概率论和数理统计与应用第二版课后答案解析

概率论和数理统计与应用第二版课后答案解析
概率论和数理统计与应用第二版课后答案解析

第1章 随机变量及其概率

1,写出下列试验的样本空间:

(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录

投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,

记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰

子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;

(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求

解:625.0)()()()(=-+=?AB P B P A P B A P ,

375.0)()(])[()(=-=-=AB P B P B A S P B A P ,

875.0)(1)(___

--=AB P AB P ,

5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P

3,在100,101,…,999这900个3位数中,任取一个3位数,

求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为

72.0900

648=

4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为

48.0100

48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为

48.0100

48=

5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412

131425=C C C C ;

(2) 所求概率为16567495201412

4418342824==++C C C C C C ; (3)所求概率为165

74953541247==C C 。

6,一公司向M 个销售点分发)(M n n <提货单,设每提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤提货单的概率。

解:根据题意,)(M n n <提货单分发给M 个销售点的总的可能分法有

n M 种,某一特定的销售点得到)(n k k ≤提货单的可能分法有

k n k n M C --)1(种,所以某一特定的销售点得到)(n k k ≤提货单的概率为

n k n k n M

M C --)1(。

7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。若一只球装入与球同号的盒子,称为一个配对。

(1)求3只球至少有1只配对的概率。

(2)求没有配对的概率。

解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。至少有1只配对的放法当然就有6-2=4种。所以

(2)没有配对的概率为3

162=;

(1)至少有1只配对的概率为3231

1=-。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ?, )|(),|(AB A P B A AB P ?.

(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。 解:(1)由题意可得7.0)()()()(=-+=?AB P B P A P B A P ,所以

313.01.0)()()|(===B P AB P B A P , 5

15.01.0)()()|(===A P AB P A B P , 7

5)()()()]([)|(=?=??=?B A P A P B A P B A A P B A A P , 71)()()()]([)|(=?=??=

?B A P AB P B A P B A AB P B A AB P , 1)

()()()]([)|(===AB P AB P AB P AB A P AB A P 。 (2)设)4,3,2,1(=i A i 表示“第i 次取到白球”这一事件,而取到红球可

以用它的补来表示。那么第一、二次取到白球且第三、四次取到红球可以表示为4321A A A A ,它的概率为(根据乘法公式)

)|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =

0408.020592

840124135127116==???=

。 9,一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另一只也是红球的概率。

解:设“得到的两只球中至少有一只是红球”记为事件A ,“另一只也是红球”记为事件B 。则事件A 的概率为

6

5314232422)(=?+??=A P (先红后白,先白后红,先红后红) 所求概率为

5

16

53142)()()|(=?==A P AB P A B P

10,一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率。

(1))(),(B P A P ;(2))|(A B P ;(3))|(A B P ;(4))|(B A P ;(5))|(B A P 。 解:(1)根据题意可得

%50%45%5)()()(=+=+=B A P AB P A P ;

%15%10%5)()()(=+=+=A B P BA P B P ;

(2)根据条件概率公式:1.0%50%5)()()|(===

A P A

B P A B P ; (3)2.0%501%10)()()|(=-==

A P A

B P A B P ; (4)17

9%151%45)()()|(=-==B P B A P B A P ;

(5)3

1%15%5)()()|(===B P AB P B A P 。 11,在11卡片上分别写上engineering 这11个字母,从中任意连抽6,求依次排列结果为ginger 的概率。

解:根据题意,这11个字母中共有2个g ,2个i ,3个n ,3个e ,1个r 。从中任意连抽6,由独立性,第一次必须从这11中抽出2个g 中的任意一来,概率为2/11;第二次必须从剩余的10中抽出2个i 中的任意一来,概率为2/10;类似地,可以得到6次抽取的概率。最后要求的概率为

924013326403661738193102112==?????;或者92401611

111311131212=A C C C C C C 。

12,据统计,对于某一种疾病的两种症状:症状A 、症状B ,有20%的人只有症状A ,有30%的人只有症状B ,有10%的人两种症状都有,其他的人两种症状都没有。在患这种病的人群中随机地选一人,求

(1)该人两种症状都没有的概率;

(2)该人至少有一种症状的概率;

(3)已知该人有症状B ,求该人有两种症状的概率。

解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为%40%10%30%201=---;

(2)至少有一种症状的概率为%60%401=-;

(3)已知该人有症状B ,表明该人属于由只有症状B 的30%人群或

者两种症状都有的10%的人群,总的概率为30%+10%=40%,所以在已知该人有症状B 的条件下该人有两种症状的概率为4

1%10%30%10=+。

13,一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率。

通讯线

通讯量的份额 无误差的讯息的份额 1 0.4 0.9998 2 0.3 0.9999 3 0.1 0.9997 4 0.2 0.9996

解:设“讯号通过通讯线i 进入计算机系统”记为事件)4,3,2,1(=i A i ,“进入讯号被无误差地接受”记为事件B 。则根据全概率公式有 9996.02.09997.01.09999.03.09998.04.0)|()()(4

