备,使厂用电接线具有可行性和先进性。

(5)在设计厂用电接线时,还应对厂用电的电压等级、中性点接地方式、厂用电源及其引线和厂用电接线形式等问题,进行分析和论证。

3.4厂用电源选择

1)厂用电电压等级的确定:厂用电供电电压等级是根据发电机的容量和额定电压、厂用电动机的额定电压及厂用网络的可靠、经济运行等诸方面因素,经技术、经济比较后确定。因为发电机的额定容量为300MW,确定厂用电电压等级采用6kV的等级。

2)厂用电系统接地方式:厂用变采用不接地方式,高压和低压都为三角电压,

当容量较小的电动机采用380V时,采用二次厂用变,将6kV变为380V,中性点直接接地;启备变采用中性点直接接地,高压侧为星型直接接地,低压侧为三角电压。

3)厂用工作电源引接方式:因为发电机与主变压器采用单元接线,高压厂用工作电源由该单元主变压器低压侧引接。

4)厂用备用电源和启动电源引接方式:采用两台启备变,独立从220kV母线引至启备变,启备变采用低压侧双绕组分裂变压器。

5)确定厂用电系统:厂用电系统采用如图方案一和方案二,厂用电在两个方案中都是一样。

3.5厂用电接线形式

300WM机组采用单独设置二段公用负荷母线,集中供全厂公用负荷用电,该公用母线段正常由启动备用变压器供电。

优点:公用负荷集中,无过渡问题,各单元机组独立性强,便于各机组厂用母线清扫。

缺点:由于公用负荷集中,并因启动备用变压器要用工作变压器作备用(若

无第二台启动备用变压器作备用时),因此,启动备用变压器和工作变压器均较方案I变压器的容量大,配电装置也增多,投资较大。

第四章电气设备的选择

4.1电气设备选择的一般规则

(1)应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展。(2)应按当地环境条件校核。

(3)应力求技术先进和经济合理。

(4)与正个工程的建设标准应协调一致。

(5)同类设备应尽量减少品种。

(6)用新的产品均应有可靠的试验数据,并经正式鉴定合格。

4.2按正常工作条件选择电器

(1)额定电压和最高工作电压

所选用的电器允许最高工作电压不得低于所接电网的最高运行电压,即

U alm ≥U sm。

一般电器允许的最高工作电压:当额定电压在220KV及以下时为1.15U N;额定电压是330~500KV时是1.1U N。而实际电网的最高运行电压U sm一般不会超过电网额定电压的1.1U Ns,因此在选择电器时,一般可按电器额定电压U N不低于装置地点电网额定电压U N S的条件选择,即

U N≥U Ns

(2)额定电流

电器的额定电流I N是指在额定周围环境温度θ。下,电器的长期允许电流。

I N不应该小于该回路在各种合理运行方式下的最大持续工作电流I max,即

I N ≥I max

由于发电机、调相机和变压器在电压降低5%时,出力保持不变,故其相应回路的I max为发电机、调相机或变压器的额定电流的1.05倍;若变压器有过负荷运行可能时,I max应按过负荷确定;母联断路器回路一般可取母线上最大一台发电机或变压器的I max;母线分段电抗器的I max应为母线上最大一台发电机跳闸时,保证该段母线负荷所需的电流,或最大一台发电机额定电流的50%~80%;出线回路的I max除考虑正常负荷电流外,还应考虑事故时由其他回路转移过来的负荷。此外,还与电器的装置地点、使用条件、检修和运行等要求,对电器进行种类和形式的选择。

(3)按当地环境条件校核

在选择电器时,还应考虑电器安装地点的环境(尤须注意小环境)条件,当气温,风速,温度,污秽等级,海拔高度,地震列度和覆冰厚度等环境条件超过

一般电器使用条件时,应采取措施。我国目前生产的电器使用的额定环境温度θ0=+40℃,如周围环境温度高于+40℃(但≤+60℃)时,其允许电流一般可按每增高1℃,额定电流减少1.8%进行修正,当环境温度低于+40℃时,环境温度每降低1℃,额定电流可增加0.5%,但其最大电流不得超过额定电流的20%。

4.3按短路情况校验

(1)短路热稳定校验

短路电流通过电器时,电器各部分的温度应不超过允许值。满足热稳定的

条件为I t2 t≥Q k

式中Q k —短路电流产生的热效应

I t、t—电器允许通过的热稳定电流和时间。

(2)电动力稳定校验

电动力稳定是电器承受短路电流机械效应的能力,亦称动稳定。

满足动稳定条件为:

I es≥I sh

式中I sh—短路冲击电流有效值;

I es—电器允许的动稳定电流的有效值;

4.4断路器的选择

断路器的选择,除满足各项技术条件和环境条件外,还应考虑到要便于安装调试和运行维护,并经济技术方面都比较后才能确定。根据目前我国断路器的生产情况,电压等级在10KV~220KV的电网一般选用少油断路器,而当少油断路器不能满足要求时,可以选用SF6断路器。

