9 习题九 气体动理论

9 习题九 气体动理论
9 习题九 气体动理论

习题九

姓名

一、选择题

1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ]

(A )0()Nf v dv ∞

?; (B )201()2mv f v dv ∞?; (C )201

()2mv Nf v dv ∞?; (D )01

()2mvf v dv ∞?。

2.下列对最概然速率p v 的表述中,不正确的是 [ ]

(A )p v 是气体分子可能具有的最大速率;

(B )就单位速率区间而言,分子速率取p v 的概率最大;

(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;

(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。

3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ]

(A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;

(C )两种气体的温度相同;

(D )两种气体的压强相同。

4.如下图所示,若在某个过程中,一定量的理想气体的

热力学能(内能)U 随压强p 的变化关系为一直线(其

延长线过U —p 图的原点),则该过程为[ ]

(A )等温过程; (B )等压过程;

(C )等容过程; (D )绝热过程。

5.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,

若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 [ ]

(A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B

U U V V ????= ? ?????;(D )无法判断。

二、填空题

1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示下列各量:

1)速率大于100m/s 的分子数 ;

2)分子平动动能的平均值 ;

3)多次观察某一分子速率,发现其速率大于100m/s 的概率 ;

2.氢气在不同温度下的速率分布曲线如图所示,

则其中曲线1所示温度1T 与曲线2所示温度2T 的高低

有1T 2T (填 “大于”、“小于” 或“等于” )

3.温度为T 的热平衡态下,物质分子的每个自由度都具有的平均动能为 ;温度为T 的热平衡态下,每个分子的平均总能量 ;温度为T 的热平衡态下,νmol(0/m M ν=为摩尔数)分子的平均总能量 ;温度为T 的热平衡态下,每个分子的平均平动动能 。

4.质量为50.0g 、温度为18.0o C 的氦气装在容积为10.0升的封闭容器内,容器以200v =m/s 的速率做匀速直线运动。若容器突然停止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度将增加 K ;压强将增加 Pa 。

5.一定量的理想气体,在温度不变的情况下,当压强降低时,分子的平均碰撞次数Z 的变化情况是z (填“减小”、“增大”或“不变”),平均自由程λ的变化情况是 λ (填“减小”、“增大”或“不变”)。

三、计算题

1.设想每秒有2310个氧分子(质量为32原子质量单位)以-1500m s ?的速度沿着与器壁法线成45o 角的方向撞在面积为43210m -?的器壁上,求这群分子作用在器壁上的压强。

2.设氢气的温度为300℃。求速度大小在3000m/s 到3010m/s 之间的分子数N 1与速度大小在p v 到10+p v m/s 之间的分子数N 2之比。

3.导体中自由电子的运动可以看成类似于气体分子的运动,所以常常称导体中的电子为电子气,设导体中共有N个自由电子,电子气中电子的最大速率为

f

v(称做费米速率),电

子的速率分布函数为:

2

4,0

()

0,

f

f

Av v v f v

v v

π

?≤≤

?

=?

>

??

式中A为常量,求:(1)用N和

f

v确定常数A;(2)电子气中一个自由电子的平均动能。

4.将1mol温度为T的水蒸气分解为同温度的氢气和氧气,试求氢气和氧气的热力学能(内能)之和比水蒸气的热力学能增加了多少?(所有气体分子均视为刚性分子)。

5.在半径为R的球形容器里贮有分子有效直径为d的气体,试求该容器中最多可以容纳多少个分子,才能使气体分子间不至于相碰?

