树枝状大分子催化剂的研究进展

树枝状大分子催化剂的研究进展
树枝状大分子催化剂的研究进展

2003年第23卷第3期,238~242

有机化学

Chinese Journal of Organic Chemistry

V ol.23,2003

N o.3,238~242

?综述与进展?

树枝状大分子催化剂的研究进展

唐新德a,b 张其震Ξ,a 王大庆c 周其凤dΞ

(a山东大学化学与化工学院 济南250100)

(b济南军区环境监测中心站 济南250002)

(c山东师范大学分析测试中心 济南250014)

(d北京大学化学与分子工程学院 北京100871)

摘要 回顾了功能树枝状大分子在催化作用领域的研究成就,重点就活性中心在核附近的树枝状大分子和表面含催化官能团的树枝状大分子的结构与催化作用进行了讨论,并对其应用前景进行了展望.

关键词 树枝状大分子,催化剂,进展

Advancement on the R esearch of Dendritic C atalysts

T ANG,X in2De a,b ZH ANG,Qi2ZhenΞ,a W ANG,Da2Qing c ZH OU,Qi2Feng d

(a School o f Chemistry and Chemical Engineering,Shandong Univer sity,Jinan250100)

(b Environmental Monitoring Centre Station,Jinan Military Region,Jinan250002)

(c Analysis and Test Centre,Shandong Normal Univer sity,Jinan250014)

(d College o f Chemistry and Molecular Engineering,Peking Univer sity,Beijing100871)

Abstract The research achievements of dendritic catalysts in the recent years are reviewed.The structures and catalysis of tw o kinds of dendritic catalysts are em phasized and discussed:catalytic dendrimers in which the active center is located at the core and dendrimers with catalytic functions positioned at the periphery.S ome view on the future development of dendritic catalysts is submitted.

K eyw ords dendrimer,catalyst,advancement

催化作用是树枝状大分子应用研究领域之一.树枝状大分子具有纳米级尺寸和分子溶解能力.这些性质使树枝状大分子拉近了均相催化和异相催化的距离,换言之,如果含精确催化位的可溶性树枝状大分子能够通过简单的分离技术(如超滤或渗析)从均相反应混合物中分离出来,那么树枝状大分子将把均相和非均相催化剂的优点结合起来[1].

位置分离可用于制备改性催化剂.如果催化活性位处在一个特定的、能够被分离的位置上,那么核的引入将有利于基质和催化剂之间的相互作用.树枝状大分子外围官能团可容纳许多催化位,由此可能产生反常的和有益的催化行为.本文讨论了两类具有催化功能的树枝状大分子:一类是催化活性中心在核附近的树枝状大分子;另一类是表面含催化官能团的树枝状大分子.1 含催化功能核的树枝状大分子

Brunner[2]首先报道了含内部催化位的支化分子.由于产物结构与酶中的辅基相似,所以Brunner引入了“树枝状酶”的概念.在其分子结构中,一个含吡啶的席夫碱作为Cu(Ⅰ)的连接核,被(1S,2S)222氨基212苯基21,32丙二醇、(1R,2S)2麻黄碱或L2天冬氨酸单元包围[3].第一代树枝状酶是在原位向手性化合物中加入Cu(Ⅰ)得到的.研究发现,乙基重氮基乙酸酯与苯乙烯的环丙烷化反应,几乎不产生非对称诱导.Brunner等[2]报道的另一个化合物由含 基的树状枝体功能化的二膦核构成,该分子可作为手性铑(Rh)的配体.但是在乙酰胺基肉桂酸的氢化反应中,Rh(Ⅰ)催化剂的应用

ΞE2mail:qzzhang@https://www.360docs.net/doc/649939685.html,;T el.:(0531)8378634,2976875.

Received April1,2002;revised July12,2002;accepted August10,2002.

国家自然科学基金(N os.29874020,59573029)资助项目.

并没有产生理想的对映选择性[4].

