平面向量坐标运算及其数量积习题

平面向量坐标运算及其数量积习题
平面向量坐标运算及其数量积习题

平面向量坐标及数量积练习

1. 已知e 1→,e 2→是一组基底,那么下面四组向量中,不能作为一组基底的是( )

A. e 1→, e 1→+e 2→

B. e 1→—2e 2→, e 2→—2e 1→

C. e 1→—2e 2→, 4e 2→—2e 1→

D. e 1→+e 2→, e 1→—e 2→

2. 若a →,b →不共线且λa →+μb →=0→(λ , μ ∈ R), 则 ( )

A. a →=0→,b →=0→

B. λ=μ=0

C. λ=0, b →=0

D. a →=0→, μ=0

3. 如图1,ΔABC 中,M, N, P 顺次是AB 的四等分点, CB →=e 1→, CA →=e 2→, 则下列正确的是( )

A. CN →=12e 1→+12e 2→, CM →=14e 1→+34e 2→

B. AB →=e 1→—e 2→, CP →=14e 1→+34

e 2→ C. CP →=34e 1→+14e 2→, AM →=14(e 1→+e 2→) D. AM →=14

(e 1→—e 2→), AB →=e 1→+e 2→ 4. 若|a →|=1,|b →|=2,c →=a →+b →且c →⊥a →, 则向量a →与b →的夹角为 ( )

A. 30°

B. 60°

C. 120°

D. 150°

5. 已知单位向量i →与j →的夹角为60°,则2j →—i →与i →的关系为 ( )

A. 相等

B. 垂直

C. 平行

D. 共线

6 下列命题中真命题的个数为 ( ) ①|a →·b →|=|a →|·|b →|;②a →·b →=0 ? a →=0→或b →=0; ③ |λa →|=|λ|·|a →|; ④ λa →=0→ ? λ=0或a →=0→

A. 1

B. 2

C. 3

D. 4

7. 设a →,b →,c →是单位向量,且a →·b →=0,则(a →—c →)·(b →—c →)的最小值为 ( )

A. —2

B. 2—2

C. —1

D. 1— 2

8. 若点A 的坐标是(x 1, y 1),向量AB →的坐标为(x 2, y 2),则点B 的坐标为 ( )

A .(x 1—x 2, y 1—y 2)

B .(x 2—x 1, y 2—y 1)

C .(x 1+x 2, y 1+y 2)

D .(x 2—x 1, y 1—y 2)

9. 已知M(3,—2), N(—5,—1),且MP →=2MN →, 则MP → = ( )

A .(—8,1)

B .(—4, 12)

C .(—16, 2)

D .(8, —1)

10 与a →=(3,4)垂直的单位向量是 ( )

A. (45, 35)

B. (—45, —35)

C. (45, —35)或(—45, 35)

D. (45, 35)或(—45, —35)

11. A(1,2),B(2,3),C(2,0)所以ΔABC 为 ( )

A.直角三角形

B.锐角三角形

C.钝角三角形

D.不等边三角形

12.已知A(1,0),B(5,-2),C(8,4),D.(4.6)则四边形ABCD 为 ( )

A.正方形

B.菱形

C.梯形

D. 矩形

13.已知a →=(—3,4),b →=(5,2),c →=(1,—1), 则(a →·b →)·c →等于 ( )

A. —14

B. —7

C. (7,—7)

D. (—7,7)

14.已知A(—1,1),B(1,2),C(3, 12) , 则AB →·AC →等于 ( ) A. 52 B. 152 C. —52 D. —152

15已知|m →|=6 ,n →=(cos θ,sin θ), m →·n →=9, 则m →, n →的夹角为 ( )

A.150o

B.120 o

C.60 o

D.30 o

16.若a →=(—2,1)与b →=(—1,—m 5

)互相垂直,则m 的值为 ( ) A. —6 B.8 C. —10 D. 10

17. 已知M(3, —2), N(—5,—1),且MP → = 12 MN →,则P 点的坐标 ( )

A .(—4, 12)

B .(—1, —32 )

C .(—1, 32 )

D .(8, —1)

18. 已知a → = (3, —1), b → = (—1, 2), c → = 2a → + b →, 则 c → = ( )

A .(6,—2)

B .(5,0)

C .(—5,0)

D .(0,5)

19. 已知a →=(—6, y ), b →=(—2, 1), 且a →与b →共线,则x = ( )

