Adaboost人脸检测算法原理

Adaboost人脸检测算法原理
Adaboost人脸检测算法原理

Adaboost人脸检测算法原理在众多的检测方法中,Viola等提出的Adaboost人脸检测方法,从根本上解决了检测的速度问题,同时有较好的识别效果。它利用一个只有200个关键特征的集合,就能达到95%以上的检测率,检测一幅380×280像素的图像需要时间不到0.7s,这样的性能使它成为人脸检测最好的方法。

Viola人脸检测方法是一种基于积分图、AdaBoost算法和级联检测器的方法,方法框架可以分为以下三大部分:

(1)使用特征值表示人脸,使用积分图实现特征数值的快速计算;

(2)使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器;

(3)将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,级联结构能有效地提高分类器的检测速度。

1特征值和积分图

在一个20×20(或其他大小)的图片提取一些简单的特征,并计算其特征值(如图1),方法是将白色区域内的像素和减去黑色区域。对于一些优势矩形特征来说,在人脸与非人脸图片的相同位置上,特征值的大小是不一样的,这些特征可以用来区分人脸和非人脸。

图1 一些矩形特征

图2是大部分矩形特征对人脸与非人脸样本的特征值分布曲线。大部分特征对人脸和非人脸样本的特征值为0的点几乎处于相同位置(46.5%,51.5%),且都在所有特征的中间范围。

这说明该矩形特征对于人脸和非人脸几乎没有分辨能力。

图(a)人脸图像特征值分布

图(b)非人脸图像特征值分布

图2 大部分矩形特征对人脸和非人脸图像的特征值分布曲线图3是少数矩形特征对人脸与非人脸样本的特征值分布曲线。对于非人脸样本的分布,特征值为0的点处于所有特征的中间范围(59.4%),这说明该特征也“看不到”非人脸的特点。

但是对于人脸样本,该特征表现了很一致的倾向性,93.4%的特征在0点的一侧,与非人脸样本的相差34%。

这说明该特征能够分辨人脸和非人脸。

图(a ) 人脸图像特征值分布

图(b ) 非人脸图像特征值分布

图3 少数矩形特征对人脸和非人脸图像的特征值分布曲线

上述的分析说明,确实存在优势的矩形特征,能够在一定的置信范围内区分人脸和非人脸。

AdaBoost 人脸检测算法引用了“积分图”的概念,这使得检测器中特征的计算非常快。如图所示:坐标点(x,y )的积分图定义为:

∑≤≤=

y y x x y x i y x ii ',')','(),( (1)

其中),(y x ii 表示像素点),(y x 的积分图,),(y x i 表示原始图像。),(y x ii 通过下式迭代进行计算:

),()1,(),(y x i y x s y x s +-=

(2)

y

x

y

x

ii+

)

=3)

-

s

ii

,1

)

x

,

(

(

,

)

(y

其中)

)

x

,1

-y

-

s。求一幅图像的积

(=

s,0

(y

(=

x

,

,

)1

s表示行的积分和,且0

分和,只需要遍历图像一次即可。

图4 积分图像的计算

如图4所示:图中点“1”的积分图的值是矩形框A中所有像素的像素值之和。点“2”的积分图所对应的值为A+B,点“3”是A+C,点“4”是A+B+C+D,所以D中所有的像素值之和可以用4+1-(2+3)计算。借助于图中的四个矩形,可以实用积分图计算图像中所有像素的值之和。

(a)(b)

(c)

图5 四个Haar-like特征

作者定义了四种Haar-like特征,如图5所示。很明显,图中由两个矩形构成的特征,其像素和之差可通过六个参考矩形求得;由三个矩形构成的特征可以通过八个参考矩形求得;由四个矩形构成的特征可以通过九个参考矩形求得。特征值的求法为白色矩形框内的所有像素点的灰度之和减去灰色矩形框中所有像素的灰度值之和。(a)、(b)表示的是两个矩形框的Haar-like特征,(c)表示的是三个矩形框的Haar-like特征,(d)表示的是四个矩形框的Haar-like特征。