1?+?+?+?==∑=i i i A B P A P B P

=0.99978

14,一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

《应用概率统计》复习题及答案

工程硕士《应用概率统计》复习题 考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。 1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ?。 解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ?== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P 故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=?P B P 2.设随机变量)1(,9 5 )1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。 解: . 8165 31-1-10)(Y -11)(Y ),3 1,4(~,31,94-1-1-10)(X -1)1(,9 5)1(),,2(~422 ====≥=====≥=≥)(故从而解得)所以() (而且P P b Y p p p P X P X P p b X 3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其

4.设随机变量Y 服从参数2 1=λ的指数分布,求关于x 的方程0322 =-++Y Yx x 没有实根的概率。 解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 2 2 <+<=?,故所求的概率为}6Y P{20}128Y -P{Y 2 <<=<+,而Y 的概率密度 ?? ???≤>=0,00 ,21f(y)21-y y e y ,从而36221 -621-1dy 21f(y)dy 6}Y {2e e e P y ===<

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一 一、填空题(每空2分,共20分) 1、设X 为连续型随机变量,则P{X=1}=( 0 ). 2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ). 3、若随机变量X 的分布律为P{X=k}=C(2/3)k ,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ). 5、已知随机变量X ~N(μ,σ2 ),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6 且X 与Y 相互独立。 则A=( 0.35 ),B=( 0.35 ). 7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ). 二、计算题(每题12分,共48分) 1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率. 解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(3 1 =?+?+?== ∑=i i i A B P A P B P (2)21.049.0/)3.035.0()|(2=?=B A P 2、已知随机变量X 的概率密度为 其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1). ?? ?? ?<≥=-0 00)(2x x e A x f x λλ

《应用概率统计》张国权编课后答案详解习题一解答

习 题 一 解 答 1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来: (1) A发生,B、C不发生; (2) A、B不都发生,C发生; (3) A、B中至少有一个事件发生,但C不发生; (4) 三个事件中至少有两个事件发生; (5) 三个事件中最多有两个事件发生; (6) 三个事件中只有一个事件发生. 解:(1)C B A (2)C AB (3)()C B A ? (4)BC A C AB ABC ?? (5)ABC (6)C B A C B A C B A ?? ――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件: (1) 41 ==i i A A , (2) A ,(3) B , (4) 32A A . 解:(1)至少有一次取得白球 (2)没有一次取得白球 (3)最多有2次取得白球 (4)第2次和第3次至少有一次取得白球 ――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系. (1) A B=A (2)AB=A 解:(1)A B ? (2)A B ? ――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件: (1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A . 解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0 ――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问: (1) ABC表示什么事件? (2) 在什么条件下,有ABC=A成立? (3) C ?B表示什么意思? (4) 如果A =B,说明什么问题? 解:(1)选了一本1970年或以前出版的中文版数学书 (2)图书馆的数学书都是1970年后出版的中文书 (3)表示1970年或以前出版的书都是中文版的书 (4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书 ――――――――――――――――――――――――――――――――――――――― 6. 互斥事件与对立事件有什么区别?试比较下列事件间的关系. (1) X < 20 与X ≥ 20 ; (2) X > 20与X < 18 ;

应用数理统计吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显著性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测 得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分布, 试在显著水平下确定这批元件是否合格。 解:

{}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从一 批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比, X 较μ大20(2/cm kg )。设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提 高 解: (1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13 /4020 /u 00 == -= n X σμ (3)否定域{}α->=1u u V (4)给定显著性水平01.0=α时,临界值33.21=-αu (5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。 某批矿砂的五个样品中镍含量经测定为(%): 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

《概率论与数理统计》期末考试题及答案

西南石油大学《概率论与数理统计》期末考试题及答案 一、填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 2、设事件A 与B 独立,A 与B 都不发生的概率为 1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为: ,0 ()1/4,020,2 x Ae x x x x ??