A .—6

B .6

C .3

D .—3

20. 已知A(2,—1),B(3,1), 与AB →方向相反的向量a →是 ( )

A .a →=(1, 12)

B .a →=(—6,—3)

C .a →=(—1,2)

D .a →

=(—4,—8)

21. 已知A,B,C 是平面上不共线的三点,O 是ΔABC 的重心,动点P 满足OP →=13(12OA →+12OB →+2OC →), 则点P

一定为ΔABC 的( )

A. AB 边中线的中点

B. AB 边中线的三等分点(非重心)

C. 重心

D. AB 边的中点

22. 平行四边形ABCD 中,AB →=(2,4), AC →=(1,3), 则BD → = ( )

A. (—2,—4)

B. (—3,—5)

C. (3,5)

D. (2,4)

23. 已知A(7,1), B(1,4), 直线y = 12ax 与线段AB 交于点C ,且AC →=2CB →, 则a = ( )

A. 2

B. 53

C. 1

D. 45

24. 已知a →=(1,2),b →=(—2,3), 若m a →—n b →与a →+2b →共线(其中m 、n ∈R 且n ≠0),则m n

= ( ) A. —12 B. 2 C. 12 D. —2

25. 设a →=(13, tan α), b →=(cos α, 32), 若a →//b →,则锐角α 的大小为( )

A. π12

B. π6

C. π4

D. π3

26. 已知e 1→, e 2→是一组基底,实数x,y 满足(2x —3y )e →+(5y —3x )e 2→=5e 1→+6e 2→, 则x —y = , xy = .

27. 已知向量a = (x —2,1), 向量b = (—1, y +3),且a = b , 则实数x = , y = .

28. 在ABCD 中,BP → = 23BC →, 若AB →=a →, BC →=b →, 则 PD →= .

29. e 1→,e 2→是不共线向量,若e 1→+2e 2→与me 1→ + ne 2→共线,则n m = . 30.已知a →=( , 1), b →=(0,—1),c →=(k , ). 若a →—2b →与c →共线,则k = .

31. O 为坐标原点,A(3,1), B(—1,3), 若点C(x , y )满足OC →=α OA → + β OB →,其中α , β ∈ R, 且α+β=1, 则

x ,y 满足 .

32. 在边长为1的正三角形ABC 中,设BC →=2BD →, CA →=3CE →,则AD →·BE →= .

33. 已知|a →|=1,|b →|=2,且(λa →+b →)⊥(2a →—λb →),则a →与b →

的夹角为60°, 则λ= .

34. a →=(2,1),b →=(λ, 3)且a →⊥b →, 则λ = 。

35. a →=(—4,7), b →=(5,2),则a →·b →= , |a →|= ,(2a →—3b →)·(a →+2b →)= .

36. a →=(2,3),b →=(—3,5), 则a →在b →方向上的投影为__ ____.

37. 已知三个点A(1,0),B(3,1),C(2,0),且a →=BC →,b →=CA →则a →与b →的夹角为

38. 已知a →+b →=2i →—8j →, a →—b →=—8i →+16j →,那么a →·b →= (其中i →,j →为两个相互垂直的单位向量)

39. 已知a →·b →=12,且|b →|=5,则向量a →在b →上的投影为 .

40. 若向量a →+b →+c →=0→,且|a →|=3,|b →|=1,|c →|=4,则a →·b →+b →·c →+c →·a →= .

41. (1) e 1→,e 2→是两个单位向量,其夹角为60°,求(2e 1→—e 2→)·(—3e 1→+2e 2→);

(2) 已知向量a →,b →的夹角为45°,且|a →|=4, (12

a →+

b →)·(2a →—3b →)=12,求|b →|;

平面向量的坐标运算(教案)

