T10钢淬火与低温回火课程设计

T10钢淬火与低温回火课程设计
T10钢淬火与低温回火课程设计

金属材料工程专业

课程设计

T10钢的淬火与低温回火工艺设计

学院:

专业:

姓名:

学号:

概述:

1.1热处理原理与工艺

热处理是对固态金属或合金采用适当方式加热、保温和冷却,以获得所需要的组织结构与性能的加工方法。金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。

1.2 淬火工艺

淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马

氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。

淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或下贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。

将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适

的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。

1.3 回火工艺

低温回火又称“消除应力回火”。回火温度范围为150-250摄氏度,回火后的组织为回火马氏体。钢具有高硬度和高耐磨性,但内应力和脆性降低。主要应用于高碳钢和高碳合金钢制造的工具模和滚动轴承,以及经渗碳和表面淬火的零件,回火后的硬度一般为

58-64HRC。

按回火温度范围,回火可分为低温回火、中温回火和高温回火。低温回火加热温度150-200℃。淬火产生的马氏体保持不变,但是钢的脆性降低,淬火应力降低。主要用于工具、滚动轴承、渗碳零件和表面淬火零件等要求高硬度的零件。中温回火加热温度350-500℃。回火组织为针状铁素体和细粒状渗碳体(FeC)的混合物,称为回火屈氏体。中温回火能获得较高的弹性极限和韧性,主要用于弹簧和热作磨具回火。高温回火加热温度500-600℃。淬火加高温回火的连续工艺称为调质处理。高温回火组织为多边形的铁素体(ferrite)和细粒状渗碳体(Fe3C)的混合组织,称为回火索氏体。高温回火为了得到强度、硬度和塑性韧性等性能的均衡状态,主要用于重要结构零件的热处理,如轴、齿轮、曲轴等。

工艺方案设计:

2.1 实验材料成分及特征

T10碳素工具钢,强度及耐磨性均较T8和T9高,但热硬性低,淬透性不高且淬火变形大,晶粒细,在淬火加热时不易过热,仍能保持细晶粒组织;淬火后钢中有未溶的过剩碳化物,所以耐磨性高,用于制造具有锋利刀口和有少许韧性的工具。适于制造切削条件较差、耐磨性要求较高且不受突然和剧烈冲击振动而需要一定的韧性及具有锋利刃口的各种工具,也可用作不受较大冲击的耐磨零件。

T10是最常见的一种碳素工具钢,韧度适中,生产成本低,经热处理后硬度能达到60HRC以上,但是,此钢淬透性低,且耐热性差(250℃),在淬火加热时不易过热,仍保持细晶粒。韧性尚可,强度及耐磨性均较T7-T9高些,但热硬性低,淬透性仍然不高,淬火变形大。

T10钢板T10钢高温淬火金像

2.2 T10钢的淬火与低温回火工艺参数制定

2.2.1 淬火加热温度的选择

淬火时的具体加热温度主要取决于钢的含

碳量,可根据 Fe-Fe3C相图确定(如右图所示)。

对于T10钢(过共析钢),A C1为730℃,其加热

温度为A C1+30~50℃,即770℃,780℃,7900℃。

若加热温度不足(低于A C1),则淬火组织中将

出现铁素体而造成强度及硬度的降低。

2.2.2保温时间的确定

淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算。温时间的经验公式为:t=αKD(分钟),其中:D是工件有效厚度, 单位为mm; K是加热系数,一般K=1.5~2.0分钟/mm

T10淬火处理:770-790,淬火介质盐水、碱水,硬度36-65HC,回火140-160,保温时间1-2小时,硬度62-64HC

加热到Ac3或Ac1以上30~50摄氏度.

工艺图

加热速度(℃/min ) 加热温度(℃)

保温时间(min ) 冷却方式

淬火 5 790 50 水冷 回火 5

150

60

空冷

时间t/min

温度T/℃

A C1

790℃ 150℃

A 1

50min 60min

淬火

回火

工艺试验:

3.1设备选择

热处理设备的选择要从设备经济性、可靠性、配套性、安全性、安全性以及工厂的实际情况等来选择。

箱式电阻炉、洛氏硬度计、淬火用水槽、砂纸、金相显微镜、静拉伸试验机。

3.2实验过程

1.材料截取及表面处理

用砂轮切割机切100mm长,直径50mm的圆钢

2.材料的热处理

⑴选择3个Φ50×100mm的45钢件标记为1、2、3

⑵淬火:将3个钢件放入箱式保温炉中770℃、780℃、790℃下保温50min。将3个钢件取出放入水中冷却。

⑶回火:将淬火后的钢放入箱式保温炉中140℃、150℃、160℃下保温60min。将3个钢件取出空冷。

⑷将冷却后1、2、3号钢件用洛氏硬度计测出钢件硬度值,记下硬度值并求出平均值。

⑸将1、2、3号钢件打磨制作金相,观察金相组织

⑹将热处理后的硬度和金相组织与预期要求以及热处理前进行比较,得出相关结论。

3.金相显微组织观察

(1)取样

(2)打磨:600﹟→800﹟→1200﹟

(3)抛光:抛光剂为金刚石抛光膏,直至试样表面无划痕。

(4)腐蚀:试样抛光面侵入侵蚀剂中,面呈暗灰色,用水冲洗。

(5)烘干:用热风吹干。

(6)显微摄影:用金相显微镜对抛光后腐蚀的表面进行拍照。

结果与分析:

结论:

参考文献:

合金钢及其热处理工艺

合金钢及热处理工艺 第一篇结构钢 各类结构钢的含碳量及热处理方法 第一节调质钢 调质钢分低淬透性调质钢中淬透性调质钢高淬透性调质钢 一、低淬透性调质钢油淬临界直径最大为30~40mm,合金元素种类少,总含量不大于 2.5%,常用的有铬钢、锰钢、铬硅钢和含硼钢。如30Cr、35Cr、40Cr、45Cr、30Mn2、 35Mn2、40Mn2、45Mn2、50Mn2、42Mn2V、40MnB等 (一)40Cr过热倾向不大,淬火性较好,回火稳定性较高,经调质后能获得较高的综合机械性能。因此它是应用最广的调质钢之一。 40Cr有两种加工路线;1)硬度较高(HB341~451)锻造-正火(退火)-加工-调质 2)硬度较低(HB255~285)锻造-调质-加工调质前是否进行正火或退火,关键在于锻造的掌握上,掌握得好,可以从略。淬火温度水淬830~850℃;油淬850~870℃。40Cr也可以制造经表面硬化处理的零件,如气体碳氮共渗,感应加热。 (二)45Mn2能促进钢的晶粒长大,显著提高钢的淬透性,45Mn2有较敏感的回火脆性,高温回火后要快冷(水或油中冷却)。淬火温度810~840℃,油淬。 (三)硅锰钢硅全部溶入铁素体,固溶强化效果显著,但含量过多(>2%)将会较多地降低塑性和韧性。硅能提高淬透性,单一不明显,与锰或铬复合加入,效果显著。但与锰或铬共存,回火脆性敏感。此外,含硅的钢易产生脱碳现象。 常用的有35SiMn和42SiMn,它们既没有锰钢那样容易过热,也没有硅钢那样容易脱碳,但高温回火后必须快冷。 (四)含硼调质钢硼突出的作用是提高淬透性,并且加入量很少(0.0005~0.001%)时就效果显著,当有效硼在0.001%以下时,淬透性随含硼量增加增加,当超过0.001%,淬透性保持不变,超过0.003%,冲击韧性下降,即”硼脆”超过0.007%引起热脆性,增加热加工困难.含硼量一般都控制在0.0005~0.0035%,可代替1.6%Ni、0.3%Cr、0.2%Mo、0.2~0.7%Mn 的作用.微量硼对钢的过热倾向与回火脆性倾向略有增大的作用,而对回火稳定性则无

碳钢的热处理操作实验

实验五碳钢的热处理操作、组织观察及硬度测定 实验学时:4 实验类型:综合 实验要求:必修 一、实验目的 1. 了解碳钢的热处理工艺操作; 2. 研究碳钢加热温度、冷却速度、回火温度对钢性能的影响; 3. 观察热处理后的显微组织变化; 4. 了解硬度计的原理、初步掌握洛氏硬度计的使用。 二、实验内容 1.按表1中的热处理工艺进行操作,并对热处理后的各样品进行硬度测定,将硬度值填入表1中。 表1 各种热处理工艺 注:保温时间可按1分钟/每毫秒直径计算;回火保温时间均为30分钟,然后取出空冷。

实验五碳钢的热处理操作、组织观察及硬度测定 2. 观察下列表2热处理后的金相试样,并画出组织示意图。 表2 热处理后的金相试样 三、实验原理、方法和手段 (一)钢的热处理工艺: 钢的热处理基本工艺有退火、正火、淬火和回火。进行热处理时,加热是第一道工序,目的是为了得到奥氏体,因为钢的最终组织珠光体、贝氏体和马氏体都是由奥氏体转变来的。二是保温、目的使奥氏体均匀化。三是冷却,是改变组织和性能的重要因素。因此,正确选择三个基本因素是热处理成功的基本保证。 1.加热温度的选择 C相图确定。对亚共析钢,其加热温度为; (1)退火加热温度:根据Fe-Fe 3 共析钢和过共析钢加热至A +(20~30)℃(球化退火),目的是得到球状渗碳体, C1 降低硬度,改善切削性能。 +(30~50)℃;过共析钢加热(2)正火加热温度:一般亚共析钢加热至A C3 至+(30~50)℃,即加热到奥氏体单相区。 +(30~50)℃,淬火后的组织(3)淬火加热温度:一般亚共析钢加热至A C3 ),则淬火组织中将出现铁为均匀细小的马氏体。如果加热温度不足(如低于A C3

正火,回火,退火,淬火处理

正火,回火,退火,淬火的区别 1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温. 退火有完全退火、球化退火、去应力退火等几种。 a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力. b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢. c,去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力. 2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 3.淬火

将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。 4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性. B 中温回火350~500;提高弹性,强度. C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。