2 AdaBoost算法

基于AdaBoost的学习算法。它能从一个很大的特征集中选择很小的一部分关键的特征,从而产生一个极其有效的分类器,最初的AdaBoost学习算法可用于提高一个简单的分类器(有时又称为弱分类器)的性能,它最终形成的强分类

器的训练错误率接近于零,而且具有很好的推广性。Viola 其定义了180000种矩形特征,这个数远远大于图像中像素的数目。每个特征都能很快计算出来,再通过试验选出一小部分作为特征以形成一个有效的分类器。要得到最终的强分类器,最重要的是如何找到这些特征。为此,每个弱分类器的设计都是从能对正例和反例进行正确分类的所有若分类器的集合中选择错误率最小的一个。对每个特征而言,弱学习器决定分类器的最佳的门限值,使其具有最小的误分样本数。

在AdaBoost 算法中,每个训练样本都被赋予一个权重,表明它被某个分量分类器选入训练集的概率。如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它被选中的概率就被降低;相反,如果某个样本点没有被正确分类,那么它的权重就得到提高。通过轮这样的训练,AdaBoost 算法能够“聚焦于”那些较困难(更富信息)的样本上,综合得出用于目标检测的强分类器。该算法通过结合多个特征构造的强分类器,共同完成目标的检测任务,大大提高了检测的稳定性和精度。

AdaBoost 训练强分类器过程如下:

(1)给定标定的训练样本集:()()(),,,,,,,2211L L y x y x y x Λ ()i j x g 代表第i 个训

练图像的第j 个Haar-Like 特征, X x i ∈表示输入的训练样本,{

}1,1-=∈Y y i 分别表示真假样本。

(2)初始化权重,21,21,1n m w i =,其中m ,n 分别是真样本、假样本的数目,总样本数n m L +=。

(3)对于T 轮训练:,,2,1For T t Λ=

a) 对所有样本的权重进行归一化∑==L i j t i t i t w

w w 1,,,

b) 对于每个样本中第j 个Haar-Like 特征,可以得到一个简单分类器j h ,也就是确定阈值和偏置,使得误差()∑=-=L i i j j j t j y x h w

1,ε达到最小,而

()()?

??<=其他21j j j j j p x g p x h θ 偏置决定不等式方向,只有±1 两种情况。 c) 在确定的简单分类器中,找出一个具有最小误差j ε的弱分类器j h 。

d) 对所有样本的权重进行更新:i e t

i t i t w w -+=1,,1β,其中()t t t εεβ-=1,如果被正确分类,则1,0==i i e e 。 (4)最后得到的强分类器为

()()?????≥=∑∑==其他25.0111T t T t t

t t a x h a x H 其中()t t a β1ln =,是根据j

h 的预测错误衡量的,也就是对第t 轮产生的分类规则t h 的评价,t a 越大,t h 的重要性越大。

训练一个弱分类器就是在当前下,确定最优阈值,使得这个弱分类器对所有训练样本的分类误差最低。当选取当前元素的特征值和它前面的一个特征值之间的数作为阈值时,所得到的弱分类器就在当前元素处把样本分开,也就是说这个阈值对应的弱分类器将当前元素前的所有元素分类为人脸(或非人脸),而把当前元素后的所有元素分类为非人脸(或人脸)。

对于每个特征f ,计算所有训练样本的特征值,并将其排序。通过扫描一遍排好序的特征值,可以为这个特征确定一个最优的阈值,从而训练成一个弱分类器。

具体来说,对排好序的表中的每个元素,计算下面四个值:

(1)全部人脸样本的权重的和T +;

(2)全部非人脸样本的权重的和T -;

(3)在此元素之前的人脸样本的权重的和S +;

(4)在此元素之前的非人脸样本的权重的和S -;

可以认为这个阈值所带来的分类误差为:

e=min(S ++ (T --S -), S -+ (T +-S +))

