力科示波器眼图测试设置步骤

SDA3 Step by Step

设置水平参数-获得足够的采样点
2、调节timebase,满足采样点的要求 1.固定采样率,保证足够的采样率
第2页

设置垂直参数
尽量占满整个屏幕,充分利 用ADC的8bit分辨率
使用可变增益调节垂直刻度
第3页

进入SDAIII
第4页

SDAIII界面
Step1: 打开SDAIII Step2: 打开4个通道中的任意一个或多个
第5页

输入信号设置
Step1: 选择输入信号源
Step2: 选择信号类型
第6页

CDR设置
Step1: 计算信号速率
Step2: 设置PLL
第7页

进入眼图测试菜单
Step1: 打开眼图测试
Step2: 显示眼图
第8页

眼图模板显示
Step1: 选择眼图模板类型
Step2: 显示眼图模板
第9页

眼图相关测量参数
Step2: 眼图参数测量结果
Step1: 选择眼图测量参数
第10页

眼图Margin
Step1: 调整眼图模板的X和 Y方向,验证眼图的Margin
第11页

ISOBER
ISOBER可以推算出更 多样本时的眼图张开度
第12页

眼图Fail定位
Step1: 定位触碰模板的每 一个bit位
第13页

进入抖动测试菜单
Step1: 打开抖动测试
第14页

抖动测试结果
Step2: 选择抖动参数 Step1: 选择抖动分析模型,
频谱分析方法结果与其他 品牌示波器结果相似,NQScale方法与BERT结果相 似
第15页

浴盆曲线
Step1:选 择抖动直 方图
Step2: 选择浴盆曲线、 直方图等
第16页

抖动频谱分析 - Pj来自于哪些频率
抖动的频谱可以缩放,可标注抖动峰值的频率
Step1:显示Rj和BUj的频谱
在抖动频谱分析中可以 查找周期性抖动的来源
Step2: 显示峰值
第17页

码型分析
分析ISI jitter
第18页

进入噪声分析界面
Step3: 噪声参数结果 Step1: 选择噪声分析模型, Step2: 选择噪声参数
第19页

噪声直方图
Step1: 选择噪声直方图 Step2: 选择随机噪声直方图
第20页

眼图观测实验

实验目的 1、掌握眼图观测的方法。 2、掌握相关眼图的测量方法。实验目的 1、观测眼图。 2、测量沿途的判决电平、噪声容限。 实验模块 1、通信原理0 号模块一块 2、通信原理11 号模块一块 3、示波器 一台实验原理 在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。.

在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图7.6所示的图形来描述。由此图可以看出: 1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。 3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 )在抽样时刻,阴影区的垂直宽度表示最大信号失真量。4. 5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决; 6)横轴对应判决门限电平。实验步骤 I、观测眼图:1、按如下方式连线:

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

示波器的使用方法详解

* 声明 鼎阳科技有限公司,版权所有。 未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容。 ⅠSDS1000系列数字存储示波器简介 SDS1000 系列数字示波器体积小巧、操作灵活;采用彩色TFT-LCD及弹出式菜单显示,实现了它的易用性,大大提高了用户的工作效率。此外,SDS1000 系列性能优异、功能强大、价格实惠。具有较高的性价比。SDS1000 实时采样率最高 2GSa/s 、存储深度最高 2Mpts, 完全满足捕捉速度快、复杂信号的市场需求;支持USB设备存储,用户还可通过U盘或LAN 口对软件进行升级,最大程度地满足了用户的需求;所有型号产品都支持PictBridge 直接打印,满足最广泛的打印需求。 SDS1000系列有二十一种型号: [ SDS1000C系列 ]: SDS1102C、SDS1062C、SDS1042C、SDS1022C [ SDS1000D系列 ]:SDS1102D、SDS1062D、SDS1042D、SDS1022D [ SDS1000CM系列 ]: SDS1152CM、SDS1102CM、SDS1062CM [ SDS1000CE系列 ]: SDS1302CE、SDS1202CE、SDS1102CE、SDS1062CE [ SDS1000CF系列 ]: SDS1304CF、SDS1204CF、SDS1104CF、SDS1064CF [ SDS1000CN系列 ]:SDS1202CN、SDS1102CN ●超薄外观设计、体积小巧、桌面空间占用少、携带更方便 ●彩色TFT-LCD显示,波形显示更清晰、稳定 ●丰富的触发功能:边沿、脉冲、视频、斜率、交替 ●独特的数字滤波与波形录制功能 ●Pass/Fail功能,可对模板信号进行定制 ●3种光标模式、32 种自动测量种类