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体X ~ N(12,4), X^XzJII’X n 为简单随机样本,求样本均值与总体均值之 差的绝对 值大于1的概率. X 解:由于 X ~ N(12,4),故 X 一 ~ N(0,1) /V n 1 ( 2 0.8686 1) 0.2628 10 7.3 设总体X ?N(0,0.09),从中抽取n 10的简单随机样本,求P X : 1.44 i 1 X i 0 X i 0 X i ~N(0,°.09),故亠-X0r~N(0,1) X 所以 ~ N(0,1),故U n P{ X 1} 1 P{ X 1} 解: 由于X ~ N (0,0.09),所以 10 所以 X i 2 2 是)?(10) 所以 10 10 X : 1.44 P i 1 i 1 X i 2 (倉 1.44 P 0.09 2 16 0.1 7.4 设总体 X ~ N( , 2), X 1,X 2,|||,X n 为简单随机样本 2 ,X 为样本均值,S 为样 本方差,问U n X 2 服从什么分布? 解: (X_)2 2 ( n )2 X __ /V n ,由于 X ~ N( , 2), 2 ~ 2(1)。 1 —n

7.6 设总体X ~ N( , 2), Y?N( , 2)且相互独立,从X,Y中分别抽取 m 10, n215的简单随机样本,它们的样本方差分别为S2,M,求P(S2 4S ; 0)。 解: S2 P(S24S2 0) P(S24S;) P 12 4 由于X ~ N( , 2), Y~ N( , 2)且相互独立S2 所以S12~ F(10 1,15 1),又由于F°oi(9,14) 4.03 S2 即P F 4 0.01

应用数理统计课后习题参考答案

习题五 1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g) 日期重旦量 1 5500 5800 5740 5710 2 5440 5680 5240 5600 4 5400 5410 5430 5400 9 5640 5700 5660 5700 10 5610 5700 5610 5400 试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05) 解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5. 2 假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5 检验的问题:H。:i 2 L 5, H i : i不全相等. 计算结果: 注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为 查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所 以拒绝H。,认为不同日期生产的钢锭的平均重量有显著差异 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 解 根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 . 2 假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .

日产量 操作工 查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。,认为在四种不同催化剂下平均得率无显著差异 3 试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另 一个是温度 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 ) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用 设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12. 2 假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j , ),i 1,2,3, j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应; 检验的问题:(1) H i 。: i 全部等于零,H i — i 不全等于零; (2) H 20 : j 全部等于零,H 21: j 不全等于零; 计算结果: 查表F 0.95(2,6) 5.143 ,局.95(3,6) 4.757 ,显然计算值F A , F B 分别大于查表值, 或p = 0.0005 , 0.0009均显著小于0.05,所以拒绝H i°,H 20,认为含铜量和试验温度 都会对钢的冲击值产生显著影响作用 . 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量: 检验的问题:H 0: 1 计算结果: H i : i 不全相等

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体12~(12,4),,,,n X N X X X L 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率. 解:由于~(12,4)X N , ~(0,1)X N {1}1{1}1P X P X P μμ?->=--≤=-≤ 112(11(20.86861)0.262822P ??=-≤=-Φ-=-?-=?????? 7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =?? >???? ∑. 解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故 ~(0,1)0.3 i i X X N σ --= 所以 10 2 21 ( )~(10)0.3 i i X χ=∑ 所以{}1010222 11 1.441.44()160.10.3 0.09i i i i X P X P P χ==????>=>=>=????????∑∑ 7.4 设总体2 ~(,),X N μσ12,,,n X X X L 为简单随机样本, X 为样本均值,2 S 为样 本方差,问2 X U n μσ?? -= ??? 服从什么分布? 解: 2 2 2 X X X U n μσ????-=== ???,由于2 ~(,)X N μσ, ~(0,1)N ,故2 2 ~(1)X U χ??=。

7.6 设总体2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立,从,X Y 中分别抽取1210,15n n ==的简单随机样本,它们的样本方差分别为22 12,S S ,求2212(40)P S S ->。 解: 22 22211 2 1 2 22(40)(4)4S P S S P S S P S ?? ->=>=> ??? 由于2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立 所以2 122 ~(101,151)S F S --,又由于0.01(9,14) 4.03F = 即()40.01P F >=

应用数理统计习题答案 西安交大 施雨

应用数理统计答案 学号: 姓名: 班级:

目录 第一章数理统计的基本概念 (2) 第二章参数估计 (14) 第三章假设检验 (24) 第四章方差分析与正交试验设计 (29) 第五章回归分析 (32) 第六章统计决策与贝叶斯推断 (35) 对应书目:《应用数理统计》施雨著西安交通大学出版社