平面向量的坐标运算(一)(教案) 教学目标: 知识与技能:(1)理解平面向量的坐标概念;(2)掌握平面向量的坐标运算. 过程与方法:(1)通过对坐标平面内点和向量的类比,培养学生类比推理的能力; (2)通过平面向量坐标表示和坐标运算法则的推导培养学生归纳、猜想、演绎的能力; (3)通过用代数方法处理几何问题,提高学生用数形结合的思想方法解决问题的能力. 情感、态度与价值观:(1)让学生在探索中体验探究的艰辛和成功的乐趣,培养学生锲而不舍的求索精神和合作交流的团队精神,提高学生的数学素养; (2)使学生认识数学运算对于建构数学系统、刻画数学对象的重要性,进而理解数学的本质; (3)让学生体会从特殊到一般,从一般到特殊的认识规律. 教学重点和教学难点: 教学重点:平面向量的坐标运算; 教学难点:平面向量坐标的意义. 教学方法:“引导发现法”、“探究学习”及“合作学习”的模式. 教学手段:利用多媒体动画演示及实物展示平台增加直观性,提高课堂教学效率. 教学过程设计: 一、创设问题情境,引入课题. 同学们,我们知道,向量的概念是从物理中抽象出来的,人们最初对向量的研究是从几何的的角度来进行的,但是随着问题的不断深入,我们发现用图形来研究向量有一些不便之处,那么,有没有一种更简洁的方式可以来表示向量呢? 我国著名数学家华罗庚先生说过:“数无形,少直观;形无数,难入微。”图形关系往往与某些数量关系密切联系在一起,数与形是互相依赖的,所以我们想到了用数来表示向量. 思路一:用一个数能否表示向量?(请学生回答) (不能,因为向量既有大小,又有方向)

思路二:用两个数能否表示向量?(引导学生思考) 在平面直角坐标系内,一个点和一对有序实数对之间有一一对应的关系,那么,向量是否也能找到与之对应的实数呢? 让我们先来探讨这样一个问题: 探究一:如图,为互相垂直的单位向量,请用,i j 表示图中的向量,,,.a b c d 使1122=a e e λλ+ ,其中的1e ,2e 称为平面的一组基底. 强调:基底不唯一,只要不共线,就可作为基底,而一旦基底选定,任一向量在基底方向的分解形式就是唯一的. 二、理解概念,加深认识. 根据平面向量基本定理,我们知道,在选定基底的情况下,所给,,,.a b c d 四 个向量在基底方向的分解形式是唯一的,也就是说,这几个向量用基底、来表示的形式是唯一的,每个向量对应的这对实数对我们就将其称之为向量的坐标. 推广到平面内的任意向量,我们怎样来定义向量的坐标?(引导学生思考,请学生尝试给出定义) 如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得 a xi yj =+ …………○ 1 我们把),(y x 叫做向量的(直角)坐标,记作

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

平面向量数量积练习题

平 面 向 量 数 量 积 练 习 题 一.选择题 1.下列各式中正确的是 ( ) (1)(λ·a ) ·b =λ·(a b )=a · (λb ), (2)|a ·b |= | a |·| b |, (3)(a ·b )· c = a · (b ·c ), (4)(a +b ) · c = a ·c +b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2.在ΔABC 中,若(CA CB)(CA CB)0+?-= ,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .2 4.已知||=1,||=2,且(-)与垂直,则与的夹角为 ( ) A .60° B .30° C .135° D .45° 5.设||= 4,||= 3,夹角为60°,则|+|等于 ( ) A .37 B .13 C .37 D .13 6.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 7. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.????79,73 B.????-73,-79 C.????73,79 D.????-79,-73 二.填空题 8.已知e 是单位向量,∥e 且18-=?e a ,则向量a =__________. 9.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 10. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三.解答题 11. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c .

向量的坐标表示及其运算

资源信息表

(2)向量的坐标表示及其运算(2) 一、教学内容分析 向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础. 二、教学目标设计 1.理解并掌握两个非零向量平行的充要条件,巩固加深充

要条件的证明方式; 2.会用平行的充要条件解决点共线问题; 3、定比分点坐标公式. 三、教学重点及难点 课本例5的演绎证明; 分类思想,数形结合思想在解决问题时的运用; 特殊——一般——特殊的探究问题意识. 五、教学过程设计: 复习向量平行的概念: 提问:(1)升么是平行向量方向相同或相反的向量叫做平行向

量。 (2)实数与向量相乘有何几何意义 (3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b ,若存在一个常数λ,使得 a b λ=?成立,则两向量a 与向量b 平行 (4)思考:如果向量,a b 用坐标表示为) ,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系12 12 x x y y λλ=??=? 思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则 2 121y y x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出 课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==, 则//a b 的充要条件是1221x y x y =. 分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明, (Ⅰ)先证必要性://a b 1221x y x y ?= 非零向量//a b ?存在非零实数λ,使得a b λ=,即

