光学衍射综合实验系统设计与制作

光学衍射综合实验系统设计与制作
光学衍射综合实验系统设计与制作

编码:

山东省第四届大学生物理科技创新大赛

研究报告

作品名称:光学衍射综合实验系统设计与制作

学校全称:

申报者姓名:

指导教师:

类别:

□实验方法研究(A类)

自制实验教学仪器(B类)

□物理量智能化测量(C类)

□实验模拟与仿真(D类)

□实用创新(E类)

《光学衍射综合实验系统设计与制作》研究报告

摘要:本实验系统是在传统导轨型光强分布仪的基础上改造而成,在原有手动测量的基础上添加了步进电机自动控制系统,并通过单片机编程实现将测量数据实时发送到电脑进行处理。并自主开发了集数据处理、作图、光学衍射验证为一体的软件。实验系统手动自动测量两用,在手动模式下,需要人工进行数据的处理等操作;自动模式下,依靠实验系统的高度自动化,可全部通过操作软件进行数据采集、处理、作图,并可将数据保存,方便以后查看。

关键词:光学衍射;缝宽;数据采集;自动化;步进电机;数据存储

Abstract:The experimental system is adapted from the traditional rail-type instrument light intensity distribution on the basis of added to the original manual measurements on the basis of the stepper motor automatic control system will measure the real-time data sent to a computer for processing, and microcontroller programming. And independently developed a set of data processing, mapping, optical diffraction verified as one of the software. Experimental system manual and automatic measurement of dual-use in manual mode, you need to manual data processing and other operations; automatic mode, the highly automated, relying on the experimental system will be fully operating software for data acquisition, processing, mapping, and may be The data saved for later viewing.

Keywords:Diffraction; slit width; data acquisition; automation; stepping motor; data storage

1引言

光学衍射理论研究

对于单缝,其复振幅透过率函数可表示为:

其中a

为缝宽。对此透过函数进行傅里叶变换,即

所以,夫琅和费衍射区复振幅分布为:

强度分布为:

其中,

所以,激光通过单缝衍射并归一化处理后光强度分布为:

式中,a

为缝宽,

x

为衍射区横坐标,

λ

为光波波长,

z

为衍射距离。

对于双缝,其最终光强度分布公式为:

式中,a

为缝宽,

d

为两缝中心距离,

λ为光波波长,z为衍射距离。

多缝衍射相应强度分布公式较为复杂,此处就不再一一列举。单缝夫琅和费衍射衍射图样分布如下图所示:

图1 单缝衍射强度分布

以下是根据推导出的单缝衍射强度分布公式利用matlab软件做出的光强分布图像:

图2 130um缝宽,衍射距离,不同波长衍射图像对比

实验系统综述

本实验系统,用集成光强检测芯片替代传统的光电池,解决了光电池的暗电流、漂移等问题;并用步进电机通过小模数齿轮依次带动变速齿轮、传动丝杠转动,从而使光强度探头横向移动。探头移动时同步采集数据,实时将数据显示在液晶屏上,并将数据发送到系统软件。系统软件将接收到的数据分析处理并作出实际光强分布图像,根据实验人员选择,计算出缝宽等参数,画出标准图像与实际图像进行比较,观察符合性。

在进行单缝衍射实验时,依据光强度探头扫描回的衍射数据,计算出衍射光谱暗纹间距离,根据公式即可计算出缝宽值,再由光强度分布公式即可在同一坐标系下绘制出标准的图像与实际图像进行对比,验证单缝衍射。若使用标准单缝,更可从表观上对比实验系统的准确度。

系统实物图如下:

图3 系统实物图

2.系统构成

本系统终端以市场上应用广泛、价格低廉的8位单片机为核心,负责控制步进电机的运转、光强度数据的采集及的发送。其硬件组成框图如下:

测量终端控制核心液晶屏实时信息显示

步进单机传动模块

终端系统通

信模块

电脑软件数据处理、

作图、分析

光强度传感器

图4 系统构成原理框图

图5 系统构成实物示意图

3.系统硬件设计

步进电机传动及光强度探头的设计制作

在设计步进电机传动装置时,考虑到传动装置的精确度、微量性,并且可逆向运动,故采用正齿传动。各部分参数如下:

步进电机齿轮变速齿轮M6传动丝杠

模数模数螺距1mm

齿数16 齿数140

外径9mm 外径71mm

如下图所示:测量系统控制步进电机单步转动,步进电机齿轮带动变速齿轮转动,变速齿轮连接传动丝杠,传动丝杠转动时即可带动光强度探头左右移动。

图6 步进电机传动装置示意图

采用MITSUMI V8715单步脚为度的步进电机,电机每转动度,感光探头移动的距

离为

,

x:

mm

mm

x

420

1

1

(齿)

140

1

)

齿

(

16

360

5

.

7

,=

?

?

?

?

?

=

在实际控制中,每次给步进电机四个激励脉冲,即每次转过30度,实际探头单步移动的距离

x

为:

在此基础上,便可以通过算法准确计算出光强检测探头每次采集数据的实际距离,为每次传回的光强度数据准确定位。

系统电源及步进电机驱动电路的设计

因为系统牵扯到步进电机的驱动,在工业设计上为消除机械传动部分对系统的干扰,常采用光耦隔离、步进电机单独电源供电的方式进行驱动。为此,设计制作的电源为两路非共地的独立5V电源。为保证电源的稳定性,使用两路输出9V电源的变压器进行桥式整流、滤波,再用三端稳压器件CW7805稳压到5V。

电源原理图如下:

图7 系统电源部分原理图

为提高系统工作稳定性,步进电机驱动电路使用东芝公司生产的4通道光耦集成芯片TLP521-4进行步进电机与系统电路的隔离,使用集成达林顿管芯片ULN2003A独立电源供电驱动,驱动电路原理图如下:

图8 系统步进电机驱动原理图

单片机电路设计与制作

单片机采用目前市场上使用广泛的宏晶科技的STC89C52,内部含有256B的RAM、4KB的ROM、波特率可设置的全双工串口通信,4组32个准双向I/O口,可通过编程实现对周围模块的自由控制。

电路部分总原理图如下:

图9 系统单片机控制部分原理总图

显示模块采用LCD1602液晶显示器,可显示两行,每行16个字母或数字。该液晶驱动方式有4位并口或8位并口可选,考虑到单片机I/O口足够用,故在此采用8位并口驱动。

光强检测模块采用罗姆公司的集成芯片BH1750FVI,通过IIC总线将光强度数据读出,每次读16位数据,并通过函数计算出光强值。

与电脑通讯使用市场上应用广泛的USB转COM数据线,使用时需在计算机安装相应驱动软件。单片机端,使用电平转换芯片MAX232,此芯片可实现单片机的TTL电平与计算机RS232电平互转,并可同时实现两路串口的同时通信,互不干扰。

4 系统软件设计

单片机终端软件设计

实验系统单片机控制程序使用Keil Software公司开发的Keil C51集成开发环境编写,Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过集成开发环境(uVision)将这些部分组合在一起,编写程序方便、高效。

实际编写程序采用模块化编程,对每个文件进行头文件与源文件的封装,在该系统的设计中,除了编译环境提供的标准头文件,还用到了自己编写的,,,,等头文件,每个头文件都有其对应的源文件。

下图为实际的开发环境截图:

图10 uVision4开发环境截图

下面是系统终端程序框图:

开始

各模块初始化

键盘、PC软件指令监听

指令响应函数,采集光强,步进电

机转动,数据显示、上传

结束

图11 实验系统终端程序框图

上位机软件设计调试

上位机软件使用微软的集成开发环境Visual Studio2010基于.NET 设计开发,软件启动界面如图所示:

图12 实验系统分析软件主界面

【载入项目】可以将以前测量保存下的.idp文件重新载入查看;

【新建项目】即建立新的测量项目,点击之后,出现如图窗口:

图13 新建实验项目界面

【步长】可以调整测量时步进单机转过的角度,默认值为8。选中步长,按退格键即可清空,手动输入1-15之间的数字,按回车键确认,如果输入的数字超过范围,便自动调整为默认值8。每次转过角度越小,光强度探头移动的距离越小,数据点采集越密集,从而精度也越高。

【测量周期】:调整每次采集数据的时间间隔。

【串口设置】:用于选择与测量终端连接的COM口。

测量时,点击【连接】按钮,联机成功,再点击或者即可开始测量,测量时,可随时点击【暂停】停止测量。点击【清空】时,可将当前数据缓冲区的数据清空。【模式转换】用于切换图像显示是以连线形式还是以打点的形式显示。

如图所示:

图14 测量界面连线形式作图

图15 测量界面打点形式作图

测量结束后,点击确定按钮,即可自动保存当前数据,关闭该窗口,进入主操作界面。如下图:

图16 测量结束软件做出的图像

对于单缝衍射,测量完成后,手动输入激光波长,衍射距离,点击【计算】按钮,从横坐标负值开始拖动出合适区域,点击鼠标右键,即可自动计算出缝宽、各级次的极大值、相对误差等信息,并同时画出标准光强分布曲线对照,如图所示:

图17 软件自动计算出所有测量信息

非计算模式下,可用鼠标随意拖动区域进行放大观察曲线,点击鼠标右键或者【坐标还原】恢复原来标度。

图18 软件实现放大功能

点击【标准曲线】、【实际曲线】,可实现图像颜色的设置,调整【线型样式】,可在【点】、【折线】、【填充线】、【平滑曲线】间切换,如图所示:

图19 做出的图像可以进行线形的调节点击【坐标切换】,可在相位坐标、自然坐标之间切换。

图20 软件以相位坐标显示

做双缝衍射实验时,其光强分布曲线如下图所示:

图21 双缝衍射曲线强度分布

做多缝衍射光强分布实验时,按如上步骤即可做出其衍射图像。此处不再截图示范。

部分实验数据

实验条件波长衍射距离测量步长测量周期

8/105 mm 400ms

实验数据极大值相对光强实验值理论值相对误差﹣1级次

-%+1级次

﹣2级次

-%+2级次

﹣3级次

-%+3级次

极小值坐标

﹣1极小﹢1极小计算得缝宽

+

5. 结语

本实验系统涉及信息光学、光电检测技术、机械设计自动化、单片机项目开发、C#高级语言程序设计等多个知识领域,是一套综合的实验测量系统。总体安装调试后,对单缝、双缝及多缝衍射均可做出很好的光强分布图像,并对单缝衍射通过算法自动

计算出缝宽;如果添加相应算法,还可进一步计算双缝、多缝缝宽等参数。参考文献

[1] 郁道银,谈恒英.工程光学(第2版) [M].北京:机械工业出版社,2009.

[2] 梁瑞生,吕晓旭.信息光学(第2版) [M].北京:电子工业出版社,2008.

[3] 董传岱.数字电子技术基础(第3版)[M].山东:中国石油大学出版社,2009.

[4] 濮良贵,纪名刚.机械设计(第8版)[M].北京:高等教育出版社,2006.

[5] 赵晓安. MCS-51单片机原理及应用[M].天津:天津大学出版社,2010

[6] 夏普. Visual C# 2010从入门到精通[M]. 北京:清华大学出版社,2010.

[7] 谭浩强,张基温. C语言程序设计教程(第3版)[M].北京:高等教育版社,1991.