(1)SF6断路器的特点:

1.灭弧能力强;介质强度高,单元灭弧室的工作电压高,开断电流大然后时间短。

2.开断电容电流或电感电流时,无重燃,过电压低。

3.电气寿命长,检修周期长,适于频繁操作。

4.操作功小,机械特性稳定,操作噪音小。

(2)选择原则:

1. I max≥1.05I N

2. U N≥U Ns

因此,220KV处断路器的额定电压取220kV,最高工作电压选用252kV,额定电流选用1600A,开断电流选用40 kA,采用LW-220;110KV处断路器的额定电压取110KV,最高工作电压选126KV,额定电流采用1600,开断电流采用31.5KA,采用LW11-110。

4.5隔离开关的选择

采用GW7-220和GW5-110W,GW7-220额定电流为1250A,动稳定电流为80KA;GW5-110W额定电流为1600A,动稳定电流为80A。

4.6电流互感器的选择

电流互感器的选择和配置应按下列条件:

(1)型式:电流互感器的型时应根据使用环境条件和产品情况选择。对于6~20KV 屋内配电装置,可采用瓷绝缘结构和树脂浇注绝缘结构的电流互感器。对于35KV 及以上配电装置,一般采用油浸式瓷箱式绝缘结构的独立式电流互感器。有条件时,应尽量采用套管式电流互感器。

(2)一次回路电压:U N≥U Ns

(3)一次回路电流:I 1N ≥I max

(4)准确等级:要先知道电流互感器二次回路所接测量仪表的类型及对准确等级的要求,并按准确等级要求高的表计来选择。

(5)二次负荷:互感器按选定准确级所规定的额定容量

S 2N 应大于或等于二 次侧所接负荷I 2

2N Z 2L ,即

S 2N ≥I 22N Z 2L

Z 2L =r a +r re +r L +r c

式中,r a 、r re 分别为二次侧回路中所接仪表和继电器的电流线圈电阻(忽略电抗);r c 为接触电阻,一般可取0.1?;r L 为连接导线电阻。

(6)动稳定:

内部动稳定校验式为:i es ≥i sh 或2I 1N K es ≥i sh

式中 i es 、K es —电流互感器的动稳定电流及动稳定电流倍数,有制造厂提供。 外部动稳定校验式为

F al ≥0.5×1.73×10-7i 2sh a L

(N)

式中 F al —作用于电流互感器瓷帽端部的允许力,有制造厂提供;

L —电流互感器出现端至最近的一个母线支柱绝缘子之间的跨距; a —相间距离;

0.5—系数,表示互感器瓷套端部承受该跨上电动力的一半。

(7)热稳定:电流互感器热稳定能力常以1s 允许通过的热稳定电流I t 或一次额定电流I 1N 的倍数K t 来表示,热稳定校验式为

I 2t ≥Q k 或 (K t I 1N )2

≥Q k

4.7电缆的选择

电缆应按下列条件选择及校验

(1) 型式:应根据敷设环境及使用条件选择电缆型式。

1) 明敷 (包括架空、隧道、沟道内等)的电缆,一般选用裸钢带铠装

或塑料外护层电缆。在易受腐蚀地区应选用塑料外户层电缆。在需要

使用钢带铠装电缆时,宜选用二级外户层型式。

2) 直埋敷设时,一般选用钢带铠装电缆。在潮湿或腐蚀性土壤的地区,

应带有塑料外护层。其它地区可选用黄麻外护层。

3) 三相交流系统的单芯电力电缆,要求金属外户层采用一端接地时,

在潮湿地区,外护层宜选用塑料挤包的型式。

电力电缆除充油电缆外,一般采用三芯铝芯电缆。

(2) 按额定电压选择:m ax .g U ≤n U

(3) 按最大持续工作电流选择电缆截面S :

m ax .g I ≤K y I

K =1

2T T T T M M -- 上二式中 K ——温度修正系数;

M T ——电缆芯最高工作温度(℃);

1T ——对应与额定载流量的基准环境温度(℃);

2T ——实际环境温度;

y I ——对应于所选用电缆截面S 、环境温度为+25°C 时,电缆长期允许载流量(A )。

[百度文库]发电厂电气部分课程设计

西藏农牧学院发电厂电气部分课程设计 某小型水电站电气初步设计 姓名:潘涛 班级: 2014级电自一班学号: 2014601106 院系:电气工程学院 指导教师:李萍老师

摘要 本篇课程设计主要是对某水电站电气部分的设计,包括主接线方案的设计,发电机出口断路器选择,短路电流计算,母线型号、规格的确定。通过对水电站的主接线设计,主接线方案论证,短路电流计算,电气设备选择校验,母线型号及参数的确定,较为细致地完成电力系统中水电站设计。 限于本次课程设计的具体要求和时间限制,对其他方面的分析较少,这有待于在今后的学习和工作中继续进行研究。通过本次课程设计,我们小组也做出了自己的总结,以便于更好的完成接下来的学业任务。 关键字:电气主接线,短路电流计算,电气设备选择校验。