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

平面向量的数量积练习题[

§5.3 平面向量的数量积 一、选择题 1.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2 D .0 解析:由a ∥b 及a ⊥c ,得b ⊥c , 则c ·(a +2b )=c ·a +2c ·b =0. 答案:D 2.若向量a 与b 不共线,a ·b ≠0,且c =a -? ?? ?? a ·a a · b b ,则向量a 与 c 的夹角为( ) A .0 B.π6 C.π3 D.π 2 解析 ∵a·c =a·???? ??a -? ????a·a a·b b =a·a -? ?? ?? a 2a· b a·b =a 2-a 2=0, 又a ≠0, c ≠0,∴a⊥c ,∴〈a ,c 〉=π 2 ,故选D. 答案 D 3. 设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于 ( ) A 2 B 1 2 C .0 D.-1 解析 22,0,12cos 0,cos 22cos 10.a b a b θθθ⊥∴?=∴-+=∴=-=正确的是C. 答案C 4.已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( ). A .-4 B .4 C .-2 D .2 解析 设a 与b 的夹角为θ,∵a ·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,而cos θ= a · b |a ||b |=-2 3 , ∴|a |cos θ=6×? ???? -23=-4. 答案 A

5.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ). A.2-1 B .1 C. 2 D .2 解析 由已知条件,向量a ,b ,c 都是单位向量可以求出,a 2=1,b 2=1,c 2=1,由a ·b =0,及(a -c )(b -c )≤0,可以知道,(a +b )·c ≥c 2=1,因为|a +b - c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c ,所以有|a +b -c |2=3-2(a ·c +b ·c )≤1, 故|a +b -c |≤1. 答案 B 6.已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=1 3x 3+|a |x 2+2a·b x +1 在x ∈R 上有极值,则〈a ,b 〉的取值范围是( ) A.? ? ????0,π6 B.? ? ???0,π3 C.? ?? ?? π6,π2 D.? ?? ?? π6,π 解析 ∵f (x )=13x 3+|a |x 2 +2a·b x +1在x ∈R 上有极值,∴f ′(x )=0有两不 相等的实根,∵f ′(x )=x 2+2|a |x +2a·b ,∴x 2+2|a |x +2a·b =0有两个不相等的实根,∴Δ=4|a |2-8a·b >0,即a·b <12|a |2,∵cos 〈a ,b 〉=a·b |a ||b |, |a |=3|b |,∴cos 〈a ,b 〉<1 2|a |2|a ||b |=3 2,∵0≤〈a ,b 〉≤π, ∴π 6<〈a ,b 〉≤π. 答案 D 7.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是 ( ).

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算 【考纲要求】 1、了解平面向量的基本定理及其意义. 2、掌握平面向量的正交分解及其坐标表示. 3、会用坐标表示平面向量的加法、减法与数乘运算. 4、理解用坐标表示的平面向量共线的条件. 【基础知识】 一、平面向量基本定理 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得2211e e λλ+=,不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底. 二、平面向量的坐标表示 在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量、作为基底。由平面向量的基本定理知,该平面内的任意一个向量a 可表示成a xi y j =+,由于a 与数对(,)x y 是一一对应的,因此把(,)x y 叫做向量a 的坐标,记作(,)a x y =,其中x 叫作a 在x 轴上的坐标,y 叫作a 在y 轴上的坐标. 规定:(1)相等的向量坐标相同,坐标相同的向量是相等的向量。 (2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无

关,只与其相对位置有关。 三、平面向量的坐标运算 1、设a =11(,)x y ,b =22(,)x y ,则a b +=1212(,)x x y y ++. 2、设a =11(,)x y ,b =22(,)x y ,则a b -=1212(,)x x y y --. 3、设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. 4、设a =()y x ,,R ∈λ,则λa =(,)x y λλ. 5、设a =11(,)x y ,b =22(,)x y ,则b a //12210x y x y ?-=(斜乘相减等于零) 6、设a =()y x ,,则22a x y =+ 四、两个向量平行(共线)的充要条件 1、如果0a ≠,则b a //的充要条件是有且只有一个实数λ,使得b a λ=(没有坐标背景) 2、如果a =11(,)x y ,b =22(,)x y ,则b a //的充要条件是12210x y x y -=(坐标背景) 五、三点共线的充要条件 1、A 、B 、C 三点共线的充要条件是AB BC λ= 2、设OA 、OB 不共线,点P 、A 、B 三点共线的充要条件是 (1,,)OP OA OB R λμλμλμ=++=∈. 特别地,当12 λμ==时,P 是AB 中点。