Bolm 等[5]使用了一种树枝状催化剂,该催化剂可使苯甲醛与二乙基锌的手性加成产物分离,即将其两种对映体拆分.该催化剂是一种手性催化剂,它的分子结构是在Fr échet 楔的楔尖处挂上含吡啶基的手性醇(图1).研究表明:所有三代树枝状大分子诱导的对映体过量值(约85%)和产率相似.由此可以看出,催化位上树枝状取代基的影响很小

.

图1 Bolm 使用的三代树枝状大分子手性催化剂(上图)及其

催化苯甲醛与二乙基锌的加成反应(下图)

Figure 1 A third generation chiral catalyst (top )used by Bolm in the diethylzinic addition to benzaldehyde (bottom )

Suslick 等[6]用第一代和第二代芳香族聚酯将卟啉锰(Ⅲ)氯化物功能化.树枝状楔在金属原子中心周围提供了一

个特定的环境,因此催化剂可诱导区域或形状选择性.在亚碘酰苯作用下烯烃的环氧化显示了分子内和分子间的区域选择性.

由连接三乙醇胺的Fr échet 楔构成的树枝状大分子可用于硝基羟醛的催化反应(Henry 反应)[7].醛与一取代硝基烷烃偶联,生成硝基醇.该反应在碱性条件下(特别是叔胺)引发.以乙醇胺为基质的树枝状大分子可作为Henry 反应的催化剂(但楔体积较大时,催化剂活性降低),同时树枝状结构不会阻碍立体选择性反应.

Chow 等合成了树枝状双2( 唑啉)Cu (Ⅱ

)催化剂,

用于环戊二炔与巴豆亚胺之间Diels 2Alder 反应[8,9].反应包括两个连续的过程.亲双烯体与铜络合物的结合是可逆的,取决于双亲烯体-铜络合物与双烯之间速控反应.催化剂-亲双烯体络合物的形成常数随着树枝状大分子代数增加而逐步降低.但是第一代和第二代树枝状大分子的Diels 2Alder 反应

速率保持不变,第三代则突现一个拐点.这个拐点可解释为:树枝状芳香醚的折叠效应导致催化位空间位阻增大.

可利用树枝状交联剂精确制备非均相聚合物催化剂.这种方法将开口结构的低代树枝状大分子的优越性与易分离的聚合物微粒的柔韧性结合起来.Seebach 等[10]合成了含T ADDO L 核(T ADDO L 代表α,α,α′,α′2四芳基21,32二氧戊环2

4,52二甲醇)的树枝状大分子,负载含苯乙烯端基的Fr échet 枝体(图2).C 22对称的T ADDO L 核是T i (Ⅳ

)的配体,可用于醛的对映选择性亲核加成反应的催化剂[11].即使与苯乙烯共聚后,用于乙烯基锌与苯甲醛加成反应的催化剂,仍具有

高度的对映选择性.而且树枝状聚合物的T i (Ⅳ)2T ADDO L 位与线性聚苯乙烯同类物的相似部位相比,转化率更高

.

图2 包埋于交联聚苯乙烯内具催化活性的二异丙氧基2T i 2

T ADDO L 2树状大分子

Figure 2 Catalytically active diis opropoxy 2T i 2T ADDO L 2dendrimer embedded in cross 2linked polystyrene

O osterom 等[12]在碳硅烷树枝状大分子的基础上合成了

以芳基溴化物为楔尖的树枝状楔,这些楔以发散式与二茂铁二膦核结合得到类似双(二苯基膦)二茂铁配体,加入PdCl 2

后形成该配体的双齿钯络合物.在原位制备的巴豆基氯化钯络合物,可用于烯丙型烷基化反应的催化剂.进一步研究发现,在碳硅烷树枝状大分子内非极性微环境可产生区域选择性变化,Heck 反应证实了溶剂极性与产物区域选择性之间的关系[13].

在化学反应中,可以直接利用内部含可分离催化位的树

9

32N o.3唐新德等:树枝状大分子催化剂的研究进展 

枝状大分子对引入基团进行区域或立体控制.但在反应过程中,由于树枝状大分子柔韧性而不能产生足够的空间约束.

