函数导数应用题

函数导数应用题
函数导数应用题

函数导数应用题

1.根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率p 与日产量x (件)

之间近似地满足关系式*

2*

219,,1560 1020,540

x x x

p x x x ?∈??-=?+?∈??N N , ≤≤, ≤≤(日产品废品率=日废品量日产量 ×

100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润y =日正品赢利额-日废品亏损额)

(1)将该车间日利润y (千元)表示为日产量x (件)的函数;

(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元? 1.解:(1)由题意可知,

2

*3

*24219,,152(1)5 1020,.3

180x x x x x

y x p px x x x x ?-∈??-=--=??-∈??N N , ≤≤, ≤≤ (2)考虑函数2

3

24219,15()5 1020,3180x x x x

f x x x x ?-??-=??-??

, ≤≤, ≤≤

当159x -<≤时,'()0f x <,函数()f x

在(15-上单调减.

所以当15x =-()f x 取得极大值,也是最大值,

又x 是整数,64(8)7f =

,(9)9f =,所以当8x =时,()f x 有最大值647

. 当1020x ≤≤时,22

5100'()036060

x x

f x -=-=≤,所以函数()f x 在[10,20]上单调减,

所以当10x =时,()f x 取得极大值100

9

,也是最大值.

由于1006497

>,所以当该车间的日产量为10件时,日利润最大.

答:当该车间的日产量为10件时,日利润最大,最大日利润是100

9

千元.

2.一根水平放置的长方体形枕木的安全负荷与它的宽度a 成正比,与它的厚度d 的平方成正比,与它的长度l 的平方成反比.

(Ⅰ)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷会如何变化?为什么?(设翻

转前后枕木的安全负荷分别为21,y y 且翻转前后的比例系数相同都为k )

(Ⅱ)现有一根横断面为半圆(已知半圆的半径为R )的木材,用它来截取成长方体形的枕木,其长度为10,问截取枕木的厚度为d 多少时,可使安全负荷y 最大?

2.解:(Ⅰ)安全负荷k l ad k y (221?=为正常数)翻转22

2,90l

da k y ?=?后,

a

d

y y =21

, ∴当a d <<0时,21y y <安全负荷变大.

当 12

,0y y d a <<<时,安全负荷变小;

当a d =时,21y y =安全负荷不变.

(II )如图,设截取的宽为a ,厚度为d ,则22222244,)2

(R d a R d a

=+=+即.

1002kad y =4(10022a R a k -==)4(400

32a a R k -= ()2,0(R x ∈)0>k )3

4(40032

2R a k y --=' 令0='y 得: R a 332= 当)332,,0(R a ∈时 ,0>'y 函数y 在)33

2,0(R 上为增函数; 当)2,332(R R a ∈时 ,0>'y 函数y 在)2,3

3

2(R R 上为减函数; 当 R a 33

2=时,安全负荷y 最大。此时厚度R d 36=

答:当问截取枕木的厚度为R 3

6

时,可使安全负荷最大。 3.某地一渔场的水质受到了污染.渔场的工作人员对水质检测后,决定往水中投放一种药剂来净化水质. 已知每投放质量为(*)m m N ∈个单位的药剂后,经过x 天该药剂在水中释放的

浓度y (毫克/升)满足y=mf (x ),其中log (4),05()6

,52x x f x x x +<≤??=?>?-?

】,当药剂在水中释放的浓度不低于6(毫克/升)时称为有效净化....;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化....

.

E

C (Ⅰ)如果投放的药剂质量为m =6,试问渔场的水质达到有效净化....一共可持续几天? (Ⅱ)如果投放的药剂质量为m ,为了使在8天(从投放药剂算起包括第8天)之内的渔场的水质达到最佳净化....,试确定应该投放的药剂质量m 的取值范围. 3.解:(Ⅰ)由题设:投放的药剂质量为6m =,

渔场的水质达到有效净化....6()6

f x ?≥ ()1f x ?≥

305

log (4)1x x <≤???+≥?或5

6

12

x x >???≥?-? 05x ?<≤或58x <≤,即:08x <≤,

所以如果投放的药剂质量为6m =,自来水达到有效净化....

一共可持续8天

4.如图,O 为总信号源点,A ,B ,C 是三个居民区,

已知A ,B 都在O 的正东方向上,OA = 10 km ,OB 在O 的北偏西45° 方向上,CO =km . (1)求居民区A 与C 的距离;

(2)现要经过点O 铺设一条总光缆直线EF (E 在直线OA 的上方),并从A ,B ,C 分别铺设三条最短分光缆连接到总光缆EF .假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m (m 为常数).设∠AOE = θ(0≤θ <π),铺设三条分光缆的总费用为w (元).