目录 第一章设计任务书--------------------------------------------------------------------------------- 2 一、设计题目 ----------------------------------------------------------------------------------- 2 二、设计原始材料----------------------------------------------------------------------------- 2 三、设计内容: -------------------------------------------------------------------------------- 2 四、设计要求: -------------------------------------------------------------------------------- 2 第二章主接线方案确定 -------------------------------------------------------------------------- 3 一、电气主接线 -------------------------------------------------------------------------------- 3 二、拟定主接线方案-------------------------------------------------------------------------- 4 三、确定主接线方案 ------------------------------------------------------------------------ 6 第三章短路电流计算------------------------------------------------------------------------------ 9 一、短路计算目的 --------------------------------------------------------------------------- 9 二、短路计算概述 --------------------------------------------------------------------------- 9 三、短路计算的一般规定 --------------------------------------------------------------- 10 四、短路计算-------------------------------------------------------------------------------- 11 第四章发电机出口端断路器选择 ----------------------------------------------------------- 15 一、断路器的选择 ------------------------------------------------------------------------- 15 第五章母线型号、规格的确定--------------------------------------------------------------- 19 一、6.3KV母线的选择 --------------------------------------------------------------------- 19 二、10KV母线的选择----------------------------------------------------------------------- 21 三、母线选择结果 ------------------------------------------------------------------------- 22 第六章结束语 ------------------------------------------------------------------------------------- 24 一、水电站电气部分设计结论----------------------------------------------------------- 24 二、设计要点及总结------------------------------------------------------------------------ 24 三、心得与收获 ------------------------------------------------------------------------------ 25

发电厂课程设计(DOC)

长沙理工大学城南学院 教师批阅发电厂电气主系统 课程设计(论文)任务书 城南学院(系)电气工程及其自动化专业1104 班 题目3×200MW大型火电厂电气主接线设计 任务起止日期;2014 年06月16 日~ 2013年06 月27 日 学生姓名学号 指导教师

教师批阅 一绪论 电能是经济发展最重要的一种能源,可以方便、高效地转换成其他能源 形式。提供电能的形式有水利发电,火力发电,风力发电,随着人类社会跨 进高科技时代又出现了太阳能发电,磁流体发电等。但对于大多数发展中国 家来说,火力发电仍是今后很长一段时期内的必行之路。 火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的 环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不 可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力 的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电 技术必须不断提高发展,才能适应和谐社会的要求。 “十五”期间我国火电建设项目发展迅猛。2001年至2005年8月,经国 家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年 审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8 月份,审批项目213个,装机容量168546MW,同比增长420%。如果这些火 电项目全部投产,届时我国火电装机容量将达5.82亿千瓦,比2000年增长 145%。 2006年12月,全国火电发电量继续保持快速增长,但增速有所回落。当 月全国共完成火电发电量2266亿千瓦时,同比增长15.5%,增速同比回落1 个百分点,环比回落3.3个百分点;随着冬季取暖用电的增长,火电发电量环 比增长较快,12月份与上月相比火电发电量增加223亿千瓦时,环比增长 10.9%。2006年全年,全国累计完成火电发电量23186亿千瓦时,同比增长 15.8%,增速高于2005年同期3.3个百分点。 随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加 大力度调整火力发电行业的结构。

发电厂电气部分课程设计

《发电厂电气部分》课程设计100MW火力发电厂电气部分 学院:交通学院 姓名:高广胜 学号:1214010004 专业:13能源与动力工程 指导老师:马万伟 时间:2015年12月

课程设计任务书 一、设计题目 100MW火力发电厂电气部分设计 二.设计内容 1. 对发电厂在系统中的地位和作用及所供用户的分析; 2. 选择发电厂主变压器的台数、容量、型式; 3. 分析确定各电压侧主接线形式; 4. 分析确定厂用电接线形式; 5. 进行选择设备和导体所必须的载流导体的选择; 6. 选择变压器高、中、低压侧的断路器、隔离开关; 7. 选择配电装置型式及设计; 8. 用AutoCAD绘制发电厂电气主接线图。 三、课程设计的要求与数据 1、根据电力系统的发展规划,拟在某地区新建一座装机容量为100MW的凝汽式火力发电厂,发电厂安装1台100MW机组,发电机端电压为10.5kV。电厂建成后以10kV电压供给本地区负荷,其中有钢厂、毛纺厂等,最大负荷为68MW,最小负荷为34MW,最大负荷利用小时数为4200小时,全部用电缆供电,每回负荷不等,但平均在4MW左右,送电距离为3~6km。并以35kV电压供给附近的水泥厂用电,其最大负荷为58MW,最小负荷为32MW,最大负荷利用小时数为4500小时。负荷中I类负荷比例为30%,II类负荷为40%,III类负荷为30%。 2、计划安装两台100MW的汽轮发电机组,功率因数为0.85,厂用电率为6%,机组年利用小时Tmax=5800小时。 5、气象条件:绝对最高温度为35℃;最高月平均温度为25℃;年平均温度为12.7℃;风向以西北风为主. =165kA2s,未知系数0.8-1.2., 6、以100MVA为基准值,母线上阻抗为1.95,Q k 三相短路电流=4.5kA,短路电压=6KV,Sj=100MV.A,Uj=10.5kv. 四、课程设计应完成的工作 1、设计说明书、计算书一份; 2、主接线图一张;