此外大多数研究证实:催化位周围庞大的树状枝体的存在使其转化率明显降低.因此对此类树枝状催化剂的进一步研究将涉及树枝状大分子与被封装催化位的精确结合,各组分与反应物之间的协调作用等,从而创造更完美的催化部位.

2 含表面催化位的树枝状大分子

F ord等首次报道了表面含有多催化部位的树枝状大分子催化剂[14].含36个侧季铵离子聚醚树枝状大分子在水中可加速62硝基苯甲 唑232羧酸酯的脱羧作用和对硝基苯基二苯基磷酸酯的氢化作用(后一个反应以邻亚碘酰苯甲酸酯作催化剂).第三代聚阳离子树枝状大分子比含12个侧铵阳离子的低代树枝状大分子的催化活性高.反应速率的提高是由于反应物局部浓度高,反应物通过氢键作用和疏水作用形成树枝状胶束.此前,曾报道过其他胶束状催化剂[15]和含多季铵位的晶格[16]具有类似催化活性.

Van K oten等[17]合成了含侧芳基Ni(Ⅱ)络合物的第一代硅烷树枝状大分子.受催化位可锚定到可溶性聚合物载体的启示,Bosman等利用含Ni(Ⅱ)树枝状大分子作为四氯甲烷与甲基异丁烯酸酯K harash加成反应的催化剂[18].这些有机金属改性树枝状催化剂的转化率比类似物的单体或聚合物低30%.

对有机膦树枝状大分子的初步研究发现,树枝状楔含有五个正方平面Pd(Ⅱ)位,每位负载一个三膦配体和一个乙腈配体[19],该化合物可作为电化学还原反应CO2→CO的催化剂.聚丙烯亚胺树枝状大分子含双(32氨丙基)胺三齿配位,对各种过渡金属,如Cu(Ⅱ),Zn(Ⅱ),C o(Ⅱ),Ni(Ⅱ)有很强的亲和力(图3).紫外可见滴定数据表明在甲醇中DAB2 dendr2(NH2)x树枝状大分子恰好与x/2单位的CuCl2或ZnCl2结合.TE M数据证实了预期体积的表面结构,表明形成了单分子纳米级结构.F ord等[20]利用负载Cu(Ⅱ),Zn(Ⅱ)和C o(Ⅱ)的树枝状大分子作为对-硝基苯基二苯基磷酸酯在水中进行水解反应的催化剂.其中含铜的树枝状大分子水解反应速率最高.在该研究所确定的pH值范围内,这些低代催化剂均显示较高的活性.只有含32个Cu(Ⅱ)中心的第五代树枝状大分子活性比Cu(Ⅱ)Cl2参比盐略低.

按照van K oten的方法,Reetz等[21]合成了表面含二苯基膦配体的第三代聚丙烯亚胺树枝状大分子.该物质与Pd(CH3)2或Rh(cod)BF4(cod=1,52环辛二烯)络合形成催化剂,含Pd(Ⅱ)的树枝状大分子可作为Heck

反应的催化剂(图4).与一价Pd的类似物相比,Pd(Ⅱ)树枝状大分子42折叠转化数增加,这是因为树枝状大分子催化剂具有较高的热稳定性.利用Rh(Ⅰ)树枝状大分子作为催化剂可使12辛烯醛化(图4).由于聚丙烯亚胺树枝状大分子是Reetz合成反应的母体化合物,直至第五代都具有商用价值,因此具有发展前途.源于多代聚丙烯亚胺树枝状大分子的纳米级催化剂可通过膜分离技术进行分离[22,23].

图3 双(32氨丙基)胺与过渡金属氯化物的三齿配位作用(例如,含DAB2dendr2(NH2)8的金属络合物)

Figure3 T ridentate complexation of the bis(32amino2propyl)amine m oiety with transition2metal chlorides[as an example,a metal complex with DAB2dendr2(NH2)8is shown]

Alper等[24]合成了钯(Pd)配位PPh22PAM AM2SiO2树枝状大分子,用作Heck反应的催化剂.在N,N′2二甲基甲酰胺中,以(CH3)2Pd2PPh22PAM AM2SiO2作催化剂,在乙酸钠作用下,苯乙烯与溴苯反应,生成反21,22二苯乙烯的产率高,且0,1,2代树枝状大分子均具有区域选择性.