06气体动理论习题解答课件

第六章 气体动理论 一 选择题 1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。 A. pV /m B. pV /(kT ) C. pV /(RT ) D. pV /(mT ) 解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kT pV N = 。 故本题答案为B 。 2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( ) A. 3p 1 B. 4p 1 C. 5p 1 D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 1132166)(p kT n kT n n n p ==++= 故本题答案为D 。 3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B. 2 5pV C. 3pV D.27pV 解 理想气体的内能RT i U ν2 =,物态方程RT pV ν=,刚性三原子分子自由度i =6, 因此pV pV RT i U 326 2===ν。 因此答案选C 。 4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RT Mp V m ==ρ(式中m 是气体分子

气体动理论汇总

有关概念: 热运动:分子做不停的无规则运动 热现象:物质中大量分子的热运动的宏观表现(如:热传导、扩散、液化、凝固、溶解、汽化等都是热现象)。 分子物理学与热力学的研究对象:热现象 微观量:描述单个分子运动的物理量。(如:分子质量、速度、能量等) 宏观量:描述大量分子热运动集体特征的物理量。(如:气体体积、压力、温度等)统计方法: 对个别分子运动用力学规律,然后对大量分子求微观两的统计平均值。 分子物理学研究方法: 建立宏观量与微观量统计平均值的关系从微观角度来说明 宏观现象的本质。分子物理学是一种微观理论。 热力学研究方法: 实验定律为基础,从能量观点出发,研究热现象的宏观规律。它是 一种宏观理论。 一、热学的基本概念 热学是物理学的一个重要分支学科,它研究的是热现象的宏观特征及其微观本质。热学研究的对象是大量粒子(如原子、分子)组成的物质体系,称为热力学系统或简称系统。 二、分子运动的基本概念 从微观上看,热现象是组成系统的大量粒子热运动的集体表现,热运动也称为分子运动、分子热运动。它是不同于机械运动的一种更加复杂的物质运动形式。因此,对于大量粒子的无规则热运动,不可能像力学中那样,对每个粒子的运动进行逐个的描述,而只能探索它的群体运动规律。就单个粒子而言,由于受到其它粒子的复杂作用,其具体的运动过程可以变化万千,具有极大的偶然性;但在总体上,运动却在一定条件下遵循确定的规律,如分子的速率分布,平均碰撞频率等,正是这种特点,使得统计方法在研究热运动时得到广泛应用,从而形成了统计物理学。统计物理学是从物质的微观结构出发,依据每个粒子所遵循的力学规律,用统计的方法来推求宏观量与微观量统计平均值之间的关系,解释与揭示系统宏观热现象及其有关规律的微观本质。 三、相关的一些概念 通常我们把描述单个粒子运动状态的物理量称为微观量,如粒子的质量、位置、动量、能量等,相应的用系统中各粒子的微观量描述的系统状态,称为微观态;描述系统整体特性的可观测物理量称为宏观量,如温度、压强、热容等,相应的用一组宏观量描述的系统状态,称为宏观态。 四、热学相关内容的分类 按研究角度和研究方法的不同,热学可分成热力学和气体动理论两个组成部分。热力学不涉及物质的微观结构,只是根据由观察和实验所总结得到的热力学规律,用严密的逻辑推理方法,着重分析研究系统在物态变化过程中有关热功转换等关系和实

第二章气体动理论

第二章 气体动理论 1-2-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4:2:1: : 2 2 2 C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2x v = m kT 3 (B) 2 x v = m kT 331 (C) 2 x v = m kT 3 (D) 2 x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4)

5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 252 3 )(2121 (C) kT N kT N 252321+ (D) kT N kT N 2 3 2521+ 7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为: (A ) kg 16 1 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg 8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了: (A) 0.5% (B) 4% (C) 9% (D) 21% 9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。如果两种气体的压强相同,那么这两种气体的单位体积的内能A V E ??? ??和B V E ??? ??的关系为: (A )B A V E V E ??? ????? ??