眼图观测实验 光纤通信_实验5实验报告

课程名称:光纤通信 实验名称:实验5 眼图观测实验 姓名: 班级: 学号: 实验时间: 指导教师: 得分:

一、实验目的 1、了解和掌握眼图的形成过程和意义。 2、掌握光纤通信系统中的眼图观测方法。 二、实验内容 1、观测数字光纤传输系统中的眼图张开和闭合效果。 2、记录眼图波形参数,分析系统传输性能。 三、实验器材 1.主控&信号源模块 2.25号光收发模块 3.示波器 四、实验原理 1、实验原理框图

眼图测试实验系统框图 2、实验框图说明 本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道; 通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。 3、眼图基本概念及实验观察方法 所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。 ●被测系统的眼图观测方法 通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。 眼图测试方法框图 ●眼图的形成示意图

一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。 八种状态如下所示: 八种状态示意图 眼图合成示意图如下所示: 眼图合成示意图 一般在无串扰等影响情况下从示波器上观测到的眼图与理论分析得到的眼图大致接近。 ●眼图参数及系统性能 眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光

力科示波器资料1)

产品名称: 数字示波器 型号: W R620Zi 产地: 美国力科 2GHz ,四通道,单次采样率 10GS/s (4ch )、20GS/s (2ch ),重复采样率200GS/s ,最大触发速率1000000波形/秒,标配存储器(4ch/2ch)16M/32M,彩色12.1"宽屏平板 TFT 活动矩阵LCD 触摸屏。 高质量的验证、调试、分析 The WaveRunner 6 Zi 在测试仪器当中确立优势地位,是由于其具有一个强大的特色设置,它们包括了广泛的应用包、高级触发,开发用于快捷导航的用户界面、多种探头配件以及闪电般的性能。 WaveRunner 6 Zi 示波器概览 最全面的串行数据分析 WaveRunner 6 Zi 提供最多的串行数据分析工具。WaveRunner 6 Zi 拥有超过17种触发、解码和一致性解决方案,它可以通过特有的强大的可视化、自动化的工具来定位问题。该特有的测量工具箱称为ProtoSync ,它将示波器的视图和数据链接层的视图结合同步解码显示在一台仪器上。 出色的信号保真度 WaveRunner 6 Zi 系列示波器具一个有原始信号通路,该通路提供了无与伦比的低噪声的信号保真度。通过大型补偿和时基延时调整,该性能得以增强,使得对简单信号和放大器性能的评估以及对信号特征的垂直水平缩放功能变得更加强大。 WaveRunner HRO 6 Zi, 400 MHz 和600 MHz 模块