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

平面向量的坐标运算

平面向量的坐标运算 一、知识精讲 1.平面向量的正交分解 把一个向量分解成两个互相垂直的向量,叫做把向量正交分解. 2.平面向量的坐标表示 (1)向量的坐标表示: 在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y 使得a =xi +yj ,则把有序数对(x ,y )叫做向量a 的坐标.记作a =(x ,y),此式叫做向量的坐标表示. (2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 3.平面向量的坐标运算 向量的 加、减法 若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2).即两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差) 实数与向量的积 若a =(x ,y ),λ∈R ,则λa =(λx ,λy ),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标 向量的 坐标 已知向量 AB 的起点 A (x 1,y 1),终点 B (x 2,y 2),则 AB =(x 2-x 1,y 2-y 1),即向量的坐标等于表示此向量的有 向线段的终点的坐标减去始点的坐标 4.两个向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ∥b ?a =λb ?x 1y 2-x 2y 1=0. [小问题·大思维] 1.与坐标轴平行的向量的坐标有什么特点? 提示:与x 轴平行的向量的纵坐标为0,即a =(x,0);与y 轴平行的向量的横坐标为0,即b =(0,y ). 2.已知向量OM =(-1,-2),M 点的坐标与OM 的坐标有什么关系? 提示:坐标相同但写法不同;OM =(-1,-2),而M (-1,-2).

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

(完整版)平面向量的数量积练习题.doc

平面向量的数量积 一.选择题 1. 已知 a ( 2,3), b ( 1, 1),则 a ?b 等于 ( ) A.1 B.-1 C.5 D.-5 r r r r r r r r 2.向量 a , b 满足 a 1, b 4, 且 a b 2 ,则 a 与 b 的夹角为( ) A . B . 4 C . D . 2 6 3 r r 60 0 r r ) 3.已知 a, b 均为单位向量,它们的夹角为 ,那么 a 3b ( A . 7 B . 10 C . 13 D . 4 4 .若平面向量 与向量 的夹角是 ,且 ,则 ( ) A . B . C . D . 5. 下面 4 个有关向量的数量积的关系式① 0 ?0 =0 ②( a ?b ) ?c = a ?( b ? c ) ③ a ?b = b ?a ④ | a ?b | ≦ a ?b ⑤ | a ?b | | a | ?| b | 其中正确的是( ) A . ① ② B 。 ① ③ C 。③ ④ D 。③ ⑤ 6. 已知 | a |=8 , e 为单位向量,当它们的夹角为 时, a 在 e 方向上的投影为( ) 3 A . 4 3B.4 C.4 2 3 D.8+ 2 7. 设 a 、 b 是夹角为 的单位向量,则 2a b 和 3a 2b 的夹角为( ) A . B . C . D . 8. 已知 a =(2,3) , b =( 4 ,7) , 则 a 在 b 上的投影值为( ) A 、 13 B 、 13 C 、 65 D 、 65 5 5 9. 已知 a (1,2), b ( 3,2), ka b 与 a 3b 垂直时 k 值为 ( ) A 、 17 B 、 18 C 、 19 D 、 20

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

(完整版)平面向量的数量积练习题(含答案)

平面向量的数量积 A 组 专项基础训练 一、选择题(每小题5分,共20分) 1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于 ( ) A .-1 B .-12 C.12 D .1 2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ?? ??-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于 ( ) A .-32 B .-23 C.23 D.32 二、填空题(每小题5分,共15分) 5.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三、解答题(共22分) 8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c . 9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与 向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.