基础光学实验实验报告

基 础 光 学 实 验 姓名:许达学号:2120903018 应物21班

一.实验仪器 基础光学轨道系统,基础光学组合狭缝及偏振片,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二.实验目的 1.通过该实验让学生了解并会运用实验器材,同时学会用计算机分析和处理实验数据。 2.通过该实验让学生了解基本的光学现象,并掌握其物理机制。三.实验原理 单缝衍射:当光通过单缝发生衍射,光强极小(暗点)的衍射图案由下式给出asinθ=mλ(m=1,2,3……),其中a是狭缝宽度,θ为衍射角度,λ是光波波长。 双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大值的角度由下式给出dsinθ=mλ(m=1,2,3……),其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光波波长,m为级数。 光的偏振:通过第一偏振器后偏振电场为E0,以一定的角度β穿过第二偏振器,则场强变化为E0cosβ,由于光强正比于场强的平方,则,第二偏振器透过的光强为I=I0cos2β. 四.实验内容及过程

单缝衍射 单缝衍射光强分布图 如果设单缝与接收屏的距离为s,中央极强到光强极小点的距离为c,且sinθ≈tanθ=c/s,那么可以推得a=smλ/c.又在此次实验中,s=750mm,λ=6.5E(-4)mm,那么推得a=0.4875m/c,又由图可知:当m=1时,c=(88-82)/2=3mm,推得a=0.1625mm; 当m=2时,c=(91-79)/2=6mm,推得a=0.1625mm; 当m=3时,c=(94-76)/2=9mm,推得a=0.1625mm; 当m=4时,c=(96-74)/2=11mm,推得a=0.1773mm; 得到a的平均值0.1662mm,误差E=3.9%。 双缝干涉

电子系统设计 实验报告

本科生实验报告 实验课程电子系统设计 学院名称 专业名称测控技术与仪器 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇年月——二〇年月

实验一、运放应用电路设计 一、实验目的 (1)了解并运用NE555定时器或者其他电路,学会脉冲发生器的设计,认识了解各元器件的作用和用法。 (2)掌握运算放大器基本应用电路设计 二、实验要求 (1)使用555或其他电路设计一个脉冲发生器,并能满足以下要求:产生三角波V2,其峰峰值为4V,周期为0.5ms,允许T有±5%的误差。 V2/V +2 图1-1 三角波脉冲信号 (2)使用一片四运放芯片LM324设计所示电路,实现如下功能:设计加法器电路,实现V3=10V1+V2,V1是正弦波信号,峰峰值0.01v,频率10kHz。 V3 图1-2 加法电路原理

三、实验内容 1、555定时器的说明: NE555是属于555系列的计时IC的其中的一种型号,555系列IC的接脚功能及运用都是相容的,只是型号不同的因其价格不同其稳定度、省电、可产生的振荡频率也不大相同;而555是一个用途很广且相当普遍的计时IC,只需少数的电阻和电容,便可产生数位电路所需的各种不同频率的脉波讯号。 a. NE555的特点有: 1.只需简单的电阻器、电容器,即可完成特定的振荡延时作用。其延时范围极广,可由几微秒至几小时之久。 2.它的操作电源范围极大,可与TTL,CMOS等逻辑闸配合,也就是它的输出准位及输入触发准位,均能与这些逻辑系列的高、低态组合。 3.其输出端的供给电流大,可直接推动多种自动控制的负载。 4.它的计时精确度高、温度稳定度佳,且价格便宜。 b. NE555引脚位配置说明下: NE555接脚图: 图1-3 555定时器引脚图 Pin 1 (接地) -地线(或共同接地) ,通常被连接到电路共同接地。 Pin 2 (触发点) -这个脚位是触发NE555使其启动它的时间周期。触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。

电子系统综合设计与训练

电子系统综合设计与训练 指导书 编者:陈巍曾宪阳陆欣云 南京工程学院 工程基础实验与训练中心 前言:本课程是南京工程学院工程基础实验与训练中心系统集成专业、自动化学院相关专业课程体系与内容的教学改革的产物,是组成南京工程学院电工电子类专业技术基础课平台课程的课程之一,也是最重要的的一门实践性课程。其目的是通过以工程实践或社会生活为背景的综合电子系统的研究、设计与实现,使学生能将已学过的模拟电路、数字电路与EDA技术、微机原理、单片机、嵌入式系统等多门课程知识综合运用于电子系统的设计中,从而培养学生知识综合应用及电子系统设计的能力,这是在所有实践性课程中最具活力,最能培养学生的自主学习与实践能力、培养学生创新思维的课程之一。在教学中可以根据学生兴趣爱好及所在的各学科专业的实际要求,选择不同的实践课题。 授课方式:本课程是研讨型实践课程,采用教师授课、自主学习与研究、演讲与讨论、设计与实践、答辩与验收等多种教学方式。 课程学时:课内总学时120学时,其中:授课10学时,专题讲座10课时,讨论40课时,实践60学时(实践2课时作1学时);课内外学时比例:1:1 适合范围:电类专业本科生 先修课程:大学物理(含半导体器件物理)、电路分析基础、电子技术基础(模拟、数字)、单片机技术或嵌入式系统。 第一部分:模拟电子技术、数字电子技术混合设计项目项目一、正弦信号产生、转换计数显示电路的设计 【项目内容】 设计一个数模混合系统,包括信号的产生、转换、脉冲计数、译码、显示等。电路应实现的具体功能与技术指标如下: 1.基本要求 (1)设计一个正弦信号产生电路,要求输出信号频率可调。频率范围为500~1000Hz。