相比其它可供选择的8-bit示波器,专门针对医疗、汽车、电源和机电市场设计的WaveRunner具有更高的解析度和测量精度。传统的示波器均使用8-bit ADCs来数字化数据,对于很多既要观察大信号又要观察小信号的应用来说,这是远远不够的。低噪声高解析度的12-bit ADC架构改善了测量精度并提供更加清晰的波形。 导航和观察的新方法 前置面板上的WavePilot控制区域为光标、解码、波形扫描、历史、LabNotebook分别提供了独立的按钮,使得控制更加便捷。 WavePilot区域中间的超级旋钮是一个操纵杆形的旋钮,它可以方便地在表格、缩放和定位波形间切换,快速地记录并对您的设置进行注释。 只用滑动显示屏左侧的按钮并向上旋转90°,显示器就会自动地从横屏模式切换至竖屏模式。显示器还可以在轴心方向上下转动,调整显示角度。 更多触发功能可以更快地解析出更多问题 强大的触发组合,包括高带宽的边沿触发和10种不同的SMART触发:4级级联触发、测量触发和触发扫描全都是标准触发,可以使您快速定位问题,并集中精力在问题的原因上。测量触发提供了一个强大的选项,可在已验证的高解析度的测量基础上验证一个触发事件。高速串行触发使得对于高达3 Gb/s长80-bits的串行样本进行触发成为可能。还提供了全功能的串行触发(I2C、SPI、UART、RS-232、音频(I2S、LJ、RJ、TDM)、CAN、LIN、FlexRay、MIL-STD-1553、SATA、PCIe、8b/10b、USB2 以及其它)。 旋转显示 对于任意信号来说,12.1” 高清WXGA宽屏显示器的设计都可提供最好的显示效果 对于观察长记录的变化的信号并对结果进行缩放滚动来讲,宽屏是最理想的设计。 当观察数字信号、抖动归咎、眼图和频率plot时,可以将屏幕旋转90°来优化显示效果。此时屏幕图像会自动调整显示。向上或向下倾斜显示器,来避免反光和强光的干扰。 垂直系统 模拟带宽 @ 50Ω 2GHz(≥5mV/div) 10 mV-1 V/div

光纤通信系统测量中的眼图分析方法

实验四 光纤通信系统测量中的眼图分析方法测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验仪器 1、ZYE4301F 型光纤通信原理实验箱1台 2、20MHz 模拟双踪示波器1台 3、万用表1台 三、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测量,并且可以用示波器直观的显示出来。图1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种不同有 组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图2所示的眼图,是由3比特长8种组合码叠加而成,示波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图3所示的形状规则的眼图进行分析: 1、当眼开度 V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V V ?增加,无畸变眼图的眼皮厚度应该等于零。 图1眼图的测试系统

3、系统无畸变眼图交叉点发散角b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度- +-++-V V V V 应该等 于零。 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算: 定时抖动= %100??Tb T

眼图观测

眼图观测 实验目的 1、掌握眼图观测的方法。 2、掌握相关眼图的测量方法。 实验模块 1、通信原理0 号模块一块 2、通信原理11号模块一块 3、示波器一台 实验原理 在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 图23-1 眼图的一般描述 在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图7.6所示的图形来描述。由此图可以看出: 1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。 3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试 一.实验目的 1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理; 2.学习通过数字示波器调试、观测眼图; 3.掌握判别眼图质量的指标; 4.熟练使用数字示波器和误码仪。 二.实验原理 眼图是估计数字传输系统性能的一种十分有效的实验方法。这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。图2.1是测量眼图的装置图。由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。 用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。AV5233C误码仪用来产生伪随机数字序列信号。在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。例如N可取7、10、15、23、31等。如果只考虑3比特非归零码,应有如图2.2所示的8种组合。将这8种组合同时叠加,就可形成如图2.3所示的眼图。 图2.1 眼图测量装置

光纤通信系统的眼图测试实验

太原理工大学现代科技学院 光纤通信课程实验报告 专业班级 学号 姓名 指导教师

实验名称 光纤通信系统的眼图测试实验 同组人 专业班级 学号 姓名 成绩 实验三 光纤通信系统的眼图测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验内容 1、测量数字光纤通信系统传输各种数字信号的眼图 2、观察系统眼图,并通过眼图来分析系统的性能 三、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz 双踪模拟示波器 1台 3、万用表 1台 4、FC/PC-FC/PC 单模光跳线 1根 5、850nm 光发端机和光收端机(可选) 1套 6、ST/PC-ST/PC 多模光跳线(可选) 1根 四、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测 量,并且可以用示波器直观的显示出来。图20-1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用 数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 图1、眼图测试系统框图 ……………………………………装………………………………………订…………………………………………线………………………………………