第七章 合金钢简答题

第七章合金钢 碳钢具备很多优点,在机器制造业中获得了广泛应用。但是碳钢淬透性低、回火抗力差、不具备特殊的物理、化学性能,且屈强比低,约为0.6。而合金钢屈强比一般为0.85~0.9。在零件设计时,屈服强度是设计的依据。所以,碳钢的强度潜力不能充分发挥。为了满足使用要求,必须选用合金钢。 1、合金元素对钢中基本相有哪些影响? 答:⑴与碳亲合力很弱的合金元素,溶入铁素体内形成合金铁素体,对基体起固溶强化作用,与碳不发生化合反应。 ⑵与碳亲合力较强的合金元素,一般能置换Fe3C中的铁原子,形成合金Fe3C。合金Fe3C较Fe3C稳定性略高,硬度较为提高,是低合金钢中存在的主要碳化物。 ⑶与碳亲合力很强的合金元素,且含量大于5%,易形成特殊碳化物。它比合金渗碳体具有更高的熔点、硬度、耐磨性和回火稳定性。 2、普通低合金钢与含碳量相同的碳素钢相比有什么特点?这类钢常用于哪些场合?钢中合金元素主要作用是什么? 答:普通低合金钢是一种低碳、低合金含量的结构钢,其含碳量<0.2%,合金元素含量<3%。与具有相同含碳量的碳素钢相比具有较高的强度,较高的屈服强度,因此,在相同受载条件下,使结构的重量减轻20~30%。具有较低的冷脆转变温度(-30℃)。 普通低合金钢主要用于桥梁、车辆、油罐以及工程构件。因此它的工作环境大多在露天,受气温和大气中腐蚀性气体的影响较大。 钢中合金元素的主要作用:Mn—强化铁素体基体;V、Ti—细化铁素体晶粒,形成碳化物起弥散强化的作用;Cu、P—提高钢对大气的抗蚀能力。 3、普通低合金钢常用于哪些场合?对性能有何要求?如何达到这些性能要求? 答:普通低合金钢主要用于桥梁、车辆、油罐以及工程构件。 由于它的工作环境大多在露天,受气温和大气中腐蚀性气体的影响较大。因此对它的性能要求如下:良好的综合力学性能,ζs=350~650 MPa,δ=16~23%,αk=60~70 J/cm2;良好的焊接性、冷热加工性;较好的抗蚀性;低的冷脆转化温度,一般为-30℃。 为了达到这些要求,普通低合金钢碳含量低,一般为0.1~0.2%;合金元素含量低,一般<3%。主加元素Mn用来强化铁素体基体;辅加元素V、Ti用来形成碳化物起弥散强化的作用,同时细化铁素体晶粒;Cu、P用来提高钢对大气的抗蚀能力。 4、合金钢与碳钢相比,为什么它的力学性能好?热处理变形小?为什么合金工具钢的耐磨性、热硬性比碳钢高? 答:合金钢中的合金元素能溶入铁素体基体起固溶强化作用,只要加入量适当并不降低钢的韧性;除了Co和Al外,其它合金元素均使C曲线右移,使合金钢淬火时临界冷却速度下降,淬透性提高,从而使力学性能在工件整个截面上均匀(特别是ζs和αk)。故合金钢力学性能好。 合金钢淬透性高,临界冷却速度小,故可用较小的冷却速度进行淬火,使热应力大大降低,所以,合金钢的热处理变形小。 合金工具钢中存在合金渗碳体和特殊炭化物,比碳素工具钢中的渗碳体具有更高的硬度和稳定性,弥散度高,故耐磨性高。

钢的淬火回火工艺参数的确定样本

钢的淬火回火工艺参数的确定 作者:长江挖掘机厂 1前言 淬火是强化材料最有效的 热处理工艺方法,其工艺参数的选择直接影响着材料的性能。这 就要求热处理工作者不断创新 ,改进工艺,有效地发挥出材料的潜力,节约能源,降低生产 成本。本文简述了钢的淬回火工艺参数的确定及量化依据。 2淬火加热温度 按常规工艺,亚共析钢的淬火加热温度为 Ac3 + ( 30?50 °C );共析和过共析钢为 Ac1 + (30?50 C );合金钢的淬火加热温度常选用 Ac1(或Ac3) + ( 50?100 C );高合金钢含 有大量高熔点碳化物,要增大奥氏体化程度,淬火加热温度更高,有些已达到接近熔点的 程度。 为了达到钢所要求的不同性能 ,淬火加热温度正在向高或低两个方面发展。亚温淬火就是 将淬火温度降至 Ac3点以下5?10 C 的a+ 丫两相区,在保留大约10%?15%未溶铁素体 状态进行淬火,在保证强度及较高硬度的同时 ,塑性、 韧性得到改进,淬火变形或开裂明 显减少,回火脆性也有所减弱。现已作为一种新的成熟工艺已获得国内外热处理工作者的 共识。 另外,还有人发现]1 ],以40Cr 钢为代表的亚共析钢在 淬火不但可获得最高的硬度,且各项力学性能也为最佳值 与其相反,提高某些钢的淬火温度也可获得预想不到的结果。如热模具钢 5CrMnMo 、 5CrNiMo 钢的淬火温度由传统的 860 C 提高至920 C (高出30?80 C ) : 2:,加速了碳化 物的溶解,增加了马氏体中的合金含量,组织均匀。能够获得大量的高位错马氏体 ,断裂韧 度大大提高,红硬性更为优异,其使用寿命成倍提高。又如,H13钢淬火温度由1050 C 提 高至1100 C 时,奥氏体晶粒并不明显长大,由于碳化物溶解加速,奥氏体中含碳及合金元 素增多,其结果使Sb S 0.2(室温和500 C )及热疲劳性能提高,有利于延长H13钢的模 具使用寿命]3 ]。 Ac3点处有硬化峰出现,此温度 掌握得当能充分发挥钢的潜力。