(完整word版)大学物理气体动理论热力学基础复习题及答案详解

第12章 气体动理论 一、 填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的 压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的 温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均 距离为 。(设分子均匀等距排列) 4、星际空间温度可达 2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率 为 。 5、在压强为51.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强 为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的 平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、21 21121.6910 1.8310 1.5010m s m s m s ---?????? 图12-1

气体动理论剖析

1
质量为 m 摩尔质量为 M 的理想气体,在平衡态下,压强 p、体积 V 和热力学温度 T 的关系 式是
?
A、pV=(M/m)RT B、pT=(M/m)RV C、pV=(m/M)RT D、VT=(m/M)Rp
?
?
?
正确答案: C 我的答案:C 得分: 9.1 分
2
一定量某理想气体按
=恒量的规律膨胀,则膨胀后理想气体的温度
?
A、将降低 B、将升高 C、保持不变 D、升高还是降低,不能确定
?
?
?
正确答案: A 我的答案:A 得分: 9.1 分
3
在标准状态下,任何理想气体每立方米中含有的分子数都等于

? A、
? ? B、
? ? C、
? ? D、
?
正确答案: C 我的答案:A 得分: 0.0 分
4
有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有 0.1 kg 某一温度的氢气, 为了使活塞停留在圆筒的正中央, 则另一边应装入同一温度的氧气的质量 为
?
A、0.16 kg B、0.8 kg
?

?
C、1.6 kg D、3.2 kg
?
正确答案: C 我的答案:C 得分: 9.1 分
5
若理想气体的体积为 V,压强为 p,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常量, R 为普适气体常量,则该理想气体的分子数为
?
A、pV / m B、pV / (kT) C、pV / (RT) D、pV / (mT)
?
?
?
正确答案: B 我的答案:C 得分: 0.0 分
6
一定量的理想气体在平衡态态下,气体压强 p、体积 V 和热力学温度 T 的关系式是
? A、
? ? B、

第二章气体分子运动论的基本概念汇总

第二章?????气体分子运动论的基本概念2013-7-22崎山苑工作室1 2.1物质的微观模型分子运动论是从物质的微观结构出发来阐明热现象的规律的。 一、宏观物体是由大量微粒--分子(或原子)组成的宏观物体是由分子组成的,在分子之间存在着一定的空隙。例如气体很容易被压缩,又如水和酒精混合后的体积小于两者原有体积之和,这都说明分子间有空隙。用20000atm的压强压缩钢筒中的油,结果发现油可以透过筒壁渗出,这说明钢的分子间也有空隙。目前用高分辨率的扫描隧道显微镜已能观察晶体横截面内原子结构的图像,并且能够操纵原子和分子。2013-7-22崎山苑工作室2 2013-7-22崎山苑工作室

二、物体内的分子在不停地运动着,这种运动是无规则的,其剧烈程度与物体的温度有关扩散现象说明:一切物体(气体、液体、固体)的分子都在不停地运动着 在显微镜下观 察到悬浮在液 体中的小颗粒 都在不停地作 无规则运动,

该运动由布朗 最早发现,称 为布朗运动。 2013-7-22崎山苑工作室4 布朗运动的无规则性,实际上反映了液体内部分子运动的无规则性。 所谓“无规则”指的是: 1。由于分子间的相互碰撞,每个分子的运动方向和速率都在不断地改变; 2。任何时刻,在液体或气体内部,沿各个方向运动的分子都有,而且分子运动的速率有大有小。 实验结果:扩散的快慢和布朗运动的剧烈程度都与温度的高低有显著的关系。随着温度的升高,扩散过程加快,悬浮颗粒的运动加剧。 结论:分子无规则运动的剧烈程度与温度有关,温度越高,分子的无规则运动就越剧烈。通常把分子的这种运动称为热运动。 2013-7-22崎山苑工作室5 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力 排斥力:固体和液体的很难压缩说明分子之间存在着斥力结论:一切宏观物体都是由大量分子(或原子)组成的;所有的分子都处在不停的、无规则热运动中;分子之间有相互作用力。 2013-7-22崎山苑工作室6 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