用zemax设计光学显微镜光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

基础光学实验实验报告

基础光学实验 一、实验仪器 从基础光学轨道系统,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二、实验简介 利用传感器扫描激光衍射斑点,可标度各个衍射单缝之间光强与距离变化的具体规律。同样可采集干涉双缝或多缝的光强分布规律。与理论值相对比,并比较干涉和衍射模式的异同。 理论基础 衍射:当光通过单缝后发生衍射,光强极小(暗点)的衍射图案由下式给出 asinθ=m’λ(m’=1,2,3,….)(1) 其中a是狭缝宽度,θ为衍射角度,λ是光的波长。 下图所以为激光实际衍射图案,光强与位置关系可由计算机采集得到。衍射θ角是指从单缝中心到第一级小,则m’为衍射分布级 数。

双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大的角度由下式给出: dsinθ=mλ(m=1,2,3,….)(2) 其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光的波长,m为级数(0为中心最高,1为第一级的最大,2为第二级的最大…从中心向外计数)。 如下图所示,为双缝干涉的各级光强包络与狭缝的具体关系。 三、实验预备 1.将单缝盘安装到光圈支架上,单缝盘可在光圈支架上旋转,将光圈支架的螺丝拧紧,使单缝盘在使用过程中不能转动。要选择所需的狭缝,秩序旋转光栅片中所需的狭缝到单缝盘中心即可。 2、将采集数据的光传感器与转动传感器安装在光学轨道的另一侧,并调整方向。 3、将激光器只对准狭缝,主义光栅盘侧靠近激光器大约几厘米的距离,打开激光器(切勿

直视激光)。调整光栅盘与激光器。 4、自左向右和向上向下的调节激光束的位置,直至光束的中心通过狭缝,一旦这个位置确定,请勿在实验过程中调整激光束。 5、初始光传感器增益开关为×10,根据光强适时调整。并根据右图正确讲转动传感器及光传感器接入科学工作室500. 6、打开DataStudio软件,并设置文件名。 四、实验内容 A、单缝衍射 1、旋转单缝光栅,使激光光束通过设置为0.16毫米的单缝。 2、采集数据前,将光传感器移动衍射光斑的一侧,使传感器采集狭缝到需要扫描的起点。 3、在计算机上启动传感器,然后慢慢允许推动旋转运动传感器扫描衍射斑点,完成扫描后点击停止传感器。若果光强过低或者过高,改变光传感器(1×,10×,100×)。 4、使用式(1)确定狭缝宽度: (a)测量中央主级大到每一侧上的第一个极小值之间的距离S。 (b)激光波长使用激光器上的参数。 (c)测量单缝光栅到光传感器的前部之间的距离L。 (d)利用以上数据计算至少两个不同的最小值和平均的答案。分析计算结果与标准缝宽之间的误差以及主要来源。 B、双峰衍射 1、将单缝光栅转为多缝光栅。选择狭缝间距为0.25mm(d)和狭缝官渡0.04mm(a)的多缝。 2、采集数据前,将光传感器移动衍射光板的一侧,是传感器采集狭缝到需要扫描的起点。 3、在计算机上启动传感器,然后慢慢允许推动旋转运动传感器扫描衍射斑点。完成扫描后点击停止传感器。如光强过低或者过高,改变光传感器(1×,10×,100×)。 4、利用DataStudio软件来测量主极大到一侧第一、二、三次极大的距离,并测量整个包络宽度。 5、测量最大的中心之间的距离和第二次和第三次的最大侧。测量距离从中央最高最低衍射(干扰)模式。 6、使用式(2)确定缝间距: (a) 测量中央主级大到每一侧上的第n个极大值之间的距离H n(n=1,2,3)。 (b)测量单缝光栅到光传感器的前部之间的距离L。

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

电子系统设计报告

课程设计实践报告 一、课程设计的性质、目的与作用 本次电子系统设计实践课程参照全国大学生电子设计模式,要求学生综合利用所学的有关知识,在教师的指导下,分析和熟悉已给题目,然后设计系统方案、画原理图及PCB、软件编程,并做出课程设计报告。因此,在设计中,要求学生应该全面考虑各个设计环节以及它们之间的相互联系,在设计思路上不框定和约束同学们的思维,同学们可以发挥自己的创造性,有所发挥,并力求设计方案凝练可行、思路独特、效果良好。 本课程设计的目的是为了让学生能够全面了解电子电路应用系统的整个设计过程,逐步掌握系统开发的以下相关技术: (1)熟悉系统设计概念; (2)利用所学数电、模拟电路知识,设计电路图; (3)利用PROTEL软件画原理图及PCB; (4)熟悉系统项目设计报告填写知识; (5)培养团队合作意识。 通过本课程设计,有助于学生更好地了解整个课程的知识体系,锻炼学生实际设计能力、分析和思考能力,使其理论与实践相结合,从而为后续课程的学习、毕业设计环节以及将来的实际工作打好坚实的基础。 二、课程设计的具体内容 电子系统设计实践课程就是锻炼学生系统设计、分析和思考能力,全面运用课程所学知识,发挥自己的创造性,全面提高系统及电路设计、原理图及PCB 绘画等硬件水平和实际应用能力,从而体现出电子系统设计的真谛。下面是各个设计阶段的具体内容。 1.系统方案认识 根据所设定的题目,能够给出系统设计方案与思路

题目:信号发生器产生电路,请设计一个能产生正弦波、方波及三角波电路,并制作原理图,然后阐述其原理。 基本原理: 系统框图如图1所示。 图1 低频信号发生器系统框图 低频信号发生器系统主要由CPU、D/A转换电路、基准电压电路、电流/电 压转换电路、按键和波形指示电路、电源等电路组成。 其工作原理为当分别按下四个按键中的任一个按键就会分别出现方波、锯齿 波、三角波、正弦波,并且有四个发光二极管分别作为不同的波形指示灯。2、各部分电路原理 (1)DAC0832芯片原理 ①管脚功能介绍(如图5所示) 图5 DAC0832管脚图 1) DI7~DI0:8位的数据输入端,DI7为最高位。