发电厂课程设计

1原始材料的分析 1.1系统总体与负荷资料分析 变电站的作用可以简要的概括为一下五点变换电压等级、汇集电流、分配电能、控制电能的流向、调整电压。为保证电能的质量以及设备的安全,在变电站中还需进行电压调整、潮流,电力系统中各节点和支路中的电压、电流和功率的流向及分布,控制以及输配电线路和主要电工设备的保护。 (一)建设性质和规模 本所位于城市边缘,供给城,市和近郊工业、农业及生活用电,其性质为区域变电站。 电压等级:110/35/10KV 线路回数:110KV 近期2回,远景发展2回;35KV 近期4回,远景发展2回;10KV 近期9回,远景发展2回。 (二)电力系统接线图 S1=200MVA 2=0.6 图1.1 系统接线图 (三) 负荷资料 (负荷同时率取0.8,线损取5%,平均功率因数取0.8)

表1.1负荷资料 四、设计任务

1、总体分析与负荷分析; 2、主变台数、容量、型式选择; 3、各电压等级电气主接线方案设计(两个方案选其一);、 4、短路电流计算(110KV 、35KV 、10KV ); 5、电气设备选择(母线、断路器、隔离开关、互感器配置、各电压等级配电装置、避雷器)。 五、报告容 1、课程设计报告(格式及容按照要求); 2、电气主接线图(AutoCAD 绘制)。 2 主变台数、容量、型式选择 2.1 主变压器台数确定 由原始材料知主变压器有S1和S2两台 (1)绕组接线组别的确定 绕组连接方式的原则,主变压器接线组别一般都采用YN ,d11常规接线。 2.2主变的容量计算 max 1 1 (/cos /cos )(1%)m n t i i j j i j S k p p ??===++?∑∑ (2.1) 351212 12+S +++ =6.1 6.17.2*2 3.3 3.8933.79.kv S S S S S S MV A =+++++=煤煤备备乡乡 10112 ++++++ ++++ =9.62*2108.97.3109.62 6.887.5 5.13*289.7.kv S S S S S S S S S S S S MV A =++++++++=工业工业2工业3工业4工业5工业6工业7工业8郊区备用备用max 0.8*(89.733.79)*(15%)103.7.S MV A =++= ()max 1(0.6~0.7)N n S S -≥ (2.2) max (0.6~0.7)62.22~72.59.N S S MV A ≥≥

火力发电厂电气主接线设计

辽宁工程技术大学 发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部)电气与控制工程学院 专业班级 学号 姓名 日期

课程设计成绩评定表

原始资料 某火力发电厂原始资料如下:装机4台,分别为供热式机组2?50MW(U N= 10.5kV),凝汽式机组2?600MW(U N = 20kV),厂用电率6.5%,机组年利用小时Tmax = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷26.2MW,最小负荷21.2MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷256.2MW,最小负荷206.2MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

本设计是电厂主接线设计。该火电厂总装机容量为2 ? 50+2 ? 600=1300MW。厂用电率6.5%,机组年利用小时T max = 6500h。根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案进行可靠性、经济性和灵活性比较后,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校检设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置

【第一组】发电厂电气部分课程设计

发电厂电气部分课程设计 学院:电气与信息工程学院 专业班级:电气工程及其自动化班xxx班 组号:第x组 指导老师:xxx 时间:2015.7

摘要 本设计是电厂主接线设计。该火电厂总装机容量为2×50+2×150+300=1300MW。厂用电率6%,机组年利用小时 T=6500h。根据所给出的原始资料拟定两种电气主m ax 接线方案,然后对比这两种方案进行可靠性、经济型和灵活性比较厚,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校验设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置。

目录 1设计任务书 (3) 1.1设计的原始资料 (3) 1.2设计的任务与要求 (3) 2电气主接线 (5) 2.1系统与负荷资料分析 (5) 2.2主接线方案的选择 (5) 2.2.1方案拟定的依据 (5) 2.2.2主接线方案的拟定 (7) 2.3 主变压器的选择与计算 (8) 2.3.1变压器容量、台数和型式的确定原则 (8) 2.3.2变压器的选择与计算 (9) 3短路计算 (10) 3.1短路计算的一般规则 (10) 3.2短路电流的计算 (10) 3.2.1各元件电抗的计算 (10) 3.2.2 等值网络的化简 (11) 4电气设备的选择 (16) 4.1电气设备选择的一般原则 (16) 4.2电气设备的选择条件 (16) 4.2.1按正常工作条件选择电气设备 (16) 4.2.2按短路情况校验 (17) 4.2.3 断路器和隔离开关的选择 (19) 4.2.4 电流互感器的选择 (20) 5结束语 (21) 6参考文献 (22)