淬火钢回火时力学性能的变化

淬火钢回火时力学性能的变化 ●低碳钢回火后力学性能 当低于200℃回火时,强度与硬度下降不多,塑性与韧性也基本不变。这是由于此温度下仅有碳原子的偏聚而无析出。固溶强化得以保持的缘故。 当高于300℃回火,硬度大大下降,塑性有所上升。这是由于固溶强化消失,碳化物聚集长大,α相回复、再结晶所致。所得综合性能并不优于低碳马氏体低温回火后性能。 ●高碳钢一般采用不完全淬火,使奥氏体中碳含量在0.5%左右。淬火后低温回火以获高的硬度,并生成大量弥散分布的碳化物以提高耐磨性,细化奥氏体晶粒。 当高于300℃回火时,硬度、强度下降明显,塑性有所上升,冲击韧性下降至最低。这是由于薄片状θ碳化物析出于马氏体条间并充分长大,从而降低了冲击韧性,而α基体因回复和再结晶共同作用,提高了塑性,降低了强度。 当低于200℃回火,硬度会略有上升,这是由于析出弥散分布的ε(η)碳化物,引起的时效硬化。 ●中碳钢回火后的力学性能 当低于200℃回火,析出少量的碳化物,硬化效果不大,可维持硬度不降。当高于300℃回火,随回火温度升高,塑性升高,断裂韧性K IC剧增。强度虽然下降,但仍比低碳钢高的多。 ●回火脆性 某些钢在回火时,随着回火温度的升高,冲击韧性反而降低。由于回火引起的脆性称为回火脆性。

当300℃回火时,硬度下降缓慢,一方面碳的进一步析出会降低硬度;另一方面,由于高碳钢中存在的较多的残余奥氏体向马氏体转变,又会引起硬化。这就造成硬度下降平缓,甚至有可能上升。回火后仍处于脆性状态。 在200~350℃出现的,称为第一类回火脆性;在450~650℃出现的,称为第二类回火脆性。 1. 第一类回火脆性,属不可逆回火脆性。 当出现了第一类回火脆性后,再加热到较高温度回火,可将脆性消除;如再在此温度范围回火,就不会出现这种脆性。故称之为不可逆回火脆性。在不少钢中,都存在第一类回火脆性。当钢中存在Mo、W、Ti、Al,则第I类回火脆性可被减弱或抑制。 目前,关于引起第一类回火脆性的原因说法很多,尚无定论。看来,很可能是多种原因的综合结果,而对于不同的钢料来说,也很可能是不同的原因引起的。 最初,根据第一类回火脆性出现的温度范围正好与碳钢回火时的第二个转变,即残余奥氏体转变的温度范围相对应而认为第一类回火脆性是残余奥氏体的转变引起的,因转变的结果将使塑性相奥氏体消失。这一观点能够很好地解释促Cr、Si等元素将第一类回火脆性推向高温以及残余奥氏体量增多能够进第一类回火脆性等现象。但对于有些钢来说,第一类回火脆性与残余奥氏体转变并不完全对应。故残余奥氏体转变理论不能解释各种钢的第一类回火脆性。 之后,残余奥氏体转变理论又一度为碳化物薄壳理论所取代。经电镜证实,在出现第一类回火脆性时,沿晶界有碳化物薄壳形成,据此认为第一类回火脆性是由碳化物薄壳引起的。沿晶界形成脆性相能引起脆性沿晶断裂这已是公认的了。问题是所观察到的碳化物薄壳究竟是怎样形成的。

45#钢热处理工艺

45热处理 推荐热处理温度:正火850,淬火840,回火 600. 45号钢为优质碳素结构用钢 ,硬度不高易切削加工,模具中常用来做 45号钢管 模板,梢子,导柱等,但须热处理。 1. 45号钢淬火后没有回火之前,硬度大于HRC55(最高可达HRC62)为合格。 实际应用的最高硬度为HRC55(高频淬火HRC58) 1.45号钢要求硬度HRC40-50,是不是要淬火+低温回火? 换算成布氏硬度大约是380~470HB,根据一般热处理规范,热处理制度与硬度关系大致如下:淬火温度:840℃水淬 回火温度:150℃回火,硬度约为57HRC;200℃回火,硬度约为55HRC;250℃回火,硬度约为53HRC;300℃回火,硬度约为48HRC;350℃回火,硬度约为45HRC;400℃回火,硬度约为43HRC;500 ℃回火,硬度约为33HRC;600℃回火,硬度约为20HRC 一般情况下热处理工艺都指标准范围内中间成分,且热处理温度都存在一个调整范围,如成分在范围内存在偏差,可以相应调整淬火温度和回火温度 2 1.临界温度指钢材的奥氏体转变温度。不同含量的钢材有着不同的临界点,但临界点有着一个范围内的浮动,所以下临界点温度指的就是奥氏体转变的最低温度。 2. 常用碳钢的临界点 钢号临界点 (℃) 20钢 735-855 (℃) 45钢 724-780 (℃) T8钢 730 -770(℃) T12钢 730-820 (℃) 3 20Cr,40Cr,35CrMo,40CrMo,42CrMo:正火温度850-900℃,45号钢正火温度850℃左右。 4 20CrMnTi Ac1 Ac3 Ar1 Ar3 740 825 680 730 5 Cr12MoV热处理知识 Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。 其热处理制度为:钢棒与锻件960℃空冷 + 700~720℃回火,空冷。 最终热处理工艺: 1、淬火: 第一次预热:300~500℃, 第二次预热840~860℃; 淬火温度:1020~1050℃; 冷却介质:油,介质温度:20~60℃, 冷却至油温;随后,空冷,HRC=60~63。 2、回火: 经过以下淬火工艺,可以达到降低硬度的作用,具体回火工艺如下: 加热温度400~425℃,得到HRC=57~59。 说明:在480--520度之间回火正好是这种钢材的脆性回火区,在这个区间回火容易使模具出现崩刃。最为理想的回火区间在380--400℃,这个区间回火,韧性最好,并且有良好的耐磨性。如果淬火后,采用深冷处理(理想的温度是零下120)与中温回火相结合,会得到良好使用效果和高寿