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种 不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图20-2所示的眼图,是由3比特长8种组合码叠加而成,示 波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图20-3所示的形状规则的眼图进行分析: 1、当眼开度V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、 信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V 增加,无畸变眼图的眼皮厚度应该等于零。 3、系统无畸变眼图交叉点发散角 b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲 失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算:定时抖动= …………………………………装……………………………………订………………………………………线……………………………………………

YB4325示波器手册簿

YB4325数字存储示波器使用手册 江苏绿扬电子仪器集团有限公司 本产品采用的标准:EN61010.1(1993) 测量、控制和实验室电子仪器的安全要求标准 EN-IEC61326-1(1997) 测量和实验室电子仪器的EMC要求 本企业通过ISO9001国际质量体系认证, 本产品按ISO9001标准设计生产。 注意事项 请阅读下列注意事项,以避免人身伤害,延长仪器使用寿命。为了防止可能发生的危险,本产品只可在规定的范围内使用。只有专业技术人员才可进行维修。 防止火灾及人身伤害 *使用适当的电源线。只可使用本产品专用、并且核准该使用国的电源线。 *产品接地。本产品通过电源线接地导线接地,接地导线必须与大地相连。前面板上的接地点同仪器整机连接,用来防止触电和保护人体安全,在和任何接插头连接之前,应确认此接地点和大地连接。 *请勿在无仪器盖板时操作。如盖板或面板已卸下,请勿操作本产品。 *使用适当的保险丝。只可使用符合本产品规定类型和额定值的保险丝。 *在有可疑故障时。请勿操作。如怀疑本产品有损坏,请让专业人员进行检查。 *当用示波器测量电网电压时,一定要事先采用一些附加的措施,若直接将探极接入电网,示波器内的电路会被损坏。 延长仪器使用寿命 储存与使用 *不可在寒冷或炎热环境下使用,仪器工作温度是0℃~40℃。不可将仪器从寒冷的环境中突然搬到炎热的环境或相反进行,这将导致仪器内部和屏幕上形成水汽凝结。 *不可将仪器放在湿度大或灰尘多的地方,最佳使用相对湿度范围是35~90%。 *不可将仪器放置在剧烈震动或强磁场的地方。 操作 *不可堵塞或用金属、导线插入仪器通风孔。 *不可倒置、撞击或用探极、连接线拖拉仪器。 *不可将电烙铁放在仪器框架或表面上。 清理 *用软布沾中性洗涤剂擦拭锈迹或灰尘,不可用强挥发材料,如苯。 校准周期 *为了能够保证仪器测量精度,仪器每工作1000小时或6个月要求校准一次,若使用时间较短,则一年校准一次。 本产品上可能出现如下标记: 序号符号说明序号符号说明 1 直流电7 ○关(电源)

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

第26章ARM官方DSP库 FFT的示波器应用

安富莱S T M32-V5开发板 数字信号处理教程 文档版本:V1.0 安富莱电子 W W W.A R M F L Y.C O M

声明 本文档的版权归武汉安富莱电子有限公司所有。任何公司或者个人未经许可,不得将本文档用于商业目的。 ?本文档由安富莱电子原创,非我们原创的资料已经在章节的开头进 行申明(特别是F F T部分)。 ?教程中使用的D S P库是来自A R M公司。 ?教程参考资料如下: ◆C o r t e x-M4权威指南。 ◆数字信号处理理论、算法与实现第二版(作者:胡广书)。 ◆信号与系统第二版(作者:奥本海姆)。 ◆M a t l a b的h e l p文档。 ◆力科示波器基础应用系列文档。 ◆百度百科,w i k i百科。 ◆网络资源。 ◆S T官方相关文档。