膦功能化碳硅烷树枝状大分子在烯烃的醛化中表现非常活跃[25].通过对不同的树枝状配体进行比较,研究树枝状主链的柔性对催化性能的影响,发现空间位阻的增加对反应的催化活性没有影响.van K oten等[26]合成了表面含半活性P,O2配体的功能性碳硅烷树枝状大分子,该体系的钯络合物对苯乙烯的氢化乙烯化反应具有良好的催化作用.用含金属的树枝状大分子作催化剂,主要是利用了其在同一体系中同时具有均相和非均相催化的优点,但是催化剂的循环再利用问题却鲜见报道.Reetz等[27]合成了一种新型非均相催化剂:含钪(Sc)的交联树枝状大分子.该催化剂类似于Lewis 酸,具有实用性催化作用,可以方便地循环再利用,且活性没有明显损失.与其它可溶性树枝状催化剂不同,该催化剂由于钪促成了树枝状大分子单体的交联而成为不溶性非均相催化剂.K ragl等[28]利用膜反应器回收树枝状催化剂,特殊情况下其催化作用显示正效应[29,30],但大多数情况下,则希望得到与其母体和非树枝状类似催化剂相近的转化率、产率和

042 有机化学V ol.23,2003

立体选择性

.

图4 Reetz 在所示反应中使用的树状二苯基膦金属络合物催化剂

Figure 4 Catalytic dendritic diphosphane metal complexes used by Reetz in the shown reactions

Marquardt 和L üning

[31]

制备了含六个侧凹形吡啶的第二

代芳香醚树枝状大分子,可作为乙醇与二苯基烯酮酰基化反应的催化剂.与线性聚合物或Merrifield 树脂偶联的同类物相比,树枝状体系对一元、二元、三元或四元醇的选择性并未降低.因此通过纳滤技术回收催化剂的可能性是存在的,而且可以达到相当高的产率(70%~90%).

目前,利用催化位外部功能化树枝状大分子的对映选择性催化作用只受到有限的关注.利用(1R ,2S )麻黄碱对第一代和第二代PAM AM 树枝状大分子进行改性,得到的树枝状大分子可作为二乙基锌与N 2二苯基膦亚胺加成反应的催化剂[32].利用双官能团麻黄碱配体引发的加成反应,对映体过量值很高(92%),但利用树枝状配体则使立体选择性显著降低(第一代和第二代的对映体过量值分别为43%和39%).

通过(R )苯基环氧乙烷及相应的N 2甲基化衍生物改性的聚丙烯亚胺树枝状大分子研究了二乙基锌与苯甲醛的加成反应[33]

(图5).当利用多代树枝状大分子时,产率和对映体过量值降低(从非甲基化单官能团化合物的36%降低到非甲基化第五代树枝状大分子的7%).在这两例非对称催化作用中,体积较大的树枝状大分子表现较弱,可能是由于多代树枝状大分子表面被包裹的端基固有的三点作用受到抑制的缘故

.

图5 由(R )2苯基环氧乙烷改性的聚丙烯亚胺树状大分子Figure 5 (R )2Phenyloxirane 2m odified poly (propylene imine )den 2

drimers

T ogni 等[34]合成了含8个二茂铁基二膦配体的树枝状大

分子.相应的Rh 络合物作为在甲醇中二甲基衣康酸酯氢化反应的催化剂,对映体过量值只比单分子类似物略低,而八聚物及相似物(Josiphos 催化剂)的对映体过量值分别为9810%和9910%.虽然研究的树枝状大分子均为低代,但是利用纳米过滤膜可以把它们从反应混合物中分离出来.对(手性)催化位位于内部或外部的催化性树枝状体系的研究表明:多代催化剂的活性和对映选择性均比其低代的同类物低,特殊情况下,可发现许多含表面催化位的松散的体系具有良好的特性,其中多重作用对反应有利.在这些树枝状大分子中,可能存在协同效应.