碳素钢热处理 实验指导书

碳素钢热处理 一、实验目的 (1)了解碳素钢基本热处理(退火、正火、淬火、及回火)的工艺方法和主要设备。 (2)研究碳的质量分数,加热温度、冷却温度,回火温度对钢性能的影响。 (3)熟悉硬度计的使用。 二、实验内容 (1)表3所列工艺进行热处理操作实验。 (2)测定热处理后试样的硬度(炉冷、气冷试样测HRB,其余试样测HRC)。 三、实验原理 碳素钢热处理工艺主要有退火、正火、淬火及回火。加热温度、保温时间和冷却速度,是达到热处理良好效果的最重要工艺参数。 1.加热温度 (1)退火亚共析钢加热至Ac3+(20℃~30℃)(完全退火);共析钢,过共析钢加热至Ac1+(20℃~30℃)(球化退火),得到粒状渗碳体,硬度降低,以利切削加工。 (2)正火亚共析钢加热至Ac3+(30℃~50℃);过共析钢加热至Accm+(30℃~50℃),即加热至奥氏体单相区。退火和正火的加热温度范围,见图1. (3)淬火亚共析钢加热至Ac3+(30℃~50℃);共析钢和过共析钢加热至Ac1+(30℃~50℃),淬火的加热温度范围,见图2. 图1 退火和正火的加热温度范围图2 淬火的加热温度范围 钢的成分,原始组织及加热速度等皆影响临界点Ac1,Ac3,Accm的位置。热处理前需认真查阅有关的材料手册,按规范操作。否则,得不到预期的组织。如加热温度过高。晶粒容易长大,材料氧化,脱碳和变形而失去效能。几种碳素钢的临界点,见表1. 表1 几种碳素钢的临界点

注:△T为过热度,取决于加热速度,一般为5℃~15℃。 (1)回火碳素钢淬火后需尽快回火,按热温度的不同,可分为三种:1)低温回火加热温度150℃~250℃,目的是得到回火马氏体。部分降低淬火应力,减少脆性并保持淬火碳素钢的高硬度。用于切削工具、冷作模具、滚动轴承等。 2)中温回火加热温度350℃~500℃,目的是得到回火托氏体,较多的降低淬火应力,有高的韧性和弹性极限。用于弹簧钢等热处理。 3)高温回火加热温度500℃~650℃,目的是得到回火索氏体,消除淬火应力。强度、硬度、冲击韧度较好。淬火加上高温回火又称调质,用于重要零件,如主轴,齿轮等。 2.保温时间为了保证工件内外均达到指定的温度,使碳化物溶解和奥氏体成分均匀化,工件升温和保温所需要的加热时间要给与保证。 保温的加热时间需考虑诸多因素,可参考有关手册数据。据经验估算,按工件有效厚度在空气介质炉中每毫米碳素钢需1min~1.5min;合金钢则需2min左右。利用盐浴炉加热,时间可减半。 3.冷却速度热处理时要充分注意不同的冷却方法,具体说:退火一般采用随炉冷却;正火(又称常化)采用出炉置于空气中冷却,大件则常常需要加吹风。 淬火工艺则较复杂。一方面要求工件冷却大于临界冷却速度,目的是得到全部马氏体组织或下贝氏体组织;另一方面又要要求工件减缓冷却速度,避免淬火应力过大,造成开裂或变形。理想的冷却是过冷奥氏体在最不稳定的温度范围内(650℃~550℃)尽快冷却,迅速渡过危险区域,而在马氏体转变温度(300℃~20℃)尽量降低冷却速度。淬火时的理想冷却曲线示意图,见图3. 图3 淬火时的理想冷却曲线示意图 四、实验步骤 (1)全班分成两组,每组一套试样(45试样8块,T12试样8块)炉冷试样由实验室预先准备好。 (2)一加热温度的45和T12钢试样放入860℃和780℃炉子内加热(炉温预先由实验室升好)保温15~20min后,分别进行水冷、油冷、气冷操作。45钢750℃水冷试样待780℃炉中试样处理完后再进行。 (3)每组将水冷试样各取出三块45和T12试样分别放入200℃、400℃、600℃的炉内回火,回火保温时间为30分钟。

45号钢热处理工艺

45号钢热处理工艺 学号:XXXXXX 姓名:XXXXX 指导老师:XXX

目录 一、综述 (4) 1.调质淬火 (4) (1)淬火加热温度 (4) (2) 淬火冷却 (4) (3) 淬火冷却方法 (5) 2.45钢的调质淬火 (5) 3.回火 (6) (1)回火目的 (6) (3)常用回火方法 (6) 4.45钢淬火后的回火 (6) 二、选题依据 (7) 三、实验材料与设备 (8) 1. 实验设备 (8) 2. 实验材料 (8) 三、实验过程 (8) 1. 试样的热处理 (8) (1)淬火 (8) (2)回火 (9) 2. 试样硬度测定 (9) 3. 显微组织观察与拍照记录 (9) (1)样品的制备 (9) (2)显微组织的观察与记录 (9) 五、实验结果与分析 (10) 1. 样品硬度与显微组织分析 (10) 2. 硬度测试数据 (11) 3. 淬火对试样性能的影响 (11) (1)淬火温度的影响 (11)

(2)淬火介质的影响 (12) 4. 回火对试样的影响 (12) (1)回火温度对45钢组织的影响 (12) (2)回火温度对45 钢硬度和强度的影响 (13) (3)以45钢和T8钢为例分析碳含量对钢的淬硬性的影响 (13) 六、结论 (14) 1. 淬火条件影响样品的组织和性能 (14) 2. 回火温度影响样品的组织和性能 (14) 3. 碳元素影响样品的组织和性能。 (14) 七、参考文献 (14)