气体动理论

气体动理论 一、选择题 1.按照气体分子运动论,气体压强的形成是由于 ( ) (A )气体分子之间不断发生碰撞; (B )气体分子的扩散; (C )气体分子不断碰撞器壁; (D )理想气体的热胀冷缩现象. 2.理想气体中仅由温度决定其大小的物理量是( ) (A )气体的压强 (B )气体分子的平均速率 (C )气体的内能 (D )气体分子的平均平动动能 3. 在一个容积不变的封闭容器内理想气体分子平均速率若提高为原来的2倍,则( ) A .温度和压强都提高为原来的2倍 B .温度为原来的2倍,压强为原来的4倍 C .温度为原来的4倍,压强为原来的2倍 D .温度和压强都为原来的4倍 4.关于温度的意义,下列几种说法中错误的是:( ) A .气体的温度是分子平均平动动能的量度. B .气体的温度是大量气体分子热运动的集体表现,具有统计意义. C .温度的高低反映物质内部分子运动剧烈程度的不同. D .从微观上看,气体的温度表示每个气体分子的冷热程度. 5.容积为V 的容器中,贮有1N 个氧分子、2N 个氮分子和M kg 氩气的混合气体,则混合 气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)[ ] (A )kT V N 1 (B )kT V N 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ ++ 6.一瓶氦气和一瓶氮气(均为理想气体)都处于平衡状态,质量密度相同,分子平均平动动 能相同,则它们( ) A 、温度相同、压强相同; B 、温度相同,但氦气的压强大于氮气的压强; C 、温度、压强都不相同; D 、温度相同,但氦气的压强小于氮气的压强 7.压强、温度相同的氩气和氮气,它们的分子平均平动动能k ε和平均动能ε的关系为 ( ) (A )和k ε都相等 (B )和k ε都不相等 (C )k ε相等,而 ε不相等 (D )ε相等,而k ε不相等 8.mol 2的刚性分子理想气体甲烷,温度为T ,其内能可表示为:( ) A 、kT 5; B 、kT 6; C 、RT 5; D 、RT 6.

热学(李椿+章立源+钱尚武)习题解答_第二章 气体分子运动论的基本概念

第二章 气体分子运动论的基本概念 2-1 目前可获得的极限真空度为10-13 mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。 解: 由P=n K T 可知 n =P/KT=) 27327(1038.11033.1101023 213+?????-- =3.21×109(m –3 ) 注:1mmHg=1.33×102 N/m 2 2-2 钠黄光的波长为5893埃,即5.893×10-7 m ,设想一立方体长5.893×10-7 m , 试问在标准状态下,其中有多少个空气分子。 解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105 N/m 2 ∴N=6 23375105.5273 1038.1)10893.5(10013.1?=?????=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5 mmHg 的真空。为了提高其真空度, 将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子。 解:设烘烤前容器内分子数为N 。,烘烤后的分子数为N 。根据上题导出的公式PV = NKT 则有: )(0 110011101T P T P K V KT V P KT V P N N N -=-= -=? 因为P 0与P 1相比差103 数量,而烘烤前后温度差与压强差相比可以忽略,因此 T P 与 1 1 T P 相比可以忽略 1823 2 23111088.1) 300273(1038.11033.1100.1102.11??+???????=?=?---T P K N N 个 2-4 容积为2500cm 3 的烧瓶内有1.0×1015 个氧分子,有4.0×1015 个氮分子和3.3×10-7 g

气体动理论知识点总结

气体动理论知识点总结 注意:本章所有用到的温度指热力学温度,国际单位开尔文。 T=273.15+t 物态方程 A N PV NkT P kT nkT V m PV NkT PV vN kT vRT RT M =→= =' =→===(常用) 一、 压强公式 11()33 P mn mn = =ρρ=22v v 二、 自由度 *单原子分子: 平均能量=平均平动动能=(3/2)kT *刚性双原子分子: 平均能量=平均平动动能+平均平动动能=325222 kT kT kT += *刚性多原子分子: 平均能量=平均平动动能+平均平动动能=3 332 2 kT kT kT +=

能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2 k i kT ε= 气体的内能为k E N =ε 1 mol 气体的内能22 k A i i E N N kT RT =ε== 四、三种速率 p = ≈v = ≈v = ≈ 三、 平均自由程和平均碰撞次数 平均碰撞次数:2Z d n =v 平均自由程: z λ= =v 根据物态方程:p p nkT n kT =?= 平均自由程: z λ==v