3 结论与展望

近年来,有关树枝状大分子催化剂的研究非常活跃,新型树枝状大分子催化剂不断涌现[35].T omalia 等[36]和Crooks 等[37]报道了树枝状大分子封装金属纳米粒子复合材料的合成及其催化作用,Reetz [38]和Senkan [39]报道了基于树枝状大分子的组合催化作用及其应用.具有催化功能树枝状大分子的研究可以认为是对聚合物负载催化剂研究的改进,因此树枝状大分子的研究结果应与改性的线性大分子进行比照.在不断改进与完善的基础上,有望设计出性能更加优良的树枝状大分子催化剂.

树枝状大分子的研究不仅揭示了树枝状大分子的特殊性质,而且在应用与发展方面做了大量工作.树枝状分子已经在超分子聚合物化学、医药化学、催化作用中得到应用.研究表明,树枝状大分子具有良好的特性,不久的将来树枝状大分子可望应用于新装置,这对正在兴起的生物和纳米技术领域具有重要意义.同时树枝状材料的研究正在受到外部环境的推动,目前虽然只有少数几种树枝状大分子实现了商业化应用,但是这些材料的应用潜力不可忽视.可以相信,随着树枝状大分子研究和应用的日益深入,对树枝状大分子催化剂的研究必将产生积极的推动作用.

R eferences

1T omalia ,D.A.;Dv ornic ,P.R.Nature 1994,617.2Brunner ,https://www.360docs.net/doc/649939685.html,anomet.Chem .1995,500,39.3Brunner ,H.;Aittmamm ,S.Chem.Ber .1994,127,2285.4Brunner ,H.;Furst ,J.Tetrahedron 1994,50,4303.5

Bolm ,C.;Derrien ,N.;Seger ,A.Synlett 1996,387.

1

42N o.3唐新德等:树枝状大分子催化剂的研究进展 

6Bhyrappa,P.;Y oung,J.K.;M oore,J.S.;Suslick,K.S.J.

Am.Chem.Soc.1996,118,5708.

7M orao,I.;C ossio,P.Tetrahedron Lett.1997,38,6461.

8Mak,C. C.;Chow,H.2F.Macromolecules1997,30,1228.

9Chow,H.2F.;Mak,C. https://www.360docs.net/doc/649939685.html,.Chem.1997,62,5116. 10Rheiner,P. B.;Sellner,H.;Seebach,D.H elv.Chim.Acta 1997,80,2027.

11Seebach,D.;Marti,R. E.;Hintermann,T.H elv.Chim.Acta 1996,79,1710.

12O osterom,G. E.;van Haaren,R.J.;Reek,J.N.H.;

K amer,P. C.J.;van Leeuwen,P.W.N.M.Chem.

Commun.1999,1119.

13T rost,B.M.;T oste,F.D.J.Am.Chem.Soc.1999,121, 4545.

14Lee,J.2J.;F ord,W.T.;M oore,J. A.;Li,Y.

Macromolecules1994,27,4632.

15Fendler,J.H.;Fendler, E.J.Catalysis in Micellar and Macromolecular Systems,Academic Press,New Y ork,1975.

16Lee,J.J.;F ord,W.T.J.Am.Chem.Soc.1994,116, 3753.

17K napen,J.W.J.;van der Made,A.W.;de Wilde,J. C.;

van Leeuwen,P.W.M.;Wijkens,P.;G rove,D.M.;van K oten,G.Nature1994,372,659.

18Van de K uil,L. A.;G rove, D.M.;Z wikker,J.W.;

Jenneskens,L.W.;Drenth,W.;van K oten,G.Chem.Mater.

1994,6,1675.

19Miedance,A.;Curtis,C.J.;Barkley,R.M.;DuBois,D.L.

Inorg.Chem.1994,33,5482.

20Vassilev,K.;F ord,W.T.Polym.Prepr.1998,39,322.

21Reetz,M.T.;Lohmer,G.;Schwickardi,R.Angew.Chem., Int.Ed.Engl.1997,36,1526.