于是,通过把这个排序的表扫描从头到尾扫描一遍就可以为弱分类器选择使分类误差最小的阈值(最优阈值),也就是选取了一个最佳的弱分类器。

生成强分类器对待检测图像时,相当于让所有弱分类器投票。实验结果表明,当T =200 时,构成的强分类器可以获得很好的检测效果。

3 构建层叠分类器

将一个拥有200个特征的强分类器用于人脸检测,由于检测窗口的数量非常多,如果每个窗口都对这200个特征计算其特征值,那将耗费过多的时间,空间复杂度很大。

为了进一步提高检测速度,在得到了强分类器之后,使用一种级联结构将强分类器串联起来形成层叠分类器。在这个级联结构中,强分类器一级比一级复杂,一级比一级严格,开始几级只有少数几个分类能力很强的特征,越到后面的那几级,分类器的数目越多。非人脸图像会在前面几级被迅速排除掉,只有人脸图像才能通过每一级分类器。

图 6 构建层叠分类器的过程示意图 在构建层叠式结构时,对每一层选择一个检测率d 和错误报警率f ,对每一层使用Adaboost 算法训练一个分类器,在训练这个分类器的时候,一次增加一个特征,直到分类器满足为这一层预选设定的检测率d 和错误报警率f 。如果还没有达到系统的总的错误报警率F,那么再往系统里加入另一层分类器。

假设有一个层叠分类器,其各个强分类器(即每层所得到的分类器)的误检率为f 1,f 2,…,f n ,检测率为d 1,d 2,…,d n ,则整个层叠分类器:

错误报警率 ∏==n i i f F 1 检测率 ∏==n i i d D 1

Eg.级联分类器共有15级,每级的误检率不超过0.5,检测率不低于0.995,则误检率F=0.515=0.003%,检测率D=0.99515=92.76%。

构建层叠分类器的算法:

1).确定每层层叠分类器的最大误检概率f 和每层最小检测率d 。

2).确定目标误检概率F target 。

3).P:正样本集,N:负样本集。设置初始误检概率F 0= 1.0,检测率D 0=1.0。

4).设置初始训练的层数i=0。

While F i >F target

{

训练层数 i=i+1;

每层初始特征集 n i =0, F i =F i-1;

While F i >f ×F i-1

{

n i =n i +1;

利用Adaboost 算法训练P 和N 上具有n i 个特征的强分类器; 计算当前层叠分类器的检测率D i 和误检概率F i ;

降低第i 层强分类器的阈值,直到当前层叠分类器的检测率达到d ×D i-1(会影响F i );

}

将当前非人脸样本集合置为空:N =φ;

如果F i>F target,用当前层叠分类器检测非人脸图像,将误识的图像放入负样本集合N。

}

(概念解释:d:检测率fn=1-d:漏检概率fp:误检概率)

AdaBoost算法的训练过程

AdaBoost算法的训练过程 每个Haar特征对应看一个弱分类器,但并不是任何一个Haar特征都能较好的描述人脸灰度分布的某一特点,如何从大量的Haar特征中挑选出最优的Haar特征并制作成分类器用于人脸检测,这是AdaBoost算法训练过程所要解决的关键问题。 Paul Viola和Michael Jones于2001年将Adaboost算法应用于人脸检测中,其基本思想是针对不同的训练集训练同一个分类器(弱分类器),然后把这些不同训练集上的得到的分类器联合起来,构成一个最终的强分类器。Adaboost 算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,对于h1 分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布U2 。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器h2 。依次类推,经过T 次循环,得到T 个弱分类器,把这T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。 训练系统总体框架,由“ 训练部分”和“ 补充部分”构成。依据系统框架,本文的训练系统可分为以下几个模块: (1)以样本集为输入,在给定的矩形特征原型下,计算并获得矩形特征集; (2)以特征集为输入,根据给定的弱学习算法,确定闽值,将特征与弱分类器一一对应,获得弱分类器集; (3)以弱分类器集为输入,在训练检出率和误判率限制下,使用A d a B o o s t 算法 挑选最优的弱分类器构成强分类器; (4)以强分类器集为输入,将其组合为级联分类器; (5)以非人脸图片集为输入,组合强分类器为临时的级联分类器,筛选并补充非人脸样本。