一、综述 【内容摘要】:45钢是中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、来源广,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。45钢淬火温度在A3+(30~50) ℃,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工件的奥氏体均匀化,就需要足够的保温时间。 【关键字】:调质淬火45钢的调质淬火回火45钢淬火后的回火 1.调质淬火 调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。 淬火 ——淬火是将工件加热到AC3或AC1点以上某一温度保持一定时间。然后以适当速度快速冷却获得马氏体或(和)贝氏体组织的热处理工艺。 目的:就是为了获得马氏体或下贝氏体组织,提高强度硬度,以便在随后不同温度回火后获得所需要的性能。 (1)淬火加热温度 淬火温度主要是根据Fe—Fe3C相图中钢的临界点确定。亚共析钢的淬火加热温度:AC3以上30℃~50℃,使钢完全奥氏体化,淬火后获得全部马氏体组织。共析钢、过共析钢的淬火加热温度:为AC1以上30℃~50℃,得到奥氏体和部分二次渗碳体,淬火后得到马氏体(共析钢)或马氏体加渗碳体(过共析钢)组织。 (2)淬火冷却 淬火冷却时,要保证获得马氏体组织,必须使奥氏体以大于马氏体临界冷却速度冷却,而快速冷却会产生很大淬火应力,导致钢件的变形与开裂。因此,淬火工艺中最重要的一个问题是既能获得马氏体组织,又要减小变形、防止开裂。 常用冷却介质:目前应用最广泛的淬火冷却介质是水和油。实际生产中,使用的冷却介质较多,到目前为止,尚未找到一种介质,能完全符合理想淬火冷却速度的要求。水具有较强烈的冷却能力,用作奥氏体稳定性较小的碳钢的淬火,水冷却介质最为合适。油的冷却能力比水小,因此,生产中用油作冷却介质,只适用于过冷奥氏体稳定性较大的合金钢淬火。

正火退火淬火回火的区别与联系

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度。) 回火:高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。 退火:退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。去应力退火的加热温度低于相变温度A1,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底. 什么叫回火? -------------------------------------------------------------------------------- 回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。淬火与回火的主要目的是: 1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。 2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不 同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。 3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。 4)改善某些合金钢的切削性能。 在生产中,常根据对工件性能的要求。按加热温度的不同,把回火分为低温回火,中温回火,和高温回火。 淬火和随后的高温回火相结合的热处理工艺称为调质,即在具有高度强度的同时,又有好的塑性韧性。主要用于处理随较大载荷的机器结构零件,如机床主轴,汽车后桥半轴,强力齿轮等。 什么叫淬火? -------------------------------------------------------------------------------- 淬火是把金属成材或零件加热到相变温度以上,保温后,以大于临界冷却速度的急剧冷却,以获得马氏体组织的热处理工艺。淬火是为了得到马氏体组织,再经回火后,使工件获得良好的使用性能,以充分发挥材料的潜力。其主要目的是: 1)提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。 2)改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

45号钢等热处理

45号钢要求硬度HRC40-50,是不是要淬火+低温回火? 换算成布氏硬度大约是380~470HB,根据一般热处理规范,热处理制度与硬度关系大致如下: 淬火温度:840℃水淬 回火温度:150℃回火,硬度约为57HRC;200℃回火,硬度约为55HRC;250℃回火,硬度约为53HRC;300℃回火,硬度约为48HRC;350℃回火,硬度约为45HRC;400℃回火,硬度约为43HRC;500 ℃回火,硬度约为33HRC;600℃回火,硬度约为20HRC 一般情况下热处理工艺都指标准范围内中间成分,且热处理温度都存在一个调整范围,如成分在范围内存在偏差,可以相应调整淬火温度和回火温度 2 1.临界温度指钢材的奥氏体转变温度。不同含量的钢材有着不同的临界点,但临界点有着一个范围内的浮动,所以下临界点温度指的就是奥氏体转变的最低温度。 2. 常用碳钢的临界点 钢号临界点(℃) 20钢735-855 (℃) 45钢724-780 (℃) T8钢730 -770(℃) T12钢730-820 (℃) 3 20Cr,40Cr,35CrMo,40CrMo,42CrMo:正火温度850-900℃,45号钢正火温度850℃左右。 4 20CrMnTi Ac1 Ac3 Ar1 Ar3 740 825 680 730 5 Cr12MoV热处理知识 Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。 其热处理制度为:钢棒与锻件960℃空冷+ 700~720℃回火,空冷。 最终热处理工艺: 1、淬火:

45号钢淬火回火实验要点

郑州航空工业管理学院金属材料及热处理 课程设计 学生专业:材料成型及控制工程学生姓名: 学生学号: 所在学院:机电工程学院 指导老师: 报告日期: 2015年5月14日

目录 一、实验综述---------------------------- (3) 二、实验目的---------------------------- (8) 三、实验设备---------------------------- (8) 四、实验过程---------------------------- (8) 五、实验结果---------------------------- (9) 六、实验结果分析------------------------- (12) 七、结论------------------------------- (12) 八、参考文献--------------------------- (13)