22Bosman, A.W.;Janssen,R. A.;Meijer, E.W.

Macromolecules1997,30,3606.

23Jansen,J. F.G. A.;de Brabander2van den Berg,E.M.M.;

Meijer, E.W.New Molecular Architectures and Functions,

Proceedings o f the OUMS1995,T oy onaka,Osaka,Japan,June 2~5,1995;S pringer2Verlag,Berlin Heidelbeg,1996.

24Alper,H.;Arya,P.;Bourque,S. C.;Jeffers on,G.R.;

Manzer,L. E.Can.J.Chem.2000,78,920.

25O ostrom,G. E.;Reek,J.N.H.;K amer,P.J.;van Leeuwen,P.W.N.M.Angew.Chem.,Int.Ed.2001,40, 1828.

26H ovestad,N.;Eggeling, E. B.;Heidbuechel,H.J.;

Jastrebski,J.T.B.H.;K ragl,U.;K eim,W.;V ogt,D.;van K oten,G.Angew.Chem.,Int.Ed.1999,38,1655.

27Reetz,M.T.;G iebel,D.Angew.Chem.,Int.Ed.2000, 39,2498.

28K leij,A.W.;G ossge,R. A.;K lein G ebbink,R.J.M.;

Brinkmann,N.;Reijerse,E.J.;K ragl,U.;Lutz,M.;S pek,

A.L.;van K oten,G.J.Am.Chem.Soc.2000,122,

12112.

29Repartz,L.;M orris,R. E.;F oster,D. F.;C ole2Hamilton,D.

https://www.360docs.net/doc/649939685.html,mun.2001,361.

30Francavilla,C.;Drake,M.D.;Bright,F.V.;Detty,M.R.

J.Am.Chem.Soc.2001,123,57.

31Marquardt,T.;Luning,https://www.360docs.net/doc/649939685.html,mun.1997,1681.

32Suzuki,T.;Hirokawa,Y.;Ohtake,K.;Shibata,T.;S oai,K.

Tetrahedron:Asymmetry1997,8,4033.

33Peerlings,H.W.T.Ph.D.Dissertation,University of T echnology E indhoven,1998.

34K ollner,C.;Pugin,B.;T ogni,A.J.Am.Chem.Soc.1998, 120,10274.

35Astruc,D.;Chardac,F.Chem.Rev.2001,101,2991.

36Balogh,L.;S wans on,D.R.;S plinder,R.;T omalia,D. A.

Polym.Prepr.1999,217,28.

37Crooks,R.M.;Zhao,M.;Sun,L.;Chechik,V.;Y eung,L.

K.Acc.Chem.Res.2001,34,181.

38Reetz,M.T.Angew.Chem.,Int.Ed.2001,40,284.

39Senkan,S.Angew.Chem.,Int.Ed.2001,40,312.

(Y0204013 ZH AO,X.J.;DONG,H.Z.)

242 有机化学V ol.23,2003

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

纳米载体的限域效应对催化性能影响机制的研究进展

纳米载体的限域效应对催化性能影响机制的研 究进展 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

纳米载体的限域效应对催化性能影响机制的研究进展自上世纪末以来, 纳米科学和技术有了长足的进展,其中纳米材料的一个重要特性是,将体系的尺寸减小到一个特定的范围(如 1~100 nm)时,在不添加任何其他组分的情况下,纳米体系的电子结构会发生变化。量子力学已经证明,大量原子组成的固体材料的价电子为连续的“能带”,当这类体相材料在某一方向上被缩小,特别是缩小到纳米尺度时,电子在该方向的运动就受到空间的束缚和限域,这种限域效应将会改变电子运动特性、导致体系电子结构特别是价电子结构的改变,从而可能会产生量子突变。这种体系尺寸对电子特性的调变为催化剂的催化特性进行调控提供了一种很好的途径[1]。. 近几年,部分研究团队在利用纳米材料的限域效应对催化剂的改性以及催化过程的研究等方面开展了创新性的研究工作,并且大量具有影响力的研究报道和文章被发表出来,其中中国科学院大连化学物理所包信和院士团队在这方面的工作开展的较早也很突出。该团队在铂金属颗粒表面加载了过渡金属氧化物,制备出了具有界面限域效应的TMO/Pt非均相逆催化剂(Oxide-on-Metal Inverse Catalysts),利用界面限域效应对催化体系结构和电子特性的影响作用,改善了在催化过程(特别是在催化氧化反应)中传统非均相催化剂容易出现的催化活性中心的失活以及催化功能的失效等问题[2]。 图1两种金属催化体系的结构示意图 (A)传统的氧化物作为载体的金属催化体系(Oxide supported metal system) 和 (B)过渡金属纳米氧化物倒载型催化体系(oxide-on-metal system)