光学仪器实验报告

常用光电仪器原理及使用 实验报告 班级:11级光信息1班 姓名:姜萌萌 学号:110104060016 指导老师:李炳新

数字存储示波器 一、实验目的 1、熟悉数字存储示波器的使用方法; 2、测量数字存储示波器产生方波的上升时间; 二、实验仪器 数字存储示波器 三、实验步骤 1、产生方波波形 ⑴、打开示波器电源阅读探头警告,然后按下OK。按下“DEFAULT SETUP”按钮,默认的电压探头衰减选项是10X。 ⑵、在P2200探头上将开关设定到10X并将探头连接到示波器的通道1上,然后向右转动将探头锁定到位,将探头端部和基线导线连接到“PROBE COMP”终端上。 ⑶、按下“AUTOSET”按钮,在数秒钟内,看到频率为1KHz 电压为5V峰峰值得方波。按两次CH1BNC按钮删除通道1,

按下CH2BNC按钮显示通道2,重复第二步和第三步。 2、自动测量 ⑴、按下“MUASURE”按钮,查看测量菜单。 ⑵、按下顶部的选项按钮,显示“测量1菜单”。 ⑶、按下“类型”“频率”“值”读书将显示测量结果级更新信息。 ⑷、按下“后退”选项按钮。 ⑸、按下顶部第二个选项按钮;显示“测量2菜单”。 ⑹、按下“类型”“周期”“值”读数将显示测量结果与更新信息。 ⑺、按下“后退”选项按钮。 ⑻、按下中间选项按钮;显示“测量3菜单”。 ⑼、按下“类型”“峰-峰值”“值”读数将显示测量结果与更新信息。 ⑽、按下“后退”选项按钮。 ⑾、按下底部倒数第二个按钮;显示“测量4菜单”。⑿、按下“类型”“上升时间”“值”读数将显示测量结果与更新信息。

LCR测试仪 一、实验目的 1、熟悉LCR测试仪的使用方法; 2、了解LCR测试仪的工作原理; 3、精确测量一些电阻,电感,电容的值; 二、实验仪器 LCR测试仪,电阻,电容,电感等元件 三、LCR测试原理 根据待测元器件实际使用的条件和组合上的差别,LCR 测量仪有两种检测模式,串联模式和并联模式。串联模式以检测元器件Z为基础,并联模式以检测元器件的导纳Y为基础,当用户将测出流过待测元件的电流I,数字电压表将测出待测元件两端的电压V,数字鉴相器将测出电压V和电流I 之间的相位角 。检测结果被储存在仪器内部微型计算机的

电子系统综合设计实验报告

电子系统综合设计实验报告 所选课题:±15V直流双路可调电源 学院:信息科学与工程学院 专业班级: 学号: 学生姓名: 指导教师: 2016年06月

摘要本次设计本来是要做±15V直流双路可调电源的,但由于买不到规格为±18V的变压器,只有±15V大小的变压器,所以最后输出结果会较原本预期要小。本设计主要采用三端稳压电路设计直流稳压电源来达到双路可调的要求。最后实物模型的输出电压在±13左右波动。 1、任务需求 ⑴有+15V和-15V两路输出,误差不超过上下1.5V。(但在本次设计中,没有所需变压器,所以只能到±12.5V) ⑵在保证正常稳压的前提下,尽量减小功效。 ⑶做出实物并且可调满足需求 2、提出方案 直流可变稳压电源一般由整流变压器,整流电路,滤波器和稳压环节组成如下图a所示。 ⑴单相桥式整流 作用之后的输出波形图如下:

⑵电容滤波 作用之后的输出波形图如下: ⑶可调式三端集成稳压器是指输出电压可以连续调节的稳压器,有输出正电压的LM317三端稳压器;有输出负电压的LM337三端稳压器。在可调式三端集成稳压器中,稳压器的三个端是指输入端、输出端和调节端。 LM317的引脚图如下图所示:(LM337的2和3引脚作用与317相反)

3、详细电路图: 因为大容量电解电容C1,C2有一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输入、输出端常并入瓷介质小容量电容C5,C6,C7,C8用来抵消电感效应,抑制高频干扰。 参数计算: 滤波电容计算: 变压器的次级线圈电压为15V ,当输出电流为0.5A 时,我们可以求得电路的负载为I =U /R=34Ω时,我们可以根据滤波电容的计算公式: C=т/R,来求滤波电容的取值范围,其中在电路频率为50HZ 的情况下,T 为20ms 则电容的取值范围大于600uF ,保险起见我们可以取标准值为2200uF 额定电压为50V 的点解电容。另外,由于实际电阻或电路

光学基础学习报告

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS )的光学传感器元件。 光学特性参数: 1、 焦距EFL (学名f ’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月 图 1.3

折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低, 像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系 tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、 BFL 后焦距(学名后截距) 图2.1 3、 F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加 对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照