平面向量坐标运算

ξ10向量的数量积.平移 一.知识精讲 1. 数量积的概念 (1) 向量的夹角:如图,已知两个向量a 和b ,使=a,=b 。则)1800( ≤≤=∠θθAOB 叫做响亮a 与b 的夹角,记为 (2) 数量积的定义:已知两向量a,b 的夹角为θ θcos 叫做 a 与b 的数量积,记为θ=? (3)数量积的集合意义:数量积?等于的模与在 θ 的乘积 2. 数量积的性质:设是单位向量。<θ>=, (1)θ=?=? (2)a 与b 同向时,=?;a 与b 反向的时候=?。0=⊥ (3 )? = (4) = θcos (5 ≤ 3.运算律:(1)?=? (交换律) (2))()()(λλλ?=?=? (与实数的集合律) (3)?+?=+?)( (乘法对加法的分配律) 没有结合律,可见向量的数量积完全遵循多项式运算法则 4. 向量数量积的坐标运算。 设),().,(2211y x y x ==,则: (1)2121y y x x +=? (2 21 2 1y x += (3)21 212 121cos y x y y x x ++= θ (4)02121=+?⊥y y x x b a 5. 两点间的距离公式:设A ),(),,(2211y x B y x ,则221221)()(y y x x AB -+-= 平移公式描述的是平移前的点与平移后的对应点坐标与平移向量的坐标之间的关系。 平移前的点),(y x P 平移后的对应点, P ),(, ,y x ,平移向量的坐标),(k h = 则 { k y y h x x +=+=, , 二.基础知识 1.若)7,4(),3,2(-==,则a 在b 方向的投影为 ( ) A 3 B 5 13 C 5 65 D 65 2 1210==,且36)()3(51-=?,则与的夹角为 ( ) A 60 B 120 C 135 D 150 3.设,,是任意的非零平面向量,互相不共线,则下列命题中是真命题的有( ) ① 0)()(=?-? ② <③ )()(?-?不与垂直 ④ )23()23(=-?+ A ①② B ②③ C ③④ D ②④ 4.已知点A ),2,1(- 与)3,2(= 32=,则点B 的坐标为( ) 5.已知)2,(λ=,)5,3(-=,若向量与的夹角为钝角,则λ的取值范围是 ( ) A 310>λ B310≥λ C 310<λ D 3 10 ≤λ 6. 已知:函数2)2cos(33++-=πx y 按向量平移所的图形解析式为),(x f y = 当)(x f y = 奇函数时,向量可以等于: A )2,(6--π B )2,(12--π C (2,6π) D )2,(12π - 三.典型例题分析: 例1:已知)2,3(),2,1(-==,当k 为何值时,(1))3()k -⊥+ (2)) (k +)3(-,平行时是同向还是反向? 变式1:已知:平面向量),2(),,2(),4,3(y x ==-= ,c a ⊥,求 ?以及与的夹角 例2 60,,46>=<==b a b -

高一数学平面向量的坐标运算

平 面 向 量 的 坐 标 运 算 一、【教材的地位和作用】 本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。 二、【学习目标】 根据教学大纲的要求以及学生的实际知识水平,以期达到以下的目的: 1.知识方面:理解平面向量的坐标表示的意义;能熟练地运用坐标形式进行运算。 2.能力方面:数形结合的思想和转化的思想 三、【教学重点和难点】 理解平面向量坐标化的意义是教学的难点;平面向量的坐标运算则是重点。我主要是采用启发引导式,并辅助适量的题组练习来帮助学生突破难点,强化重点。 四、【教法和学法】 本节课尝试一种全新的教学模式,以建构主义理论为指导,教师在本节课中起的根本作用就是“为学生的学习创造一种良好的学习环境”,结合本节课是新授课的特点,我主要从以下几个方面做准备:(1)提供新知识产生的铺垫知识(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构(3)创设新知识思维发展的前景(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习(5)通过“老师信箱时间”指导解答学生的疑难问题(6)通过“深化拓展区”培养学生的创新意识和发现能力。 整个过程学生始终处于交互式的学习环境中,让学生用自己的活动对已有的数学知识建构起自己的理解;让学生有了亲身参与的可能并且这种主动参与就为学生的主动性、积极性的发挥创造了很好的条件,真正实现了“学生是学习的主体”这一理念。 五、【学习过程】 1.提供新知识产生的理论基础 课堂教学论认为:要使教学过程最优化,首先要把已学的材料与学生已有的信息联系起来,使学生在学习新的材料时有适当的知识冗余。在本节之前,学生接触到的是向量的几何表示;向量共线的充要条件和平面向量的基本定理为引入向量的坐标运算奠定了理论基础。尤其是平面向量的基本定理,在新授课之前,我以为应再次跟学生进行强调,揭示其本质:即平面内的任一向量都可以表示为不共线的向量的线形组合。对于基底的理解,指出“基底不唯一,关键是不共线”。这样就使得新课的导入显得自然而不突兀,学生也很容易联想到基底选择的特殊性,从而引出坐标表示。 2.新课引入 哲学家卡尔.波普尔曾指出“科学与知识的增长永远始于问题,终于问题——愈来愈深化的问题,愈来愈能启发新问题的问题”,这对数学亦不例外。 因此,在新课的引入中首先提出问题“在直角坐标系内,平面内的每一个点都可以用一对实数(即它的坐标)来表示。同样,在平面直角坐标系内,每一个平面向量是否也可以用一对实数来表示?”,问题的给出旨在启发学生的思维。而学生思维是否到位,是否可以达到自己建构新知识的目的,取决于老师的引导是否得当。 3.创建新知识 以学生为主体绝不意味着老师可以袖手旁观,在创设问题情景后学生已进入激活状态,即想说但又不知道怎么说的状态,这时需老师适当加以点拨。指出:选择在平面直角坐标系内与坐标轴的正方向相同的两个单位向量、j 作为基底,任做一个向量。由平面向量基本定理知,有并且只有一对实数x , y ,使j y i x a +=