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

发电厂电气部分课程设计

《发电厂电气部分》课程设计报告110kV降压变电站电气主接线设计 ? 姓名:谭飞翔

& 班级:0314405 学号:0

课程设计是在完成专业课学习后实现培养目标的一个重要教学环节,也是对我们所学知识综合运用的一次测试。通过课程设计初步提高自身综合素质和工程实践能力,使所学的知识得到进一步巩固和升华。同时也对培养我们的敬业品德、独立工作、独立思考、理论联系实际作风具有深远的影响。 根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。该变电站设有两台主变压器,站内主接线分为110kV、35kV 和10kV三个电压等级。110KV电压等级采用双母分段线接线,35KV电压等级采用双母接线,10KV电压等级采用单母线分段接线。 本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。 本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV高压配电装置设计规范》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。

1 电气主接线方案设计 (1) 电气主接线方案设计原则及要求 (1) 电气主接线方案设计原则 (1) 电气主接线的基本要求 (1) 可靠性 (1) 灵活性 (2) 经济性 (2) 主接线方案设计 (2) 各电压等级主接线方案选择与论证 (2) 主接线方案的论证 (2) 主接线方案的选择 (3) 接线图示例和总接线图 (4) 各电压等级接线图示例 (4) 电气总接线图 (5) 2 主变压器的选择 (6) 主变压器的选择 (6) 主变压器的台数及容量的确定原则 (6) 主变压器台数及容量的确定 (6) 台数的确定 (6) 容量的确定 (6) 主变压器型号的确定 (7)

火力发电厂电气主接线设计教学提纲

火力发电厂电气主接 线设计

原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 6.3kV),凝汽式机组2 ? 100MW(U N = 10.5kV),厂用电率6.2%,机组年利用小时 T max = 6500h。 系统规划部门提供の电力负荷及与电力系统连接情况资料如下: (1) 6.3kV电压级最大负荷30MW,最小负荷25MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷260MW,最小负荷210MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MWの电力系统连接,系统归算到本电厂500kV母线上の电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

摘要 根据设计要求,本课程设计是对2*100MW+2*50MWの发电厂进行电气主接线进行设计。首先对给出の原始资料和数据进行分析和计算,对发电厂の工程情况和电力系统の情况进行了解。在设计过程中根据发电厂の各部分厂用电の要求,设计发电厂の各电压等级の电气主接线并选择各变压器の型号;进行参数计算,设计两个及以上の方案,进行方案の经济比较最后对厂用电の电气主接线の方案进行确定。 关键词:发电厂主接线变压器

目录 1 前言 (1) 2 原始资料分析 (1) 3 主接线方案の拟定 (2) 3.1 6.3kV电压级 (2) 3.2 220kV电压级 (2) 3.3 500kV电压级 (3) 3.4主接线方案图 (3) 4 变压器の选择 (4) 4.1 主变压器 (4) 4.2 联络变压器 (5) 5 方案の经济比较 (6) 5.1 一次投资计算 (6) 6 主接线最终方案の确定 (7) 7 结论 (8) 8 参考文献 (9)

发电厂电气部分课程设计

发电厂电气部分课程设计设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1.对原始资料的分析 2.主接线方案的拟定(至少两个方案) 3.变压器台数和容量的选择 4.所选方案的经济比较 5.主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2~3天:分析原始资料,拟定主接线方案 第4天:选择主变压器的台数和容量,对方案进行经济比较 第5~6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1.按照设计计划按时完成 2.设计成果包括:设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 指导教师: 教研室主任: 时间:

发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。 发电厂一次接线,即发电厂电气主接线。其代表了发电厂高电压、大电流的电气部分主体结构,是电力系统网络结构的重要组成部分。它直接影响电力生产运行的可靠性与灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面有决定性的关系。 本设计是对配有2?50MW供热式机组,2?600MW凝汽式机组的的大型火力发电厂电气主接线的设计,包括对原始资料的分析、主接线方案的拟定、变压器台数和容量的选择、方案的经济比较、主接线最终方案的确定。 关键词:火力发电厂;电气主接线

发电厂课程设计

燕山大学 课程设计说明书 题目枢纽变电站电气主接线 学院(系):电气工程学院 年级专业: 10级电力2班 学号: 100103030083 学生姓名:刘巨华 指导教师:吴杰钟嘉庆 教师职称:教授副教授 燕山大学课程设计(论文)任务书

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日 <<发电厂电气主系统>>课程设计原始资料题目:枢纽变电站电气主接线