基于PCA算法的人脸识别毕业设计论文

太原科技大学 毕业设计(论文) 设计(论文)题目:基于PCA算法的人脸识别

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期: Ⅰ

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 Ⅰ

AdaBoost人脸检测原理

AdaBoost人脸检测原理 对人脸检测的研究最初可以追溯到 20 世纪 70 年代,早期的研究主要致力于模板匹配、子空间方法,变形模板匹配等。近期人脸检测的研究主要集中在基于数据驱动的学习方法,如统计模型方法,神经网络学习方法,统计知识理论和支持向量机方法,基于马尔可夫随机域的方法,以及基于肤色的人脸检测。目前在实际中应用的人脸检测方法多为基于 Adaboost 学习算法的方法。 Viola人脸检测方法是一种基于积分图、级联检测器和AdaBoost 算法的方法,方法框架可以分为以下三大部分: 第一部分,使用Harr-like特征表示人脸,使用“积分图”实现特征数值的快速计算; 第二部分,使用Adaboost算法挑选出一些最能代表人脸的矩形特征( 弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器; 第三部分,将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,级联结构能有效地提高分类器的检测速度。 Adaboost 算法是一种用来分类的方法,它的基本原理就是“三个臭皮匠,顶个诸葛亮”。它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。例如下图中, 需要用一些线段把红色的球与深蓝色的球分开,然而如果仅仅画一条线的话,是分不开的。 a b c d 使用Adaboost算法来进行划分的话,先画出一条错误率最小的线段如图 1 ,但是左下脚的深蓝色球被错误划分到红色区域,因此加重被错误球的权重,再下一次划分时,将更加考虑那些权重大的球,如 c 所示,最终得到了一个准确的划分,如下图所示。

人脸检测的目的就是从图片中找出所有包含人脸的子窗口,将人脸的子窗口与非人脸的子窗口分开。大致步骤如下: (1)在一个 20*20 的图片提取一些简单的特征(称为Harr特征),如下图所示。 它的计算方法就是将白色区域内的像素和减去黑色区域,因此在人脸与非人脸图片的相同位置上,值的大小是不一样的,这些特征可以用来区分人脸和分人脸。 (2)目前的方法是使用数千张切割好的人脸图片,和上万张背景图片作为训练样本。训练图片一般归一化到 20*20 的大小。在这样大小的图片中,可供使用的haar特征数在1万个左右,然后通过机器学习算法-adaboost算法挑选数千个有效的haar特征来组成人脸检测器。 (3)学习算法训练出一个人脸检测器后,便可以在各个场合使用了。使用时,将图像按比例依次缩放,然后在缩放后的图片的 20*20 的子窗口依次判别是人脸还是非人脸。

人脸识别系统的原理与发展

人脸识别系统的原理与发展 一、引言 人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。2012年4月,铁路部门宣布车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大; 二、概述 人脸识别系统概述 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。 人脸识别系统功能模块 人脸捕获与跟踪功能:人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。 人脸识别比对:人脸识别分核实式和搜索式二种比对模式。核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。 人脸的建模与检索:可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

opencv adaboost人脸检测训练程序阅读笔记(LBP特征)