第26章F F T的示波器应用 特别声明:本章节内容整理自力科示波器基础应用系列文档,原名《FFT的前世今生》。 FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念。在大学的理工科课程中,在完成高等数学的课程后,数字信号处理一般会作为通信电子类专业的专业基础课程进行学习, 原因是其中涉及了大量的高等数学的理论推导,同时又是各类应用技术的理论基础。关于傅立叶变换的经典著作和文章非常多,但是看到满篇的复杂公式推导和罗列,我们还是很难从直观上去理解这一复杂的概念,我想对于普通的测试工程师来说,掌握 FFT 的概念首先应该搞清楚这样几个问题(在这篇文章中我尝试用更加浅显的讲解,尽量不使用公式推导来说一说 FFT 的那些事儿): 26.1 为什么需要 FFT 26.2 变换究竟是如何进行的 26.3 变换前后信号有何种对应关系 26.4 在使用测试工具(示波器或者其它软件平台)进行 FFT 的方法和需要注意的问题 26.5 力科示波器与泰克示波器的 FFT 计算方法的比较 26.6 珊栏现象 26.7 窗函数对于FFT结果的影响 26.8 窗函数选择指南 26.1为什么需要F F T 首先 FFT(快速傅立叶变换)是离散傅立叶变换的快速算法,那么说到 FFT,我们自然要先讲清楚傅立叶变换。先来看看傅立叶变换是从哪里来的? 傅立叶是一位法国数学家和物理学家的名字,英语原名是 Jean Baptiste Joseph Fourie(1768-1830), Fourier 对热传递很感兴趣,于 1807 年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时颇具争议性的命题:任何连 续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace,1749-1827),当拉普拉斯和其他审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近 50 年的时间里, 拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号, 如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的权威,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了 政治运动,随拿破仑远征埃及,法国大革命后因为怕被推上断头台而一直在逃难。直到拉格朗日死后 15 年这个论文才被发表出来。

眼图测量

眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eyediagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图 图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。

数字示波器使用..

数字示波器使用 §1 基本操作常识 一、功能检查 1.接通仪器电源. 仪器执行所有自检项目,并确认通过自检,按SA VE/RECALL按钮,从顶部菜单框,默认的探头菜单衰减系数设值定为10X. 2.将p2100探头上的开关设定为10x,并将示波器探头与通道1连接.将探头连接器上的插对准ch1同轴电缆插接件上的插头并插入,然后向右旋转以拧紧探头. 把探头端部和接地夹接到探头补偿器的连接器上. 3.按自动设置钮.几秒钟内,可见到方波显示 按ch1 菜单按钮两次以关闭通道1 , 按ch2 菜单按钮以打开通道2.. 二、探头补偿 在首次将探头与任一输入通道连接时,进行此调节,使探头与输入通道相匹配. 1.将探头菜单衰减系数设定为10x, 将探头上的开关设定为10x 并将示波器探头与通道1连接. 将探头端部与探头补偿器的5伏连接器相连,基准导线与探头补偿器的地线连接器相连,打开通道,然后按自动门置. 2.检查所显示波形的形状. 3.如必要,调节探头. 自校准:应将所有探头或导线与输入连接器断开,然后,按UTILITY辅助功能钮,选择DO SELF CAL执行自校准,以确认准备就绪。 三、探头衰减系数设定: 探头有多种衰减系数,它们会影响示波器垂直标尺度数. 如改变(检查)探头衰减系数设定值,按所使用通道的---垂直功能菜单钮, 然后按---探头钮旁的选择钮,直至显示正确的设定值. 该设定在再次改变前一直有效. 注意:出厂时预定值为10x. 确认在探头上衰减开关的设定与示波器上探头探头菜单的选项相同.探头开关的设定值为1 和10. 注意:衰减开关,设定在1 时探头将示波器的带宽限制在7兆,欲全带宽时,必将开关设定为10-. 四、基本概念 (一)触发: 触发决定了示波器何时开始采集数据和显示波形,一旦触发被正确设定.它可以把不稳定的显示或黑屏转换成有意义的波形. 示波器在开始采集数据时,先收集足够的数据用来在触发点的左方画出波形,示波器在等待触发条件发生的同时连续地采集数据.当检测到触发后,示波器连续地采集足够的数据以在触发点的右方画出波形. 1.信源: 触发可从多种信源得到:输入通道,市电,外部触发.