(1) 类型:枢纽变电所 (2) 距接网地点 300KM (3) 利用小时数:6500小时/年 2. 接入系统及电力负荷情况 (1) 500KV 电源进线 4回, 与其它变电所的联络线2回,当取基准容量为100MVA 时,系统归算到500kv 母线上 011.0*=s x . 系统装机容量6000MW (2) 220KV 电压等级: 出线 8回,220KV 最大负荷400MW ,最小负荷300MW,85.0=?COS ,a h T MAX /4500=. (3) 35KV 电压等级: 出线 6回,35KV 最大负荷200MW ,最小负荷150MW, 85.0=?COS ,a h T MAX /4500=. 每回额定容量40MW (4) 主保护动作时间s t pr 1.01 =,后备保护时间s t pr 4.22= (5)站用变按KVA 5002?考虑. 3.环境因素:海拔小于1000米,环境温度025c ,母线运行温度0 80c 4.无功功率补偿目标9 5.0=?COS 目录 1. 设计任务及要求……………………………………………………………………………2 2. 设计原始资料……………………………………………………………………………….3 3. 主变压器的选择 (5)

燕山大学发电厂电气部分课程设计 大型骨干电厂电气主接线

目录 第一章原始资料的分析 0 1.1电压等级 0 第二章电气主接线方案 0 2.1 电气主接线设计的基本原则 0 2.2 具体方案的拟定 (1) 第三章主要电气设备的选择 (3) 3.1 发电机 (3) 3.2 主变压器 (3) 3.4 断路器和隔离开关 (4) 3.5电压互感器 (7) 3.6电流互感器的选择 (8) 3.7 母线的导体 (9) 第四章方案优化 (10) 第五章短路电流计算 (11) 5.1 等效阻抗网络图 (11) 5.2阻抗标幺值计算 (11) 5.3 短路点短路电流计算 (13) Q的计算 (14) 5.4 短路电流热效应 K 第六章校验动、热稳定(设备) (16) 6.1断路器稳定校验 (16) 6.2 隔离开关稳定校验 (17) 6.3电流互感器稳定校验 (18) 6.4 母线导体稳定校验 (19) 第七章心得体会 (19) 参考资料 (20)

大型骨干电厂电气主接线 第一章原始资料的分析 1.1电压等级 根据原始资料的分析可知,需要设计的是一个大型骨干凝汽电厂,共有两个电压等级:220KV,500KV 发电机容量和台数为6× 300MW (QFSN-300-2) 因此主变压器的台数选为6台。 1.4 联络变压器 选择三绕组变压器,连接两个电压等级,剩余一端引接备用电源。 第二章电气主接线方案 2.1 电气主接线设计的基本原则 电气主接线设计的基本原则是以设计任务书为依据,以国家的经济建设方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下、兼顾运行、维护方便,尽可能的节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流,高电压的网络,它要

发电厂电气部分课程设计

课程设计 年月日

主要内容: 为了满足某郊县负荷发展及电网电力交换的需要,优化该县的电网结构,拟在县城后山设计建设一座110kV降压变电站。变电站容量为2×31.5MVA ,电压等级110/10kV。基本要求: 1、本变电站在电力系统中,为满足本地区负荷增长的需要。 2、主变容量:2×31.5MVA,电压等级110/10kV;主变中性点直接接地。 主变型式:三相双绕组有载调压变压器,有载调压范围在110±8×1.25%/10.5kV 无功补偿:12Mvar。 供电方式及要求:110kV双回路进线,10kV侧出线本期6回路,远期14回路。 负荷数据和要求:全区用电负荷本期为27MW,6回路,每回按4.5MW设计; 主要参考资料: [1]范锡普主编.发电厂电气部分. 北京:中国电力出版社,2004. [2] 戈东方主编.220kv变电所设计规划. 北京:中国电力出版社,2000. [3]傅知兰.电力系统电气设备选择与实用计算. 北京:中国电力出版社,2004. [4]王士政,冯金光. 发电厂电气部分. 北京:中国水利水电出版社,2002. [5]莴静康. 供配电系统图集. 北京:中国电力出版社,2005. [6]韦钢.电力系统分析基础.北京:中国电力出版社,2006.

目录 1 任务和要求 (1) 2 电气主接线 (1) 2.1 电气主接线设计的基本要求 (1) 2.2 主变压器台数、容量、型式的选择、计算、校验 (1) 2.3 电气主接线设计方案的确定 (2) 2.4 110kV变电所主接线图 (5) 3 所用电接线设计 (6) 3.1 所用电变压器确定 (6) 3.2 所用电接线方式: (6) 3.3 所用电的电源 (6) 3.4 110kV变电所的所用电接线 (6) 4 短路电流计算 (6) 4.1短路电流的计算方法和步骤 (7) 4.2三相短路电流计算 (7) 5 电气设备选择 (9) 5.1 10kV配电装置电气设备选择 (9) 5.2 110kV配电装置电气设备的选择 (12) 6 设计总结 (15)