1、训练程序整体流程 (1)读输入参数并打印相关信息 (2)进入训练程序最外层入口classifier.train 1)读正负样本,将正负样本放入imgLiast中,先读正样本,后读负样本 2)load( dirName )判断之前是否有已训练好的xml文件,若有,不在重新训练该stage的xml文件,没有返回false,初始化参数 3)计算requiredLeafFARate = pow(maxFalseAlarm,numStages)/max_depth,该参数是stage停止条件(利用训练样本集来计算tempLeafFARate,若 tempLeafFARate小于这一参数,则退出stage训练循环); 4)Stage训练循环 5)更新训练样本集,计算tempLeafFARate(负样本被预测为正样本的个数除以读取负样本的次数,第一次没有训练之前,这个比值为1,因为没训练之前, 所有负样本都被预测成了正样本,当第一层训练好以后,负样本采集时会先 用第一层的分类器预测一次,若能分类,则不选用,选用负样本的数目是固 定的,但选用这么多负样本总共要选的次数会随着层数的增多而加大,因为 层数越大,分类器的分类能力也要求越大,说需要的样本就是前面分类器所 不恩呢该识别的,故在采集时也比较困难。) 6)判断stage是否退出训练,若tempLeafFARatetrain() a.建立训练数据data = new CvCascadeBoostTrainData(主要是一些参 数的设置,还有特征值的计算) b.初始化样本权重update_weights( 0 ); c.弱分类器训练循环 i)tree->train—》do_train ai) 根节点的初始root = data->subsample_data( _subsample_idx ); (主要是对根节点的一些参数进行初始化,parent 0,count 1, split 0,value 0,class_idx 0,maxlr 0,left = right = 0,等等) bi) CV_CALL( try_split_node(root)),根据根节点计算整颗数的各 节点的参数配置 aii) calc_node_value( node );计算节点的回归值,类似于分类 投票值sum(w*class_lable),正样本的class_lable取,负样 本的class_lable取-1;计算节点的风险值node_risk,node risk is the sum of squared errors: sum_i((Y_i - )^2) bii) 判断节点是否可以分裂(判断依据:样本值和设计的节点最 大深度);再利用node_risk与regression_accuracy,如 果这个节点的所有训练样本的节点估计值的绝对差小 于这个参数,节点不再进行分裂 cii) 找出最佳分裂best_split = find_best_split(node); aiii) 定义DTreeBestSplitFinder finder( this, node ); biii) parallel_reduce(cv::BlockedRange(0, data->var_count), finder); 此时调用DTreeBestSplitFinder类的操作符 DTreeBestSplitFinder::operator()(constBlockedRange

Adaboost算法流程和证明

Adaboost算法 1、Adaboost算法简介 Adaboost算法是Freund和Schapire根据在线分配算法提出的,他们详细分析了Adaboost算法错误率的上界,以及为了使强分类器达到错误率,算法所需要的最多迭代次数等相关问题。与Boosting算法不同的是,Adaboost算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖掘弱分类器算法的能力。 2、Adaboost 算法基本原理 Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用Adaboost分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。 Adaboost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即其中n为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样本,加大

其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过T 次循环,得到T 个弱分类器,把这T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。 Adaboost 算法的具体步骤如下: 设输入的n 个训练样本为:1122{(,),(,),,(,)}n n x y x y x y L ,其中i x 是输入的训练样本,{0,1}i y ∈分别表示正样本和负样本,其中正样本数为l ,负样本数m 。n l m =+,具体步骤如下: ⑴初始化每个样本的权重,()i w i D i ∈; ⑵对每个1,,t T =L (T 为弱分类器的个数): ①把权重归一化为一个概率分布 ,,,1 t i t i n t j j w w w == ∑ ②对每个特征f ,训练一个弱分类器j h 计算对应所有特征的弱分类器的加权错误率 1()()n j t i j i i i w x h x y ε==≠∑ ③选取最佳的弱分类器t h (拥有最小错误率):t ε ④按照这个最佳弱分类器,调整权重 11,,i t i t i t w w εβ-+= 其中0i ε=表示被正确地分类,1i ε=,表示被错误地分类