练习一 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子热运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。 3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT = 211227315 0.9627327N T N T +===+ 1210.04N N N N ?=-= 则此时室内的分子数减少了4%. 4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A ) (A )两种气体分子的平均平动动能相等。 (B )两种气体分子的平均动能相等。 (C )两种气体分子的平均速率相等。 (D )两种气体的内能相等。 任何气体分子的平均平动动能都是(3/2)kT ,刚性双原子分子: 平均能量=平均平动动能+平均平动动能=3 252 2 2 kT kT kT +=

9 气体动理论习题详解

习题九 一、选择题 1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ] (A )0 ()Nf v dv ∞ ? ; (B ) 20 1 ()2 mv f v dv ∞? ; (C )20 1 ()2 mv Nf v dv ∞? ; (D )0 1 ()2 mvf v dv ∞? 。 答案:B 解:根据速率分布函数()f v 的统计意义即可得出。()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。 2.下列对最概然速率p v 的表述中,不正确的是 [ ] (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。 3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ] (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A rms v =222222221 ,16 H O H H H O O O T T T M M M T M ===,所以答案A 正确。 4.如下图所示,若在某个过程中,一定量的理想气体的 热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ] (A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。 答案:C

气体动理论和热力学-答案

理工科专业 《大学物理B 》 气体动理论 热力学基础 答: 112 3 V p 0 p O V V 12V 1 p 12p 1A B 图1 4、 给定的理想气体(比热容比γ为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T =____________,压强p =__________. 答: 1 ) 1 (T -γ , )1 (p γ

图2 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. ( C )4、一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定: ① 该理想气体系统在此过程中吸了热. ② 在此过程中外界对该理想气体系统作了正功. ③ 该理想气体系统的内能增加了. ④ 在此过程中理想气体系统既从外界吸了热,又对外作了正功. 以上正确的断言是: (A) ① 、③ . (B) ②、③. (C) ③. (D) ③、④. ( D )5、有人设计一台卡诺热机(可逆的).每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J .同时对外作功1000 J ,这样的设计是 (A) 可以的,符合热力学第一定律. (B) 可以的,符合热力学第二定律. (C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量. (D) 不行的,这个热机的效率超过理论值. 三、判断题(每小题1分,请在括号里打上√或×) ( × )1、气体的平衡态和力学中的平衡态相同。 ( √ )2、一系列的平衡态组成的过程是准静态过程。 ( × )3、功变热的不可逆性是指功可以变为热,但热不可以变为功。 ( × )4、热传导的不可逆性是指热量可以从高温物体传到低温物体,但不可以从低温物体传到高温物体。 ( × )5、不可逆循环的热机效率1 2 1Q Q bukeni - <η。 四、简答题(每小题5分) 1、气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统。(1分)是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,(1分)再由实验确认的方法。(1分) 从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高。(1分)理想气体的微观模型是把分子看成弹性的自由运动的质点。(1分) 2、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点,如图2所示。 解:(1)由热力学第一定律有 W E Q +?= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=?W Q E (1分) 经绝热b a →过程

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

第四章气体动理论

第四章 气体动理论 2-4-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 4:2:1::222=C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2 x v =m kT 3 (B) 2x v = m kT 331 (C) 2 x v = m kT 3 (D) 2x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4) 5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 2523)(2121