① 求w 关于θ的函数表达式; ② 求w 的最小值及此时tan θ的值.

O

A

B

C

θ

5.某风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A

与圆弧上的一点C 之间设计为直线段小路,在路的两侧..边缘种植绿化带;从点C 到点B 设计为沿弧BC 的弧形小路,在路的一.侧.边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)

(1)设 DBAC =q (弧度),将绿化带总长度表示为q 的函数()s θ; (2)试确定q 的值,使得绿化带总长度最大. 5.解:(1)如图,连接BC ,设圆心为O ,连接CO .

在直角三角形ABC 中,100AB =,BAC θ∠=, 所以100cos AC θ=.

由于22BOC BAC θ∠=∠=,所以弧BC 的长为502100θθ?=. 所以()2100cos 100s θθθ=?+,

即()200cos 100s θθθ=+,π(0,)2θ∈.

(2)()100(2sin 1)s θθ'=-+, 令 ¢s (q )=0,则π6θ=,

列表如下:

所以,当π6θ=时,()s θ取极大值,即为最大值.

当π6θ=时,绿化带总长度最大.

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

导数练习题带标准答案

导数练习题带答案

————————————————————————————————作者:————————————————————————————————日期:

导数及其应用 一、选择题 1.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A 充分条件 B 必要条件 C 充要条件 D 必要非充分条件 2.已知点P(1,2)是曲线y=2x 2上一点,则P 处的瞬时变化率为 ( ) A .2 B .4 C .6 D . 2 13.设函数()f x =x 3 ﹣x 2 ,则)1(f '的值为( ) A .-1 B .0 C .1 D .5 4.已知函数???>+<+=) 0()0(1)(x a x x a x f x ,若)(lim 0 x f x →存在,则= -)2(' f A.2ln 4 B. 45 C.2- D.2ln 4 15.设球的半径为时间t 的函数()R t 。若球的体积以均匀速度c 增长,则球的表面积的增长速 度与球半径 A.成正比,比例系数为C B. 成正比,比例系数为2C C.成反比,比例系数为C D. 成反比,比例系数为2C 6.已知函数1)(2 3--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是 ( ) A .),3[]3,(+∞--∞Y B .]3,3[- C .),3()3,(+∞--∞Y D .) 3,3(-7.一点沿直线运动,如果由始点起经过t 秒后的距离为43215 243 s t t t =-+,那么速度为零的时 刻是 ( ) A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末 8.下列等于1的积分是 ( ) A . dx x ? 1 B . dx x ?+1 0)1( C .dx ?1 01 D .dx ?1021 9.1 1lim 10 0-+→x x x 的值是 A.不存在 B.0 C.2 D.10

(完整版)导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

函数与导数练习题(有答案)

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①()f x = ()g x =()f x x = 与()g x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .2 log y =C .2 1log y x = D .2 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于 ( )A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .2 1 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( ) O y x 1 2 4 5 -3 3 -2

导数综合练习题最新版

导数练习题(B ) 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1 的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为,2 3若函数]2)('[31)(23m x f x x x g ++=在区间 (1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程9 )32()(2 +-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2 ()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值.

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

导数练习题及答案:函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 时间:100分钟 满分:130分 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于( ) A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .21 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶 O y x 1 2 4 5 -3 3 -2

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的综合问题最值教学案理解析版

利用导数解决不等式的有关问题 ?考法1证明不等式 【例1】(2018·郑州二模)已知函数f(x)=ln x—2ax+1(a∈R). (1)讨论函数g(x)=x2+f(x)的单调性; (2)若a=错误!,证明:|f(x)—1|>错误!+错误!. [解] (1)由题意知函数y=g(x)的定义域为(0,+∞), g(x)=x2+ln x—2ax+1, 则g′(x)=错误!+2x—2a=错误!(x>0), 记h(x)=2x2—2ax+1, 1当a≤0时,因为x>0,所以h(x)>0,故函数g(x)在(0,+∞)上递增; 2当0<a≤错误!时,因为Δ=4(a2—2)≤0, 所以h(x)≥0,故函数g(x)在(0,+∞)上递增; 3当a>错误!时,由g′(x)<0,解得x∈错误!,所以函数g(x)在区间错误!上递减,同理可得函数g(x)在区间错误!,错误!上递增. (2)证明:当a=错误!时,设H(x)=f(x)—1=ln x—x, 故H′(x)=错误!, 故H′(x)<0,得x>1,由H′(x)>0,得0<x<1, 所以H(x)m ax=f(1)—1=—1,所以|H(x)|min=1. 设G(x)=错误!+错误!, 则G′(x)=错误!, 由G′(x)<0,得x>e, 由G′(x)>0,得0<x<e, 故G(x)m ax=G(e)=错误!+错误!<1, 所以G(x)m ax<|H(x)|min, 所以|f(x)—1|>错误!+错误!.