第一章 数理统计的基本概念 1.1 解:∵ 2 (,)X N μσ ∴ 2 (,)n X N σμ ∴ (0,1)N 分布 ∴(1)0.95P X P μ-<=<= 又∵ 查表可得0.025 1.96u = ∴ 2 2 1.96n σ= 1.2 解:(1) ∵ (0.0015)X Exp ∴ 每个元件至800个小时没有失效的概率为: 800 0.00150 1.2 (800)1(800) 10.0015x P X P X e dx e -->==-<=-=? ∴ 6个元件都没失效的概率为: 1.267.2 ()P e e --== (2) ∵ (0.0015)X Exp ∴ 每个元件至3000个小时失效的概率为: 3000 0.00150 4.5 (3000)0.00151x P X e dx e --<===-? ∴ 6个元件没失效的概率为: 4.56 (1)P e -=- 1.4 解:

i n i n x n x e x x x P n i i 1 2 2 )(ln 2121)2(),.....,(1 22 =-- ∏∑ = =πσμσ 1.5证: 2 1 1 2 2)(na a x n x a x n i n i i i +-=-∑∑== ∑∑∑===-+-=+-+-=n i i n i i n i i a x n x x na a x n x x x x 1 2 2 2 2 11) ()(222 a) 证: ) (1111 1+=+++=∑n n i i n x x n x ) (1 1 )(1 1 11n n n n n x x n x x x n n -++=++=++

概率论和数理统计期末考试题库Word版

数理统计练习 一、填空题 1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B A)=0.8,则P (A+B)=__ 0.7 __。 2、某射手对目标独立射击四次,至少命中一次的概率为 8180,则此射手的命中率3 2。 3、设随机变量X 服从[0,2]上均匀分布,则=2)] ([)(X E X D 1/3 。 4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。 5、一次试验的成 功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。 6、(X ,Y )服从二维正态分布),,,,(2 22121ρσσμμN ,则X 的边缘分布为 ),(2 11σμN 。 7、已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (X )=3 4。 8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。 9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。设Z =2X -Y +5,则Z ~ N(-2, 25) 。 10、θθθ是常数21? ,?的两个 无偏 估计量,若)?()?(21θθD D <,则称1?θ比2 ?θ有效。 1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。 2、设X B (2,p ),Y B (3,p ),且P {X ≥ 1}=9 5,则P {Y ≥ 1}=27 19。 3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。 4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5、设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α=0.6 。 6、利用正态分布的结论,有 ? ∞ +∞ ---=+-dx e x x x 2 )2(22 )44(21 π 1 。

最新概率论与数理统计期末考试卷附答案

概率论与数理统计期末考试卷 课程名称: 概率论与数理统计 考试时间 专业 班 学号 姓名 一、填空题(每格3分,共18分) 1. 设 3 1)()()(321= ==A P A P A P ,321,,A A A 相互独立,则(1)321,,A A A 至少出现一 个的概率为_ __;(2)321,,A A A 恰好出现一个的概率为_ _ _。 2. 设)2,1(~2N X ,)1(~P Y ,6.0=XY ρ,则=+-2)12(Y X E __ ____。 3.设Y X ,是相互独立的两个随机变量,它们的分布函数分别为)(x F X ,)(y F Y 则 },max{Y X Z =的分布函数是 。 4.若随机变量X 服从正态分布),(2 σμN ,20 21,,,X X X Λ是来自X 的一个样本,令 ∑∑==-=20 11 101 43i i i i X X Y ,则Y 服从分布 。 5. 若对任意给定的0>x ,随机变量y 的条件概率密度???>=-其它 ,00,)(y xe x y f xy z y 则 y 关于x 的回归函数==)(x x y μμ . 二、单项选择题(每小题2分,共10分)

1. 设函数)(x f 在区间],[b a 上等于x sin ,而在此区间外等于0,若)(x f 可以做为某连续型随机变量X 的密度函数,则区间],[b a 为( )。 (A) ]2,0[π ; (B) ],0[π; (C) ]0,2 [π - ; (D) ]2 3, 0[π 。 2. 假设随机变量X 的概率密度为)(x f ,即)(~x f X ,期望μ与方差2 σ都存在,样本)1(,,,21>n X X X n Λ取自X ,X 是样本均值,则有( ) (A) )(~x f X ; (B) )(~min 1x f X i n i ≤≤; (C) )(~max 1x f X i n i ≤≤ ; (D) )(~ ),,,(1 21∏=n i i n x f X X X Λ。 3. 总体2 ~(,)X N μσ,2σ已知,n ≥( )时,才能使总体均值μ的置信度为0.95 的置信区间长不大于L 。(975.0)96.1(=Φ) (A )2215/L σ; (B )22 15.3664/L σ; (C )22 16/L σ; (D )16。 4. 对回归方程的显著性的检验,通常采用3种方法,即相关系数检验法,-F 检验法 和-t 检验法,下列说法正确的( )。 (A) F 检验法最有效; (B) t 检验法最有效; (C) 3种方法是相通的,检验效果是相同的; (D) F 检验法和t 检验法,可以代替相关系数的检验法。 5.设n X X X ,,,21Λ来自正态总体),(2 σμN 的样本(2 σ已知),令n X u /σμ -= ,并且2 1α - u 满足 απ αα-=?- - --121 2 12 122 /dx e u u x (10<<α),则在检验水平α下, 检验00:μμ=H 时,第

相关文档
最新文档