第4章气体动理论基础学习知识

第4章 气体动理论基础 4-1为什么说系统分子数太少时,不能谈论压强与温度? 答:对少数几个分子而言不能构成热力学系统,分子间确实频繁碰撞,分子速率不满足统计规律,无论是从压强和温度的定义上来讲,还是从压强与温度公式的推导来看,都不满足谈论压强和温度的条件。 4-2已知温度为27℃的气体作用于器壁上的压强为pa 105 ,求此气体内单位体积里的分子数。 解:由 nkT P =,有 2523 510415.2300 1038.1101?=???==-kT P n ]m [3 - 4-3一个温度为17℃、容积3 3m 102.11-?的真空系统已抽到其真空度为pa 1033.13 -?。 为了提高其真空度,将它放在300℃的烘箱内烘烤,使吸附于器壁的气体分子也释放出来。烘烤后容器内压强为pa 33.1,问器壁原来吸附了多少个分子? 解:(1)当17=t ℃K 290=: 1723 3 1032.3290 1038.11033.1?=???==--kT P n ]m [3- 143 17 1072.31052.111032.3?=???==-nV N (1)当300=t ℃K 573=: 2010682.1' ' '?== kT P n ]m [3- 18 10884.1''?==V n N 181088.1'?=-=?N N N 4-4 比较平衡态下分子的平均平动动能、平均动能、平均能量哪个最大?哪个最小? 答:平均动能=平均平动动能+平均转动动能>平均平动动能 平均能量=平均动能+平均势能>平均动能 4-5 指出下列各式的物理意义:(1)kT 23; (2) kT i 2;(3) RT 23;(4) RT i 2 。 答:(1) kT 2 3 :分子平均平动动能;

气体动理论(复习)

第六章气体动理论 §6-1 气体状态方程 【基本内容】 热力学系统:由大量分子组成的物质(气体、液体、固体)称为热力学系统,系统以外其它物体称为外界。 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、气体状态方程 1、宏观量与微观量 宏观量:表征大量分子集体性质的物理量(如P、V、T、C等)。 微观量:表征个别分子状况的物理量(如分子的大小、质量、速度等)。 2、热力学过程、平衡态与平衡过程 热力学过程:是系统状态经过一系列变化到另一状态的经历。 平衡态:是热力学系统在不受外界影响的条件下,宏观热力学性质(如P、V、T)不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、理想气体的状态方程 (1)理想气体的状态方程 是理想气体在任一平衡态下,各状态参量之间的函数关系: (2)气体压强与温度的关系 P=nkT 玻尔兹曼常数k=R/N A=1.38×10-23J/K,啊伏加德罗常数N A =6.028×1023/mol。 ρ=nm 分子数密度n=N/V,ρ——气体质量密度,m——气体分子质量。 1/ 7

2 / 7 二、理想气体的压强 1、理想气体的微观假设 关于分子个体力学性质的假设:(a )分子本身的大小比起它们之间的距离可忽略不计。(b )除了分子碰撞瞬间外,分子之间的相互作用以忽略。(c )分子之间以及分子与器壁间的碰撞是完全弹性的。关于分子集体之间性质的假设——统计假设:(a )分子按位置的分布是均匀的,即分子沿空间各个方向运动的数目相等。(b )分子按速度方向的分布是均匀的,即分子沿空间各个方向运动的机会相等。2、理想气体的压强公式 分子的平均平动动能:22 1v m t =ε 3、压强的统计意义 P 是统计平均值,是对时间、对大量分子、对面积求平均的效果。 三、理想气体的温度 1、分子平均平动动能与温度的关系 温度的意义:气体的温度是分子平均平动动能的量度;温度标志物质内部分子无规则运动的剧烈程度。 2、方均根速率2v 方均根速率:是气体分子热运动时,速度的平均值。 四、分子间的碰撞 1、平均碰撞频率 是一个分子在单位时间内与其它分子碰撞的平均次数。 d :分子有效直径,v :分子平均速率,n :分子数密度。 2、平均自由程 是一个分子在连续两次碰撞之间,自由运动路程的平均值。 五、能量均分定律 1、自由度 决定物体在空间位置所需要独立坐标的数目,称为该物体的自由度。 i=t+r t :平动自由度,i :转动自由度。 单原子分子t=3、r=0、i=3;刚性双原子分子t=3、r=2、i=5;刚性多原子分子t=3、r=3、i=62、能量均分定律