?考法2由不等式恒(能)成立求参数的范围 【例2】已知函数f(x)=错误!. (1)如果当x≥1时,不等式f(x)≥错误!恒成立,求实数k的取值范围; (2)若存在x0∈[1,e],使不等式f(x0)≥错误!成立,求实数k的取值范围. [解] (1)当x≥1时,k≤错误!恒成立, 令g(x)=错误!(x≥1), 则g′(x)=错误!=错误!. 再令h(x)=x—ln x(x≥1), 则h′(x)=1—错误!≥0, 所以h(x)≥h(1)=1,所以g′(x)>0, 所以g(x)为增函数, 所以g(x)≥g(1)=2, 故k≤2,即实数k的取值范围是(—∞,2]. (2)当x∈[1,e]时,k≤错误!有解, 令g(x)=错误!(x∈[1,e]), 由(1)题知,g(x)为增函数, 所以g(x)m ax=g(e)=2+错误!, 所以k≤2+错误!,即实数k的取值范围是错误!. [规律方法] 1.利用导数证明含“x”不等式方法,即证明:f x>g x.,法一:移项,f x—g x>0,构造函数F x=f x—g x,转化证明F x min>0,利用导数研究F x 单调性,用上定义域的端点值.,法二:转化证明:f x min>g x m ax.,法三:先对所求证不等式进行变形,分组或整合,再用法一或法二. 2.利用导数解决不等式的恒成立问题的策略,1首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参数不等式,从而求出参数的取值范围.,2也可分离变量,构造函数,直接把问题转化为函数的最值问题. 32 (1)如果存在x1,x2∈[0,2]使得g(x1)—g(x2)≥M成立,求满足上述条件的最大整数M;

函数与导数测试题

《函数与导数》测试题 一、选择题 1.函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 解析 ()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x >,故选D 2. 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 ( ) B. 2 C.-1 解:设切点00(,)P x y ,则0000ln 1,()y x a y x =+=+,又0' 01 |1x x y x a == =+Q 00010,12x a y x a ∴+=∴==-∴=.故答案 选B 3.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点 (1,(1))f 处的切线方程是( ) A.21y x =- B.y x = C.32y x =- D.23y x =-+解析 由2()2(2)88f x f x x x =--+-得几何 2(2)2()(2)8(2)8f x f x x x -=--+--, 即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =,∴切线方程 12(1)y x -=-,即210x y --=选A 4.存在过点(1,0)的直线与曲线3y x =和215 94 y ax x =+ -都相切,则a 等于 () A .1-或25-64 B .1-或214 C .74-或25 -64 D .74-或7 解析 设过(1,0)的直线与3y x =相切于点300(,)x x ,所以切线方程为 320003()y x x x x -=- 即230032y x x x =-,又(1,0)在切线上,则00x =或03 2 x =-,

导数的综合应用练习题及答案

导数应用练习题答案 1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ξ。 2(1)()23[1,1.5]f x x x =---; 2 1(2)()[2,2]1f x x = -+; (3)()[0,3]f x =; 2 (4)()1 [1,1]x f x e =-- 解:2 (1)()23 [1,1.5]f x x x =--- 该函数在给定闭区间上连续,其导数为()41f x x '=-,在开区间上可导,而且(1)0f -=,(1.5)0f =,满足罗尔定理,至少有一点(1,1.5)ξ∈-, 使()410f ξξ'=-=,解出14 ξ=。 解:2 1(2)()[2,2]1f x x = -+ 该函数在给定闭区间上连续,其导数为222()(1)x f x x -'=+,在开区间上可导,而且1(2)5f -=,1 (2)5 f = ,满足罗尔定理,至少有一点(2,2)ξ∈-, 使22 2()0(1)f ξ ξξ-'= =+,解出0ξ=。 解:(3)()[0,3]f x = 该函数在给定闭区间上连续,其导数为() f x '=,在开区间上可导,而且(0)0f =, (3)0f =,满足罗尔定理,至少有一点(0,3)ξ∈, 使()0 f ξ'==,解出2ξ=。 解:2 (4)()e 1 [1,1]x f x =-- 该函数在给定闭区间上连续,其导数为2 ()2e x f x x '=,在开区间上可导,而且(1)e 1f -=-,(1)e 1f =-,满足罗尔定理,至少有一点ξ,使2 ()2e 0f ξξξ'==,解出0ξ=。 2.下列函数在给定区域上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ξ。 3 (1)()[0,](0)f x x a a =>; (2)()ln [1,2] f x x =; 32(3)()52 [1,0] f x x x x =-+-- 解:3 (1)()[0,](0)f x x a a =>

相关文档
最新文档