平面向量在坐标中的运算(习题带答案)

一.复习巩固 1、下列说法正确的是(D ) A 、数量可以比较大小,向量也可以比较大小. B 、方向不同的向量不能比较大小,但同向的可以比较大小. C 、向量的大小与方向有关. D 、向量的模可以比较大小. 2、设O 是正方形ABCD 的中心,则向量,,,AO BO OC OD u u u r u u u r u u u r u u u r 是(D ) A 、相等的向量 B 、平行的向量 C 、有相同起点的向量 D 、模相等的向量 3、给出下列六个命题: ①两个向量相等,则它们的起点相同,终点相同;②若||||a b =r r ,则a b =r r ; ③若AB DC =u u u r u u u r ,则四边形ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB DC =u u u r u u u r ; ⑤若m n =u r r ,n k =r r ,则m k =u r r ;⑥a b r r P ,b c r r P ,则a c r r P . 其中不正确的命题的个数为(B ) A 、2个 B 、3个 C 、4个 D 、5个 4、下列命中,正确的是( C ) A 、|a r |=|b r |?a r =b r B 、|a r |>|b r |?a r >b r C 、a r =b r ?a r ∥b r D 、|a r |=0?a r =0 6.如图,M 、N 是△ABC 的一边BC 上的两个三等分点, 若AB →=a ,AC →=b ,则MN → =__ _____. 7.a 、b 为非零向量,且+=+||||||a b a b ,则 ( A ) A .a 与b 方向相同 B .a = b C .a =- b D .a 与b 方向相反 8.如图,设O 是正六边形ABCDEF 的中心,在向量OB →,OC → , OD →,OE →,OF →,AB →,BC →,CD →,EF →,DE →,FA →中与OA → 共线的向量有 个 个 个 个 ( C )

平面向量的数量积 练习题

绝密★启用前 2018年01月19日214****9063的高中数学组卷 试卷副标题 考试围:xxx;考试时间:100分钟;命题人:xxx 题号一二三总分 得分 注意事项: 1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一.选择题(共2小题) 1.若向量,满足,,则?=() A.1 B.2 C.3 D.5 2.已知向量||=3,||=2,=m+n,若与的夹角为60°,且⊥,则实数的值为() A.B.C.6 D.4 - z -

第Ⅱ卷(非选择题) 请点击修改第Ⅱ卷的文字说明 评卷人得分 二.填空题(共6小题) 3.设=(2m+1,m),=(1,m),且⊥,则m= . 4.已知平面向量的夹角为,且||=1,||=2,若()),则λ= . 5.已知向量,,且,则= .6.已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= .7.已知向量,的夹角为60°,||=2,||=1,则|+2|= .8.已知两个单位向量,的夹角为60°,则|+2|= . 评卷人得分 三.解答题(共6小题) 9.化简: (1); (2). 10.如图,平面有三个向量,,,其中与的夹角为120°,与 的夹角为30°.且||=1,||=1,||=2,若+,求λ+μ的值. - z -

11.如图,平行四边形ABCD中,E、F分别是BC,DC的中点,G为DE,BF的交点,若,试用,表示、、. 12.在平面直角坐标系中,以坐标原点O和A(5,2)为顶点作等腰直角△ABO,使∠B=90°,求点B和向量的坐标. 13.已知=(1,1),=(1,﹣1),当k为何值时: (1)k+与﹣2垂直? (2)k+与﹣2平行? 14.已知向量,的夹角为60°,且||=4,||=2, (1)求?; (2)求|+|. - z -

相关文档
最新文档