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

氮化物作为催化剂的研究进展

氮化物作为催化剂的研究进展 内容摘要:近年来,被誉为“准铂催化剂”的过渡金属氮化物因其优良的催化活性已受到世界各国学者的广泛关注。大量的研究表明,过渡金属氮化物在氨的合成与分解、加氢精制等许多涉氢反应中都表现出良好的催化活性。过渡金属氮化物的制备方法有高温法和程序升温氮化法, 程序升温氮化法的显著优点是可以制备出高比表面积的金属氮化物。研究人员不仅对金属氮化物催化剂的制备方法进行了大量的研究,并且发现负载型金属氮化物具有负载量低、比表面积大等优点。因此, 金属氮化物的负载化研究正成为目前的研究热点。 关键词:过渡金属、氮化物、催化剂、结构、性能、工业 Nitride as a catalyst research progress Grade: grade 09 Applied Chemistry Specialty Name: Hong Huaiyong number: 122572009003 Abstract:In recent years, known as the" Platinum" transition metal nitride because of its excellent catalytic activity has been subjected to extensive concern of scholars all over the world. A large number of studies show that, transition metal nitride in ammonia synthesis and decomposition, hydrogenation and so many wading hydrogen reaction showed good catalytic activity. Preparation of transition metal nitride has high temperature method and temperature-programmed nitridation, temperature-programmed nitridation method has the advantages of preparation of high specific surface area of the metal nitride. The researchers not only on the metal nitride catalyst preparation method was studied, and found that the load type metal nitride having load low, large specific surface area and other advantages. Therefore, a metal nitride load research is becoming the research hotspot at present. Key word:Transition metal, nitride, catalyst, structure, performance, industry 引言 过渡金属氮化物是元素N插入到过渡金属晶格中所生成的一类金属间充型化合物,它兼具有共价化合物、离子晶体和过渡金属三种物质的性质,从而表现出优良的物理和化学性能。它作为一类具有很高硬度、良好热稳定性和抗腐蚀特性的新型功能材料,已经在各种耐高温、耐磨擦和耐化学腐蚀分机械领域得到应用。而且它在氨合成与分解、加氢脱硫/脱氮(HDS/HDN)、F-T合成等许多涉氢反应都具有优良的催化活性,不逊色于Pt和Rh等贵金属催化剂的性能,被誉为“准铂催化荆”。过渡金属氮化物作为一种有应用前景的新型加氢精制催化剂已引起人们的广泛关注,成为国际催化荆新材料领域的研究热点。本章概述了这一催化新材料的最新研究进展。 1.过渡金属氮化物的结构和电子特征 过渡金属氮化物是一种间充化合物,是由于氮原子填隙似的融进过渡金属的晶格中形成的,它们倾向于形成组成可在一定范围内变动的非计量间隙化合物。其固态化学特征类似于纯金属,具有简单的晶体结构特征。其中的金属原子形成