数字示波器使用注意事项

数字示波器使用注意事项 首先在使用仪器前应仔细阅读说明书,对功能、使用注意事项有详细的了解。以下内容如果和说明书有出入以说明书和机身标示或其他声明的厂商数据、说明为准 1.一般情况下要求被测量设备和测量设备都应可靠连接参考地,如不能满足时应使用隔离系统做良好的隔离后才能测量,例如:使用隔离变压器,示波器使用电池供电,使用隔离探头等。 2.一般数字示波器配合探头使用时,只能测量(被测信号到信号地就是大地)信号端输出幅度小于300V CAT II信号的波形。绝对不能测量市电AC220V 或与市电AC220V不能隔离的电子设备的浮地信号。 3. 通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差; 电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。 4.用户如须要测量与市电AC220V不能隔离的电子设备进行浮地信号测试时,必使用高压隔离差分探头或示波器使用电池供电。

非隔离示波器探头使用注意事项 1、首先要注意带宽是否满足要求,通常探头上标明多少MHz。 2、探头在使用之前应注意阻抗是否匹配。 3、探头电容和阻抗在不同档时并不相同,通常探头上会标明什么 档位多少pF的电容,一般高衰减档电容值小于低衰减档,测量敏感信号时,如高阻输出信号、晶振信号等一般要求使用10X 档测量。 4、示波器探头在使用时,要保证地线夹子可靠连接参考点 5、使用多通道测量时,由于非隔离探头底线连通,地线夹子应连 于相同点,如需测量非共地信号时需使用隔离探头并注意隔离电压不可超过隔离探头耐压范围 6、注意!!!现有的Agilent 1000X探头为非隔离探头,探头负 接头和BNC外圈是连通的。 7、

数字示波器使用方法总结

数字示波器使用小方法 前言 本文的结构逐条编排,目的是使内容成为开放性和可添加型的,欢迎有经验的同事增加新的内容。 对本文中用到按键符号作如下规定: TRIGGER MENU→Type(main)→Edge(pop-up)→Coupling(main)→DC(Side) 代表按面板上的TRIGGER MENU键,再按显示屏下方的T ype键,重复按这个钮直到Edge高亮显示,再按显示屏下方的Coupling,再按显示屏右侧的DC键。 注:main代表显示屏下方的键,Side代表显示屏右方的键,pop-up代表一直按此键,直到项目高亮显示。 目录 一.安全问题 (1) 二.使用探头 (2) 三.触发方式 (11) 四.测试方法 (15) 五.小常识、小经验 (23)

一.安全问题 结论一示波器电源线要用三相插头良好接地(即接实验室的地线)说明为了避免电冲击对示波器造成损伤,输出及输入端进行电气连接前要保证示波器良好接地。 结论二探头地线只能接电路板上的地线,不可以搭接在电路板的正、负电源端说明交流供电系统或经整流后直流供电的系统的地一般都是接大地的。探头的地也是经示波器安全地线接大地的。如果探头的地搭在电路板上不是地的点上,就会造成此点和电源地短路,轻者使电路板工作不正常,重者会烧坏电路板或探头,造成严重后果。 尤其注意不能把探头的地接到电路板上的正、负电源端。 结论三不允许在探头还连接着被测试电路时插拔探头。 说明避免对示波器和探头造成损伤,尤其是有源探头。厂家说明。 结论四信号的幅度不要超过探头和示波器的安全幅度,以免造成损坏说明信号幅度超过±40V时,用有源探头P6245和P6243测量会造成探头的损坏。不同探头的幅度量程是不同的,要留心探头及示波器上的说明文字。