一、实验综述 45号钢综述 45 号钢为优质碳素结构用钢 ,硬度不高易切削加工,模具中常用来做模板,梢子,导柱等,但须热处理。45号钢主要成分为Fe(铁元素),且含有以下 热处理是一种很重要的金属热加工的工艺方法,热处理是根据钢在固态下组织转变的规律,通过不同的加热、保温和冷却,以改变其内部组织,达到改善刚才性能的一种热加工工艺。热处理一般是由加热、保温、和冷却三个阶段组成的,其基本工艺方法可分为退火、淬火及回火等,本次试验要求是淬火与回火。(一)钢的淬火 钢的淬火:淬火是指将钢加热到临界温度以上,保温后以大于临界冷却速度的速度冷却,使奥氏体转变为马氏体的热处理工艺。淬火的目的就是为了获得马氏体,并与适当的回火工艺相配合,以提高刚的力学性能。为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热温度、保温时间和冷却速度。 (1)淬火温度选择 正确选定加热温度是保证淬火质量的重要一环。淬火加热温度的选择应以得到细小的奥氏体晶粒为原则,以便淬火后获得细小的马氏体组织。淬火时的具体加热温度主要取决于钢的临界点确定,钢的淬火温度可根据(如图1所示)进行选择。对45#钢的亚共析钢,其加热温度为 Ac3+30~50oC,此实验采用的加热温度为790o。若加热温度不足(低于780oC的Ac3温度),则淬火组织中将出现铁素体而造成强度及硬度的降低;但过高的加热温度(如超过Acm)不仅无助于强度、硬度的增加,反而会由于产生过多的残余奥氏体而导致硬度和耐磨性的下降。

钢的淬火回火工艺参数的确定

钢的淬火回火工艺参数的确定

钢的淬火回火工艺参数的确定 作者:长江挖掘机厂 1 前言 淬火是强化材料最有效的热处理工艺方法,其工艺参数的选择直接影响着材料的性能。这就要求热处理工作者不断创新,改进工艺,有效地发挥出材料的潜力,节约能源,降低生产成本。本文简述了钢的淬回火工艺参数的确定及量化依据。 2 淬火加热温度 按常规工艺,亚共析钢的淬火加热温度为Ac3+(30~50℃);共析和过共析钢为Ac1+(30~50℃);合金钢的淬火加热温度常选用Ac1(或Ac3)+(50~100℃);高合金钢含有大量高熔点碳化物,要增大奥氏体化程度,淬火加热温度更高,有些已达到接近熔点的程度。 为了达到钢所要求的不同性能,淬火加热温度

正在向高或低两个方面发展。亚温淬火就是将淬火温度降至Ac3点以下5~10℃的α+γ两相区,在保留大约10%~15%未溶铁素体状态进行淬火,在保证强度及较高硬度的同时,塑性、韧性得到改善,淬火变形或开裂明显减少,回火脆性也有所减弱。现已作为一种新的成熟工艺已获得国内外热处理工作者的共识。 此外,还有人发现[1],以40Cr钢为代表的亚共析钢在Ac3点处有硬化峰出现,此温度淬火不仅可获得最高的硬度,且各项力学性能也为最佳值,掌握得当能充分发挥钢的潜力。 与其相反,提高某些钢的淬火温度也可获得预想不到的结果。如热模具钢5CrMnMo、 5CrNiMo钢的淬火温度由传统的860℃提高至920℃(高出30~80℃)[2],加速了碳化物的溶解,增加了马氏体中的合金含量,组织均匀。可以获得大量的高位错马氏体,断裂韧度大大提高,红硬性更为优异,其使用寿命成倍提高。又如,H13钢淬火温度由1050℃提高至1100℃时,奥氏体晶粒并不明显长大,由于碳

45钢的正火工艺过程

将钢加热到一定的温度,经一段时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。 1、碳钢的普通热处理工艺方法 1)钢的退火 钢的退火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后缓慢地随炉冷却。此时,奥氏体在高温区发生分解,从而得到比较接近平衡状态的组织。一般中碳钢(如40、45钢)经退火后消除了残余应力,组织稳定,硬度较低(HB180~220)有利于下一步进行切削加工。 2)钢的正火 钢的正火通常是把钢加热到临界温度Ac3或Accm线以上,保温一段时间,然后进行空冷。由于冷却速度稍快,与退火组织相比,组织中的珠光体量相对较多,且片层较细密,故性能有所改善,细化了晶粒,改善了组织,消除了残余应力。对低碳钢来说,正火后提高硬度可改善切削加工性,提高零件表面光洁度;对于高碳钢,则正火可消除网状渗碳体,为下一步球化退火及淬火作好组织准备。3)钢的淬火 钢的淬火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后放入各种不同的冷却介质中快速冷却(V冷>V临),以获得具有高硬度、高耐磨性的马氏体组织。 4)钢的回火 钢的回火通常是把淬火钢重新加热至Ac1线以下的一定温度,经过适当时间的保温后,冷却到室温的一种热处理工艺。由于钢经淬火后得到的马氏体组织硬而脆,并且工件内部存在很大的内应力,如果直接进行磨削加工则往往会出现龟裂,一些精密的零件在使用过程中将会引起尺寸变化从而失去精度,甚至开裂。因此,淬火钢必须进行回火处理。不同的回火工艺可以使钢获得各种不同的性能。 2、碳钢普通热处理工艺 1)加热温度 碳钢普通热处理的加热温度,原则上按加热到临界温度Ac1或Ac3线以上30~50℃选定。但生产中,应根据工件实际情况作适当调整。热处理加热温度不能过高,否则会使工件的晶粒粗大、氧化、脱碳、变形、开裂等倾向增加。但加热温度过低,也达不到要求。 表2-1碳钢普通热处理的加热温度 方法加热温度(℃) 应用范围 退火 Ac3+(20~60) 亚共析钢完全退火 Ac1+(20~40) 过共析钢球化退火 正火 Ac3+(50~100) 亚共析钢 Accm+(30~50) 过共析钢 淬火 Ac3+(30~70) 亚共析钢 Ac1+(30~70) 过共析钢 回火低温回火 150~250 刃具、模具、量具、高硬度零件 中温回火 350~500 弹簧、中等硬度零件 高温回火 500~650 齿轮、轴、连杆等综合机械性能零件 表2-2 常用碳钢的临界点 钢号临界点(℃) Ac1 Ac3 Accm