高中物理气体动理论和热力学题库

高中物理气体动理论和热力学题库

气体动理论和热力学 卷面总分188 期望值0 入卷题数44 时间 分钟 第1大题: 选择题(57分) 1.1 (3分) 两个体积相等的容器中,分别储有氦气和氢气,以1E 和2E 分别表示氦气和氢气的内能,若他们的压强相同,则( ) (A )1E =2E (B )1E >2E (C )1E <2E (D )无法确定 1.2 (3分) 一瓶氮气和一瓶氦气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 ( ) (A)温度相同、压强相同 (B)温度、压强都不相同 (C)温度相同,但氦气的压强大于氮气的压强 (D)温度相同,但氦气的压强小于氮气的压强 1.3 (3分) 不同种类的两瓶理想气体,它们的体积不同,但温度和压强都相同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(V E K /),单位体积内的气体质量p ,分别有如下关系:( ) (A)n 不同,(V E K /)不同,p 不同 (B)n 不同,(V E K /)不同,p 相同 (C)n 相同,(V E K /)相同, p 不同 (D)n 相同,(V E K /)相同, p 相同 1.4 (3分) 设M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,0N 为阿伏伽德罗常数,则下列各式中哪一式表示气体分子的平均平动动能?( ) (A) pV M m 23 (B) pV M m mol 23 (C) npV 2 3 (D) pV N M M mol 023 1.5 (3分) 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态 ( ) (A)一定都是平衡态 (B)不一定都是平衡态 (C)前者一定是平衡态,后者一定不是平衡态 (D)后者一定是平衡态,前者一定不是平衡态 1.6 (3分) 两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:( )

气体动理论

一、选择题 [ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量的关系为: (A) n 不同,(E K /V )不同,不同. (B) n 不同,(E K /V )不同,相同. (C) n 相同,(E K /V )相同,不同. (D) n 相同,(E K /V )相同,相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同; ② ∵kT n V kT N V E k 2 3 23==,而n ,T 均相同,∴V E k 相同; ③ RT M M pV mol =→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。 [ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子 的速率分布曲线;令() 2 O p v 和() 2 H p v 分别表示氧气和氢气的 最概然速率,则 (A) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. (B) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (C) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (D) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. 【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线; ②23 ,3210(/)mol O M kg mol -=?, 23 ,210(/)mol H M kg mol -=?, 得 ()() 2 2 O v v p p H 14 = [ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2

大学物理气体动理论热力学基础复习题及答案详解

第12章气体动理论 一、填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为 4.0× 5 10 pa .则在温度变为37℃,轮胎内空气的压强是。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为 4.0℃),有一个体积为 5 3 1.0 10 m 的空气泡升到水面上来,若湖面的温度为17.0℃,则气泡到达湖面的体积是。(取大气压强为 5 p0 1.013 10 pa ) 3、一容器内储有氧气,其压强为 5 p0 1.01 10 pa ,温度为27.0℃,则气体分子的数密度为;氧气的密度为;分子的平均平动动能为;分子间的平均距离为。(设分子均匀等距排列) 4、星际空间温度可达 2.7k,则氢分子的平均速率为,方均根速率为,最概然速率为。 5、在压强为 5 1.1 10 pa 下,氮气分子的平均自由程为 6 6.0 10 cm ,当温度不变时,压 强为,则其平均自由程为 1.0mm。 6、若氖气分子的有效直径为8 2.59 10 cm ,则在温度为600k,压强为 2 1.33 10 pa 时, 氖分子1s 内的平均碰撞次数为。 7、如图12-1 所示两条曲线(1)和(2),分别定性的表示一定量的 f(v) 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 (1) (2) 是. 若图中两条曲线定性的表示相同温 v O 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 图12-1 是. 8、试说明下列各量的物理物理意义: (1) 1 2 kT ,(2) 3 2 kT , (3)i 2 kT ,(4) i 2 R T, (5)3 2 R T,(6) M i M m ol 2 R T。 参考答案: 1、 5 4.43 10 pa 2、 5 3 6.11 10 m

相关文档
最新文档