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

AdaBoost算法简介

Adaboost 算法 1、AdaBoost算法简介 AdaBoost算法是Freund和Schapire根据在线分配算法提出的,他们详细分析了AdaBoost算法错误率的上界,以及为了使强分类器达到错误率,算法所需要的最多迭代次数等相关问题。与Boosting算法不同的是,adaBoost算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖掘弱分类器算法的能力。 2、Adaboost 算法基本原理 Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用Adaboost 分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。 AdaBoost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即其中n 为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过T 次循环,得到T 个弱分类器,把这T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。 AdaBoost算法的具体步骤如下: 设输入的n个训练样本为:{(x1,y1),(x2,y2),......(xn,yn)},其中xi是输入的训练样本,yi∈{0,1}分别表示正样本和负样本,其中正样本数为l,负样本数m。n=l+m,具体步骤如下: (1)初始化每个样本的权重w i,i∈D(i); (2)对每个t=1,..., T(T为弱分类器的个数) ①把权重归一化为一个概率分布 ②对每个特征f,训练一个弱分类器h j计算对应所有特征的弱分类器的加权错误率 ③选取最佳的弱分类器h t(拥有最小错误率):εt ④按照这个最佳弱分类器,调整权重 其中εi =0表示被正确地分类,εi=1,表示被错误地分类

基于eigenfaces的人脸识别算法实现大学论文

河北农业大学 本科毕业论文(设计) 题目:基于Eigenfaces的人脸识别算法实现 摘要 随着科技的快速发展,视频监控技术在我们生活中有着越来越丰富的应用。在这些视频监控领域迫切需要一种远距离,非配合状态下的快速身份识别,以求能够快速识别所需要的人员信息,提前智能预警。人脸识别无疑是最佳的选择。可以通过人脸检测从视频监控中快速提取人脸,并与人脸数据库对比从而快速识别身份。这项技术可以广泛应用于国防,社会安全,银行电子商务,行政办公,还有家庭安全防务等多领域。 本文按照完整人脸识别流程来分析基于PCA(Principal Component Analysis)的人脸识 别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能选用了ORL人脸数据库。然后对人脸数据库的图像进行了简单的预处理。由于ORL人脸图像质量较好,所以本文中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。 关键词:人脸识别PCA算法奇异值分解定理欧几里得距离

ABSTRACT With the rapid development of technology, video surveillance technology has become increasingly diverse applications in our lives. In these video surveillance urgent need for a long-range, with rapid identification of non-state, in order to be able to quickly identify people the information they need, advance intelligence warning. Face recognition is undoubtedly the best choice. Face detection can quickly extract human faces from video surveillance, and contrast with the face database to quickly identify identity. This technology can be widely used in national defense, social security, bank e-commerce, administrative offices, as well as home security and defense and other areas. In accordance with the full recognition process to analyze the performance of PCA-based face recognition algorithm. The first to use the method of access to commonly used face images for face images. In order to better analysis is based on the performance of the PCA face recognition system selected ORL face database. Then the image face database for a simple pretreatment. Because ORL face image quality is better, so this article uses only gray scale processing. Then use the PCA for face feature extraction using singular value decomposition theorem to calculate the covariance matrix of the eigenvalues and eigenvectors, and use the Euclidean distance of the nearest neighbor classifier to the classification of human face discrimination. KEYWORDS: face recognition PCA algorithm SVD Euclidean distance

Adaboost算法多类问题Matlab实现

一种adaboost多类分类算法Matlab实现 一、adaboost算法简介 Adaboost算法的主要思想是给定一个训练集(x1,y1),…,(xm,ym),其中xi属于某个域或者实例空间X,yi=-1或者+1。初始化时Adaboost指定训练集上的分布为1/m,并按照该分布调用弱学习器对训练集上的分布,并按照该分布调用弱学习器对训练集进行训练,每次训练后,根据训练结果更新训练集上的分布,并按照新的样本分布进行训练。反复迭代T轮,最终得到一个估计序列h1,..,hT,每个估计都具有一定的权重,最终的估计H是采用权重投票方式获得。Adaboost算法的伪代码如图1所示。 图1、Adaboost算法 二、多类问题 从上面的流程可以看出,Adaboost算法是针对二类问题的。但是我们面对的问题很多都是不是简单的非0即1,而是多类问题。常见的就是解决方法,就是把多类问题转换成二类问题。用的比较多就是两种组合方法,OAA和OAO,我这里就是采用对这种方法的结合,实现adaboost算法对多类问题的分类。 目前需要对7类问题进行分类,依次编号:0、1、2、3、4、5、6。 特征向量28个。 样本总数840个; OAA分类器的个数7 个 OAO分类器的个数7(7-1)/2 = 21个。 弱分类器的个数K= 10; 弱分类用BP神经网络 算法的思路: Step1、把数据分成训练集和测试集 Step 2、训练OAA、OAO分类器; Step3、保存相应的分类器和投票权重; Step4、测试样本,预测所以OAA分类器的权重; Step5、选择OAA预测值中最大的两个 Step6、选用OAO分类器对选取预测权重最大的两个类进行预测; Step7、输出测试结果;