力科示波器使用手册

Digital Oscilloscopes

Wave r unner-2 Qu i c k s t a r t to Signal Vi e w i n g An a l o g Pe r s i s t e n c e ? Press A N A L O G P E R S I S T to access the power of An a l o g Pe r s i s t e n c e.The three-dimensional view shows va r i a tions in a wave f o r m as i n te n s i t y or co l o r -g r aded va r i a t i o n s .Press D I S P L AY to custo m i z e the display. Press Z O O M for a close-up view of signal https://www.360docs.net/doc/6315175718.html,e the zoo m co n t r ols to magnify and inspe c t the signal,the soft k eys to change the zoom view,l o ck the zoom tra c es with multi-zoo m ,and to auto m a t i c ally scan the wave f o r m . 1 .Co n n e c t your signal.When using a pro b e,Pro B u s ? a u t o m a t i c ally sets the ve r t i c al scale factor and HFP pro b es a u t o m a t i c ally light-up with the tra c e co l o r .2 .Press A U T O S E T U P an d view. 3 .Press “ U n d o ”to reve r t back to a previous setting. Adjust the T I M E / D I V , and SMART Me m o r y a u t o m a t i c ally assure s the maximum re s o l u -tion for each time-base setting. Press a C H A N N E L b u t t o n ,and use the co n t r ol knobs to s e l e c t an d adjust that c h a n n e l ’s Vo l t s /D i v and offset settings.Press tw i c e to tog g l e the channel be t we e n On and O f f . Se l e c ts a pre- or po s t -t r igger https://www.360docs.net/doc/6315175718.html,e to v i e w the signal eve n t s p r ior to the tri g g e r po i n t. Presets the tri g g e r d e l a y to ze r o. Quick Zoo m Press a C H A N N E L b u t t on to view the menu.

虚拟示波器使用手册

虚拟示波器使用手册 一、软件安装说明 软件安装包括USB数据采集卡驱动程序安装和虚拟示波器软件安装。 1、安装USB数据采集卡驱动程序 本虚拟示波器使用前必须先正确安装USB数据采集卡驱动程序。其安装步骤如下: (1)将USB通信电缆的方形接口插入数据采集卡,USB通信电缆的另一端插入计算机的USB 通信口。计算机查询到新的硬件,启动硬件向导,如图1-1所示,选择“从列表或指定位置安装(高级)”,点击“下一步”: 图1-1硬件向导 (2)进入如图1-2界面,选择“在搜索中包括这个位置”,点击“浏览”,选择USB数据采集卡驱动程序文件,点击“下一步”,开始安装驱动程序: 图1-2选择安装文件

(3)安装完成后,出现如图1-3界面,表明驱动程序安装成功。 图1-3安装完成 如果在使用虚拟示波器过程中,出现数据采集不正确现象,应卸载已经安装的USB数据采集卡驱动程序,将USB通信电缆插入计算机的其他USB通信口,重新安装USB数据采集卡驱动程序。 2、安装虚拟示波器软件 (1)点击文件夹“虚拟示波器软件安装包”,选择“setup.exe”安装程序,进入如图1-4界面: 图1-4软件安装向导

(2)第一步完成后,进入如图1-5界面: 图1-5选择目标路径(3)选择好安装位置后,点击“下一步”,进入如图1-6界面: 图1-6许可协议 (4)选择“我接受该许可协议”,点击“下一步”,进入如图1-7界面:

图1-7准备安装 (5)点击“下一步”,进入如图1-8界面: 图1-8开始安装 (6)程序开始安装,安装完成后进入如图1-9界面,表明程序安装成功。

相关文档
最新文档