电子系统设计实习报告模板

实习报告 ——电子系统设计 学号:0706110408 班级:电信07-4 姓名:李华君

一.设计内容 基本任务: 1、用一位数码管(DS1)显示自己的学号,大约1秒钟显示1位数字 2、流水灯(循环点亮8个LED)\ 3、通过串口将自己的班级,学号,姓名发送至电脑,用串口调试助手显示。 扩展任务(做完基本任务后,有余力的同学选作,评定成绩加分): 任务一 在ds1302中写入当前时间,然后每个2秒钟通过max232送入计算机显示(年月日时分秒),送出20个时间信息后,蜂鸣器响一声。 任务二 在AT24C02中写入自己的姓名(拼音),学号,并通过串口在电脑显示输出。 任务三 通过ds18b20读入当前温度值,送入数码管显示,显示用三位(DS1,DS2,DS3显示,DS4不焊接),显示温度范围0-99摄氏度,精度0.5摄氏度。 任务四 通过ds18b20读入当前温度值,送入串口显示 二.系统程序代码 1、流水灯: #include #include void delay(unsigned int); unsigned char a; void main() { a=0xfe; P1=a; while(1) { a=_crol_(a,1); delay(500); P1=a; } } void delay(unsigned int z) { unsigned int x,y; for(x=100;x>0;x--) for(y=z;y>0;y--); }

2、数码管: #include sbit dula=P2^7; unsigned char ss,t; unsigned char code table[]={0x3f,0x07,0x3f,0x7d,0x06,0x06,0x3f,0x66,0x3f,0x7f}; void delay(unsigned int); void main() { /*t=0; TMOD=0x01; TH0=(65536-50000)/256; TL0=(65536-50000)%256; EA=1; ET0=1; TR0=1;*/ while(1) { /*if(t==20)*/ for(ss=0;ss<10;ss++) { /*t=0; if(ss==10) ss=0;*/ dula=1; P0=table[ss]; dula=0; delay(500); /*ss++;*/ } } } void delay(unsigned int z) { unsigned int x,y; for(x=z;x>0;x--) for(y=100;y>0;y--); } /*void timer0() interrupt 1 { TH0=(65536-50000)/256; TL0=(65536-50000)%256; t++; }*/ 3、串口: #include

典型光学系统试验

\ 本科实验报告 课程名称:应用光学实验姓名:韩希 学部:信息学部系:信息工程专业:光电 学号:3110104741 指导教师:蒋凌颖 实验报告

课程名称: 应用光学实验 指导老师 成绩:__________________ 实验名称:典型光学系统实验 实验类型: 同组学生姓名: 蒋宇超、陈晓斌 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 深入理解显微镜系统、望远镜系统光学特性及基本公式; 掌握显微镜系统、望远镜系统光学特性的测量原理和方法。 二、实验内容和原理 (1)望远镜特性的测定 测定望远镜的入瞳直径D 、出瞳直径D ’和出瞳距错误!未找到引用源。;测定望远镜的视觉放大率Γ;测定望远镜的物方视场角错误!未找到引用源。,像方视场角错误!未找到引用源。;测定望远镜的最小分辨角φ。 对于望远镜系统来说,任意位置物体的放大率是常数,此值由物镜焦距错误!未找到引用源。和目镜焦距错误!未找到引用源。确定,其视觉放大率可表示为 (2) 显微镜视场及显微物镜放大率的测定 显微物镜的放大率是指横向放大率 式中 y ——标准玻璃刻尺上一对刻线的距离(物)(格值0.01mm ); y ′——由测微目镜所刻得的像高。 (3)显微物镜数值孔径的测定 显微物镜的数值孔径为错误!未找到引用源。,其中n 为物方介质的折射率,u 为物方半孔径角。若在空气中n=1,则错误!未找到引用源。。 数值孔径通常用数值孔径计来测定,数值孔径计的结构如图5示,其主要元件是一块不太厚的玻璃半圆柱体,沿直径方向的侧面是与上表面成45度角的斜面,从侧面入射的光线在斜面上全反射,上表面上有两组刻度沿圆周排列。其外圈刻度为数值孔径(即角度的正弦值), 专业: 光电信息工程 姓名: 韩希 学号: 3110104741 日期:2013年6月15日 地点:紫金港东四605

电子系统设计专题实验

电子系统设计专题实验报告 ——AVR 单片机基础实验 学 院: 电信学院 班 级: 计算机14 学 号: 2110505092 姓 名: 刘鑫

一、实验目的和要求 本实验课程的主要目的是通过一个新型嵌入式单片机为核心的应用系统设计,掌握微型计算机硬件系统结构基本原理,软件开发编程方法,外围接口电路的组成和应用编程技术,以及电子系统设计的相关技术。通过课程实践训练,能够独立实现一个完整的计算机应用系统设计。 要求基本实验部分学习单片机系统的基本硬件组成原理和软件程序设计方法;综合设计实验要求根据题目需求自行设计系统硬件组成电路,并设计实现完成相应功能的应用程序调试任务。 二、实验设备及开发环境 以AVR ATmega128单片机为核心的实验开发系统。实验开发板采用技术性能优良的AVR ATmega128单片机作为核心器件,还特别设计了USB接口模块、Ethernet网络接口模块,还有MCU对外扩插槽,可为电路扩展模块提供必要的准备。 AVR单片机实验开发系统实验测试环境: 1.软件开发平台: PC机WindowsXP操作系统; AVR Studio 4.16 集成开发软件; WinAVR 20080610 C语言编译器; 2.下载编程工具: JTAG ICE mkII在线仿真器; 3.测试目标板: ATmega128实验开发板; 4.测试程序:用C语言编写电路功能测试程序,在WinAVR(GCC)+ AVR Studio编译下通过。 三、实验设计题目及实现的功能 实验一:单片机实验系统开发环境学习 1. 熟悉实验电路的结构原理、元器件名称、作用及相应的接口连接; 2. 学会使用C编译器编辑、编译、调试简单C源程序; 3. 学会使用AVR Studio集成开发软件下载调试并得到正确结果; 4. 熟悉蜂鸣器电路的编程原理 实验程序源代码: #include // I/O端口寄存器配置文件,必须包含 #include // 延时函数调用文件 int main(void) // GCC中main文件必须为返回整形值的函数,没有 // 参数 { PORTE = 0X80; // PORTE输出高电平,使蜂鸣器不响 DDRE = 0X08; // 配置端口PE3为输出口 while(1) { PORTE &= ~(1 << PE3); //PE3置“0”,但是这种设置方法不改变PE口其余位 //的状态,平时程序中推荐这种使用方法 _delay_ms(100); // 延时100毫秒 _delay_ms(100); _delay_ms(100);