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

人脸识别几种解决方案的对比_人脸识别技术原理介绍

人脸识别几种解决方案的对比_人脸识别技术原理介绍 人脸识别概要人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别特点非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有强制性; 非接触性:用户不需要和设备直接接触就能获取人脸图像; 并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别; 除此之外,还符合视觉特性:以貌识人的特性,以及操作简单、结果直观、隐蔽性好等特点。 人脸识别技术原理分析人脸识别主要分为人脸检测(face detecTIon)、特征提取(feature extracTIon)和人脸识别(face recogniTIon)三个过程。 人脸检测:人脸检测是指从输入图像中检测并提取人脸图像,通常采用haar特征和Adaboost算法训练级联分类器对图像中的每一块进行分类。如果某一矩形区域通过了级联分类器,则被判别为人脸图像。 特征提取:特征提取是指通过一些数字来表征人脸信息,这些数字就是我们要提取的特征。常见的人脸特征分为两类,一类是几何特征,另一类是表征特征。几何特征是指眼睛、鼻子和嘴等面部特征之间的几何关系,如距离、面积和角度等。由于算法利用了一些直观的特征,计算量小。 不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。 表征特征利用人脸图像的灰度信息,通过一些算法提取全局或局部特征。其中比较常用的特征提取算法是LBP算法。LBP方法首先将图像分成若干区域,在每个区域的像素640x960邻域中用中心值作阈值化,将结果看成是二进制数。

人脸识别算法都有哪些

主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。 可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临

近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA) 特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。 特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。 实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中生成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。 基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。

基于AdaBoost算法的人脸检测——赵楠 北京大学

北京大学 本科生毕业论文 基于AdaBoost 算法的人脸检测Face Detection Based on AdaBoost 姓名:赵楠 学号:00105029 院系:物理学院物理学系 指导老师:查红彬教授 导师单位:视觉与听觉信息处理国家重点实验室 信息科学技术学院智能科学系

北京大学本科生毕业论文 二○○五年六月 摘要 Abstract 人脸检测是人脸分析的首要环节,其处理的问题是确认图像(或影像)中是否存在人脸,如果存在则对人脸进行定位。人脸检测的应用领域相当广泛,是实现机器智能化的重要步骤之一。 AdaBoost 算法是1995 年提出的一种快速人脸检测算法,是人脸检测领域里程碑式的进步,这种算法根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高。 本论文第一章和第二章简述了人脸检测的一般情况,第三章对一些人脸检测的经典方法进行了说明。 第四章讲述了AdaBoost 算法的发展历史。从PCA 学习模型到弱学习和强学习相互关系的论证,再到Boosting 算法的最终提出,阐述了Ada ptive Boost ing 算法的发展脉络。 第五章对影响AdaBoost 人脸检测训练算法速度的至关重要的两方面:矩形特征和积分图的概念和理论进行了仔细的阐明。 第六章给出了AdaBoost 的算法,并深入探讨了其中的一些关键问题——弱学习器的构造、选取等问题。

最后一章,用编写的实现了AdaBoost 算法的FáDèt程序,给出了相应的人脸检测实验结果,并和Viola 等人的结果做了比较。 关键词Keywords AdaBoost 方法、人脸检测、Boosting 方法、PCA 学习模型、弱学习

人脸识别技术的主要研究方法

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j 种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且

人脸识别主要算法原理

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但

Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。 可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方

相关文档
最新文档