发电厂专业课程设计

发电厂专业课程设计

发电厂电气部分课程设计 学院:电气与信息工程学院 专业班级:电气工程及其自动化班12-5班 组号:第一组 指导老师:齐辉 时间:2015.7

摘要 本设计是电厂主接线设计。该火电厂总装机容量为2×50+2×600=1300MW。厂用电率6.5%,机组年利用小时T=6500h。根据所给出的原始资料拟定两种电气主接m ax 线方案,然后对比这两种方案进行可靠性、经济型和灵活性比较厚,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校验设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置。

目录 1设计任务书 (3) 1.1设计的原始资料 (3) 1.2设计的任务与要求 (3) 2电气主接线 (5) 2.1系统与负荷资料分析 (5) 2.2主接线方案的选择 (5) 2.2.1方案拟定的依据 (5) 2.2.2主接线方案的拟定 (7) 2.3 主变压器的选择与计算 (8) 2.3.1变压器容量、台数和型式的确定原则 (8) 2.3.2变压器的选择与计算 (9) 3短路计算 (10) 3.1短路计算的一般规则 (10) 3.2短路电流的计算 (10) 3.2.1各元件电抗的计算 (10) 3.2.2 等值网络的化简 (11) 4电气设备的选择 (16) 4.1电气设备选择的一般原则 (16) 4.2电气设备的选择条件 (16) 4.2.1按正常工作条件选择电气设备 (16) 4.2.2按短路情况校验 (17) 4.2.3 断路器和隔离开关的选择 (19) 4.2.4 电流互感器的选择 (20) 5结束语 (21) 6参考文献 (22)

发电厂电气部分课程设计报告

发电厂电气部分课程设计 报告 Prepared on 22 November 2020

发电厂电气部分课程设计报告 设计课题: 学院: 专业: 班级: 姓名: 学号: 指导教师: 日期:年月日 2×25MW+2×50MW火电厂主接线设计学生:指导教师: 摘要 本次设计是火电厂主接线设计。该水电站的总装机容量为2×25MW+2×50MW =150 MW。高压侧为110Kv,四回出线与系统相连,发电机电压级有10条电缆出线,其最大输送功率为150MW,该电厂的厂用电率为10%。根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案进行可靠性、经济性和灵活性比较后,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和导体的选择校验设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置、防雷保护做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步

过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线,短路电流计算,设备选型,配电装置布置,防雷保护。 课程设计任务书 ?,一、原始资料:某新建地方热电厂,发电机组2×25MW+2×50MW,8.0 cos= U=,发电机电压级有10条电缆出线,其最大综合负荷30MW,最小负荷20MW,厂用电率10%,高压侧为110KV,有4条回路与电力系统相连,中压侧35KV,最大综合负荷20MW,最小负荷15MW。发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。 系统容量2000MW,电抗值(归算到100KVA)。 二、设计内容: a)设计发电厂的主接线(两份选一),选择主变的型号; b)选择短路点计算三相对称短路电流和不对称短路电流并汇总成表; c)选择各电压等级的电气设备(断路器、隔离开关、母线、支柱绝缘子、穿墙套 管、电抗器、电流互感器、电压互感器)并汇总成表; 三、设计成果:设计说明计算书一份;1号图纸一张。 设计时间:两周。 第一部分设计说明书 第一章概述

中型发电厂电气主接线设计

电气主接线设计 1.1对原始资料的分析 设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18.6%,超过了电力系统的检修备用8%~15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,但是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。 从负荷特点及电压等级可知,10.5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW发电机的机端电压相等,采用直馈线为宜。300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。 1.2主接线方案的拟定 在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。 发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下: (1)10.5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。

发电厂电气主系统课程设计1任务书

<<发电厂电气主系统>>课程设计原始资料 题目:大型骨干电厂电气主接线 : 1. 发电厂(变电厂)的建设规模 (1) 类型:大型骨干凝汽电厂 (2) 最终容量和台数: MW 3004?+MW 6002? 型号( QFSN-300-2)+ (QFSN-600-2) KV U N 20= 85.0cos =? %6.186=d X %2.19'=d X %3.14"=d X (3) 最大负荷利用小时数:5500小时/年 2. 接入系统及电力负荷情况 (1)220KV 出线 6回 最大负荷: 600MW 最小负荷: 300MW 不允许检修断路器时线路停电。 85.0=?COS a h T MAX /5500= (2)500KV 电压等级: 出线 4回,备用出线2回,接受该厂的剩 余功率. 电力系统装机容量:4500MW,当取基准容量为100MVA 时,系统归算到500KV 母线上的020.0*=s x 85.0=?COS a h T MAX /5500= (3)发电机出口处主保护动作时间s t pr 1.01=,后备保护时间 s t pr 2.12= (4)厂用电率 取6%, 厂用电负荷平均功率因数 取85.0cos =? 3.环境条件:海拔小于1000米,环境温度025c ,母线运行温度080c