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

电子系统设计温度控制系统实验报告

电子系统设计实验报告温度控制系统的设计 姓名:杨婷 班级:信息21 学校:西安交通大学

一、问题重述 本次试验采用电桥电路、仪表放大器、AD转化器、单片机、控制通断继电器和烧水杯,实现了温度控制系统的控制,达到的设计要求。 设计制作要求如下: 1、要求能够测量的温度范围是环境温度到100o C。 2、以数字温度表为准,要求测量的温度偏差最大为±1o C。 3、能够对水杯中水温进行控制,控制的温度偏差最大为±2o C,即温度波 动不得超过2o C,测量的精度要高于控制的精度。 4、控制对象为400W的电热杯。 5、执行器件为继电器,通过继电器的通断来进行温度的控制。 6、测温元件为铂热电阻Pt100传感器。 7、设计电路以及使用单片机学习板编程实现这些要求,并能通过键盘置入预期温度,通过LCD显示出当前温度。 二、方案论证 1、关于R/V转化的方案选择 方案一是采用单恒流源或镜像恒流源方式,但是由于恒流源的电路较复杂,且受电路电阻影响较大,使输出电压不稳定。 方案二是采用电桥方式,由电阻变化引起电桥电压差的变化,电路结构简单,且易实现。 2、关于放大器的方案选择 方案一是采用减法器电路,但是会导致放大器的输入电阻对电桥有影响,不利于电路的调节。 方案二是采用仪表放大器电路,由于仪表放大器内部的对称,使电路影响较小,调整放大倍数使温度从0到100度,对应的电压为0-5V。 三、电路的设计 1、电桥电路 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。本次实验中:R1=R2=10KΩ,R3为500Ω的变阻器。

显微镜系统设计实验报告

光学系统设计实验报告 设计题目:测量显微镜光学系统 专业班级:光信息08-1班 学生姓名: 学号: 指导老师:

一实验目的 1.了解光学系统设计的基本步骤,学会基本外形尺寸的计算。 2.熟悉ZEMAX软件的操作,了解操作要领,学会应用基本的相差 评价函数并进行优化。 二、实验器材 ZEMAX软件、相关实验指导书 三、设计要求 1)设计说明书和镜头文件。镜头文件包括物镜镜头文件、目镜镜头文件和光学系统镜头文件。 2)部分技术参数选择: ①目镜放大率10 ②沿光轴,目镜最后一面到物面沿光轴的几何距离280毫米 ③对工件实边缘的对准精度为2.2微米 ④其它参数自定 3)其他要求 ①视场大小自定,尽可能大些,一般达到商用仪器的一半。 ②可以不加棱镜。如加棱镜,折转角大小自定。棱镜可以按照等效玻璃板处理。 ③可以对物镜和目镜进行整体优化或独立优化。 ④可以加上CCD。 四、具体设计 1.系统结构设计思路 1)系统结构框图

物体经物镜所成的放大的实像与分划板重合,两者一同经目镜成一放大的虚像。棱镜的型式为斯米特屋脊棱镜,它能使系统成正像,并且使光路转折45°角,以便于观察和瞄准(此处可以不加设计)。为避免景深影响瞄准精度,物镜系统采用物方远心光路,即孔径光阑位于物镜像方焦面上。 (图1 显微镜系统结构图) 2)等效光路原理图

(图2 显微镜无光轴偏转的等效光路图) 2.外形尺寸计算 1)首先绘出光学系统的等效光路原理图。如图所示,首先将棱镜作为等效空气平板处理。 2)求实际放大率。系统的有效放大率由系统的瞄准精度决定。用米字形虚线瞄准被测件轮廓,得系统有效放大率 由于工具显微镜一般要求有较大的工作距和物方线视场,又要求共轭距不能太长,因而工具显微镜的实际放大率和物镜的放大率均不宜过大。取实际放大率为 3)求数值孔径 4)求物镜和目镜的放大率 目镜的放大率 物镜的放大率 5)求目镜的焦距 ? -=Γ30102.02 .21.500055 .061.061.0 nsinU ≈??===δλk NA 3 -=ΓΓ =e β?=Γ10e mm f e e 25250 =Γ= '? ≥?=≥ Γ222 .21.55 .725.72δk

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

电子系统设计总结报告

电子系统设计总结报告 题目:对讲机 班级:电气 组别:第二组 指导教师: 设计时间:

对讲机 一、引言 1、选题意义 有线对讲机在日常生活中应用广泛。有线对讲机原理简单,设计方便,制作简易,成本低,对于初次进行实验设计的我们来说实验成功率高。而且,有线对讲机广泛应用于医院病员呼叫机、门铃、室内电话等,具有应用范围广,实用性强的特点,所以有线对讲机日益成为生活中不可缺少的部分。为了本次实验的顺利成功,我们首先去了解它的原理过程以及如何正确的去操作它,这样既可以在很大程度上提高我们对知识的掌握与应用,又可以提高我们的动手能力,增强我们对动手实验的兴趣。本次试验,目的既在于提高动手能力,结合理论知识与实际操作于一体,最终设计并制作出具有实用性的产品,又在于磨练个人意志,增强个人耐心,培养团队意识。在产品制作过程中,组内相互分工,互帮互助,协调一致,共同完成此次实验。通过本次实验,大家对于模拟电子技术和数字电子技术会有更好的理解与掌握,也教会大家在遇到问题时如何思考,如何发现问题、解决问题,这些对于今后的学习与研究都是有相当大的帮助的。 2、设计目标 这次实验,我们小组由产品功能出发,设计实验电路图,计算各电子元器件的值,再进行元器件调研来对不同元器件进行比较,最终选择出价格合理,性能完善并且适用于所设计的电路图的元件,再依据所设计的电路图,进行正确焊接与调试,最终得到在50米内,能进行清晰对讲的“半双工对讲机”,即在同一时刻,一方讲话,另一方在距离其50米处可以清晰听到其所讲内容,通过调节转换开关,来进行听与说的角色的相互转换。