45钢及T10钢热处理实验

45钢及T10钢热处理实验

45钢和T10钢热处理实验 一、实验仪器与试样 1.试样:Ф20×18mm 2. 箱式电阻炉,布氏硬度计,洛氏硬度计,砂纸、水(20~30℃) 二、实验内容与步骤 (一)45钢(退火或正火,淬火,回火) 1. 对热处理前的45钢试样进行硬度测试。 采用布氏硬度计对原始试样进行硬度测试,共测三次取平均值。注意试样表面应光滑平坦,不应有氧化皮及油污等。本实验可用砂纸打磨后用丙酮清洗干净后进行测量。 2. 对45钢进行完全退火并测硬度 (1)加热温度 45钢的完全退火是加热到Ac3以上30~50℃,即780+30~780+50,在810~830℃之间取一个温度值。 (2)加热速度: 形状简单的碳素钢可以随炉升温,不控制加热速度。 (3)保温时间 一般碳素钢在温度800℃左右的箱式电阻炉中加热,以每毫米直径或每毫米厚度保温 1.0~1.5min为宜。本实验按1分钟/每毫米直径确定保温时间按为20min。 (4)冷却速度 一般情况下碳钢的冷却速度为100~150℃/h。本实验试样随炉冷却到500℃左右可出炉空冷。 完全退火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用布氏硬度计进行硬度测试,共测三次取平均值。

3. 对45钢进行正火并测硬度 与上述完全退火工艺相同,不同的是最后冷却的时候,保温一段时间后将试样直接从炉中取出空冷。 正火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用布氏硬度计进行硬度测试,共测三次取平均值。 注:钢的退火和正火每个小组自由选择其中一个工艺做即可 4.对45钢进行淬火并测硬度。 加热温度,加热速度,保温时间和完全退火工艺相同,所不同的是冷却的时候,保温一段时间后直接将试样从炉中取出,然后迅速将试样淬入水中,注意淬入水后要不停的运动,破坏试样表面蒸气膜的形成。同时水温控制在40℃以下,还必须不断补充新水,冷却水要保持清洁,否则也会降低冷却能力。 淬火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用洛氏硬度计进行硬度测试,共测五次取平均值。 5.对45钢进行回火并测硬度。 将淬火后的试样重新加热到表5中的某一个温度范围内,保温30min,然后从炉中取出试样空冷。 回火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用洛氏硬度计进行硬度测试,共测五次取平均值。

钢的热处理操作及硬度测试实验

钢的热处理操作和硬度测试实验 1、实验目的: 1、熟悉钢的几种基本的热处理操作(退火、正火、淬火、回火) 2、了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后 性能(硬度)的影响 3、了解热处理工艺对钢组织和性能的影响 2、实验原理: 1、钢的热处理是指将钢在固态范围内加热、保温和冷却,以改变其 内部组织,从而获得所需要的使用性能和工艺性能的一种操作工艺。 2、退火:加热温度——亚共析钢加热至Ac3+(20-30)°C(完全退 火),共析钢和过共析钢加热至Ac1+(20-30)°C(球化退火);冷却方式——炉冷;得到组织——接近平衡状态的珠光体组织。3、正火:加热温度——亚共析钢加热至Ac3+(30-50)°C,共析钢加热 至Ac1+(30-50)°C,过共析钢加热至Accm+(30-50)°C,即加热到奥氏体单相区;冷却方式——空冷;得到组织——细片状珠光体,即索氏体(冷却速度慢不会有马氏体,看双C曲线,空冷经过珠光体区,转变完全,不能发生贝氏体转变)。 4、淬火:亚共析钢加热至Ac3+(30-50)°C,共析钢和过共析钢加热至 Ac1+(30-50)°C;冷却方式——水冷,以大于淬火临界冷却速度快冷;得到组织——马氏体及残余奥氏体。 5、回火:淬火后的钢重新加热到Ac1以下某一温度,保温,冷却到 室温。45钢低温回火——150°C -250°C (选200°C),组织回火马氏体,硬度约54-60HRC;中温回火——350°C -500°C (选400°C),组织回火屈氏体,硬度约40-48HRC;高温回火—— 500°C -650°C (选600°C),组织回火索氏体,硬度约25-35HRC。冷却方式——空冷到50、60°C后用水冲一下。 碳钢在退火及正火状态下的机械性能 性能热处理状 态含碳量(%) <0.10.2-0.30.4-0.6 硬度(HB)退火~120150~160180~230正火130~140160~180220~250

(完整版)淬火回火工艺

渗碳淬火 目录 渗碳(carburizing/carburization) 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 编辑本段 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解 渗碳介质的分解产生活性碳原子。

②吸附 活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散 表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含 量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含 有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 编辑本段 分类 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗。 编辑本段 渗碳工艺 1、直接淬火低温回火 组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。 2 、预冷直接淬火、低温回火,淬火温度800-850℃ 组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。 适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。 3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃ 组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。 适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。 4、渗碳高温回火,一次加热淬火,低温回火,淬火温度840-860℃

相关文档
最新文档