世界很大,风景很美;人生苦短,不要让自己在阴影里蜷缩和爬行。应该淡然镇定,用心灵的阳光驱散迷雾,走出阴影,微笑而行,勇敢地走出自己人生的风景! 人们在成长与成功的路途中,往往由于心理的阴影,导致两种不同的结果:有些人可能会因生活的不顺畅怨天尤人,烦恼重重,精神萎靡不振,人生黯淡无光;有人可能会在逆境中顽强的拼搏和成长,历练出若谷的胸怀,搏取到骄人的成就。只有在磨难中成长和成功的人们,才更懂得生活,才更能体味出世态的炎凉甘苦,才更能闯出精彩的人生。 阴影是人生的一部分。在人生的阳光背后,有阴影不一定都是坏事。我们应该感激伤害过自己的人,是他们让你的人生与众不同;感激为难你的人,是他们磨炼了你的心志;感激绊倒你的人,是他们强化了你的双腿;感激欺骗你的人,是他们增强了你的智慧;感激蔑视你的人,是他们警醒了你的自尊;感激遗弃你的人,是他们教会了你该独立。 人生若要走向成功,有好多的阴影需要消除。

发电厂电气部分课程设计资料

《发电厂电气设备》课程设计500kV变电站电气部分 学院:交通学院 专业:能源与动力工程 班级: 学号: 姓名: 指导老师:马万伟 日期: 2015年12月

课程设计任务书 一、课程设计的内容 本课程设计是《发电厂电气设备》课程后的一门设计性实践课程。其目的是使学生掌握火力发电厂及变电站电气一次部分设计的基本方法;培养严肃认真的工作作风和严谨的科学态度;培养学生独立解决问题的能力。具体内容如下: 1. 对发电厂及变电站在系统中的地位和作用及所供用户的分析; 2. 选择发电厂及变电站主变压器的台数、容量、型式; 3. 分析确定各电压侧主接线形式及采用配电装置型式; 4. 分析确定厂(站)用电接线形式; 5. 进行选择设备和导体所必须的短路电流计算; 6. 选择变压器高、中、低压侧的断路器、隔离开关; 7. 选择10kV硬母线; 8. 选择配电装置型式及设计; 9. 用AutoCAD绘制发电厂及变电站电气主接线图。 二、课程设计的要求与数据 1、根据电力系统的发展规划,拟在某地区新建一座装机容量为200MW的凝汽式火力发电厂,发电厂安装2台100MW机组,发电机端电压为10.5kV。电厂建成后以10kV电压供给本地区负荷,其中有钢厂、毛纺厂等,最大负荷为68MW,最小负荷为34MW,最大负荷利用小时数为4200小时,全部用电缆供电,每回负荷不等,但平均在4MW左右,送电距离为3~6km。并以35kV电压供给附近的水泥厂用电,其最大负荷为58MW,最小负荷为32MW,最大负荷利用小时数为4500小时。负荷中I类负荷比例为30%,II类负荷为40%,III类负荷为30%。 2、计划安装两台100MW的汽轮发电机组,功率因数为0.85,厂用电率为6%,机组年利用小时Tmax=5800小时。 3、按负荷供电可靠性要求及线路传输能力已确定各级电压出线列于下表: 10kV 35kV 名称回路数名称回路数 钢厂 4 水泥厂 2 毛纺厂 2 市区 4 预留 2 预留 2 合计12 合计 4 4、厂址条件:周围地势平坦。 5、气象条件:绝对最高温度为35℃;最高月平均温度为25℃;年平均温度为12.7℃;风向以西北风为主. 6、以100MVA为基准值,母线上阻抗为1.95,Q =165kA2s,未知系数0.8-1.2., k 三相短路电流=4.5kA,短路电压=6KV,Sj=100MV.A,Uj=10.5kv.

火力发电厂电气主接线设计

原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 6.3kV),凝汽式机组2 ? 100MW(U N = 10.5kV),厂用电率6.2%,机组年利用小时T max = 6500h。 系统规划部门提供の电力负荷及与电力系统连接情况资料如下: (1) 6.3kV电压级最大负荷30MW,最小负荷25MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷260MW,最小负荷210MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MWの电力系统连接,系统归算到本电厂500kV母线上の电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

根据设计要求,本课程设计是对2*100MW+2*50MWの发电厂进行电气主接线进行设计。首先对给出の原始资料和数据进行分析和计算,对发电厂の工程情况和电力系统の情况进行了解。在设计过程中根据发电厂の各部分厂用电の要求,设计发电厂の各电压等级の电气主接线并选择各变压器の型号;进行参数计算,设计两个及以上の方案,进行方案の经济比较最后对厂用电の电气主接线の方案进行确定。 关键词:发电厂主接线变压器

1 前言 (1) 2 原始资料分析 (1) 3 主接线方案の拟定 (2) 3.1 6.3kV电压级 (2) 3.2 220kV电压级 (2) 3.3 500kV电压级 (2) 3.4主接线方案图 (2) 4 变压器の选择 (4) 4.1 主变压器 (4) 4.2 联络变压器 (5) 5 方案の经济比较 (6) 5.1 一次投资计算 (6) 6 主接线最终方案の确定 (7) 7 结论 (8) 8 参考文献 (9)

相关文档
最新文档