3、小组成员分工 二、作品说明 1、功能 对讲机可用于室内电话、医院病员呼叫机、门铃等,可用YUHIHHIH米内进行对讲。本次实验制作成的对讲机为“半双工式对讲机”,即在相同时刻,主机与从机之间只有一个可以讲,而在此时刻,另一个只能听,通过一个双刀双掷开关控制讲话与听话的相互转换。 2、操作说明 操作时,按下电源开关,将控制转换的双刀双掷开关打到一侧,可以完成主机讲话,从机收听主机发送的声音信号;将控制开关打到另一侧,则可以完成从机讲话,主机接收由从机发送的声音信号。通过双刀双掷开关的转换完成主机与从机之间的交流与信息转换。当长时间不使用时,可将控制电源的开关关闭,这样可以节约电能,避免不必要的浪费。

电子系统综合设计

数据采集系统的设计 中文摘要:数据采集系统,是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 本课程设计对数据采集系统作了基本的研究。本系统主要解决的是采集10路模拟量(10位精度),20路开关量,采集的数据每隔1毫秒,通过串行通讯方式RS485向一台工控机传送的实现方法。 关键词:数据采集、A/D转换、模拟量。数字量、串行通信 一、设计目的 1、综合运用所学相关课程的基础理论和基本知识,完成数据采集系统的设计。 2、学会PROTEUS电子设计软件使用。 3、掌握电子电路的测试方法,熟练应用电子工程领域相关仪器、仪表和设备对电路的技术指标进行测试。 二、设计内容 1、在PROTEUS电子设计平台,综合应用模拟电子技术、数字电子技术、单片机技术,完成数据采集系统电路设计与仿真。 2、在电子综合实训平台,选择电路模块,实现硬件验证。 3、在电子测试平台上,对主要技术参数进行测试。 三、主要仪器设备 1、电子综合实训系统。 2、PROTEUS电子设计软件。 3、万用表。 四、数据采集系统设计 1、数据采集系统方案 图 1 硬件设计总体框图

方案说明:数据采集系统即通过改变输入模拟信号来改变A\D转换后的值,进而改变现实模块的显示值。 2、电路设计 在PROTUES中选用的就要元件有AT89C51、ADC0809、7SEG-MPX4-CC-BLUE、CAP、CAP-ELEC、CRYSTAL、POT-HG、RES、RESPACK-8。 图2 数据采集系统设计原理图 电位信号是模拟信号通过模数转换器ADC089转换成数字信号,输送到AT89C51单片机 中,通过单片机的分析处理后经过数码显示出来,我们可以得到确切的信号数据。 五、程序设计 流程图如下: 图3 数据采集系统设计流程图

光学仪器实验报告

燕山大学 常见光学仪器原理及使用实验报告 L.C.R测试仪 紫外可见分光度计 傅立叶光谱仪 阿贝折射仪 干涉显微镜 数字存储示波器 学院(系): 年级专业: 学号: 学生姓名: 指导教师:

实验一LCR测试仪 一.实验目的 LCR测试仪能准确并稳定地测定各种各样的元件参数,主要是用来测试电感、电容、电阻的测试仪。它具有功能直接、操作简便等特点,能以较低的预算来满足生产线质量保证、进货检验、电子维修业对器件的测试要求。 二.实验仪器 LCR测试仪 三.实验原理 Vx与Vr均是矢量电压表,Rr是理想电阻。自平衡电桥的意思是:当DUT(Device Under Test)接入电路时,放大器的负反馈配置自动使得OP输入端虚地。Vx准确测定DUT两端电压(DUT的Low电位是0),Vr与Rr测得DUT电流Ix,由此可计算Zx。 LCR测试原理图 HP4275的测试端Hp,Hc,Lp,Lc(下标c代表current, 下标p代表Potentail),Guard(接地)的配置可导致测试的误差的差异。 提高精度的方法是: 1,Hp,Lp,Hc,Lc尽量接近DUT; 2,减小测试电流Ix 的回路面积&磁通量(关键是分析Ix,要配合使用Guard与Cable最小化回路面积);3,使用Gurard与Cable构建地平面中断信号线间的电场连接,虽然会增加信号线的对地电容(对地电容不影响测试结果),但是会减少信号线的互容。

LCR测试原理图 Guard与Cable的对地寄生阻抗(Zhg,Zlg) 不影响测试结果,电桥平衡时Zlg的两端电压是0,流向Rr的电流不会被Zlg分流,Zhg的分流作用不影响Hp的电压测量。 LCR测试原理图 四.实验步骤 LCR测试仪一般用于测试电感和电容。测量步骤如下: 1.设置测试频率。 2.测试电压或者电流水平。 3.选择测试参数,比如Z、Q、LS(串联电感)、LP(并联电感)、CS(串联电感)、CP(并联电容)、D等。 4.仪器校准,校准主要进行开路、短路校准,高档的仪器要进行负载校准 5.选择测试夹具。 6.夹具补偿。 7.将DUT放在夹具上开始测试。

相关文档
最新文档