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

聚丙烯催化剂研发进展及发展趋势

聚丙烯催化剂研发进展及发展趋势(一) 自20世纪50年代Ziegler-Natta(Z-N)催化剂问世以来,聚丙烯催化剂经过不断 改进得到了很大的发展,目前已经从需要脱灰、脱无规物的第一代催化剂发展到高活性、高立构规整性的高效第五代催化剂。催化剂的活性已由最初的几十倍提高到几百万倍,聚丙烯等规指数已达98%以上,生产工艺得到了简化。目前,催化剂仍是推动聚丙烯技术发展的主要动力,Z-N催化剂和单活性中心催化剂都将继续发展。Z-N催化剂将在高活性、高定向性的基础上向系列化、高性能化发展,不断开发性能更好的新产品;茂金属和非茂单活性中心催化剂(SSC)在聚丙烯领域的应用得到深入发展,其发展目标是进一步实现技术的工业化和启动需求量较大的通用产品市场。 1 Ziegler-Natta催化剂 目前,世界上PP生产所用的大多数催化剂仍是基于Ziegler-Natta(Z-N)催化体 系,即TiCl 3 沉积于高比表面和结合Lewis碱的MgCl 2 结晶载体上,助催化剂是 Al(C 2 H 5 ) 2 Cl等烷基铝类化合物,其特点是高活性(通常在50kgPP/g催化剂左右)、 高立构规整性、长寿命和产品结构的稳定性好。20世纪90年代以来,美国、西欧和日本等世界主要的PP生产商研究开发工作的重点主要集中于该类催化剂体系的改进上。 早在第一代Z-N催化剂出现后,人们就发现添加第三组分(多为给电子体,又称 为Lewis碱)对烯烃聚合行为和聚合物性能都会产生很大的影响。只有改变催化剂中的给电子体(分为内给电子体和外给电子体两类),才能最大可能地改变催化剂活性中心的性质,从而最大程度地改变催化剂的性能。因此,新型给电子体的开发一直是5开发的热点。 1.1内给电子体 目前,内给电子体主要有1,3-二酮、异氰酸酯、1,3-二醚、烷氧基酮、烷氧基 酯、丙二酸酯、琥珀酸酯、1,3-二醇酯、戊二酸酯、邻苯二甲酸高级酯、卡宾类化合物以及环烷二元酸酯等,其中使用最多的是1,3-二醚、琥珀酸酯和1,3-二醇酯类。 (1)以1,3-二醚类化合物为内给电子体的催化剂。1,3-二醚类化合物内给 电子体是由Basell公司开发的。以1,3-二醚类化合物为内给电子体的丙烯聚合 催化剂具有高活性、高氢调敏感性及窄相对分子质量分布等特点,并且在聚合过程中不加入外给电子体时仍可以得到高等规度的PP。在较高温度和较高压力下,用该类催化剂可使丙烯抗冲共聚物中的均聚PP基体具有较高的等规度,提高了结晶度。即使熔体流动指数很高时,PP的刚性也很好,非常适合用作洗衣机内桶专用料。目前,Basell公司已经开发了一系列基于二醚类内给电子体的催化剂,据称催化剂的活性超过100 kg/g(以每克催化剂生产的聚合物的质量计),聚合物的等规指数大于99%。

金属催化剂的研究进展

金属催化剂的研究进展 1前言 催化技术作为现代化学工业的基础,正日益广泛和深入地渗透于石油炼制、化学、高分子材料、医药等工业以及环境保护产业中,起着举足轻重的作用。长期以来,工业上使用的传统催化剂往往存在着活性低、选择性差等缺点,同时常需要高温、高压等苛刻的反应条件,且能耗大,效率低,不少还对环境造成污染。为此人们在不断努力探索和研究新的高效的环境友好的绿色催化剂[1]。本文重点讲解金属催化剂的作用机理,以及金属催化剂在甲醇气相羰基化合成碳酸二甲酯的应用、茂金属催化剂的应用以及金属催化剂在乙烯环氧化合成环氧乙烷的应用。 2金属催化剂的作用机理 2.1 金属催化剂的吸附作用 众所周知,吸附是非均相催化过程中重要的环节,过渡金属能吸附O2、C2H4、C2H2、CO、H2、CO2、N2等气体,强化学吸附能力与过渡金属的特性有关,是因为过渡金属最外层电子层中都具有d空轨道或不成对d电子,容易与气体分子形成化学吸附键,吸附活化能较小,能吸附大部分气体,需主要的是d轨道半充满或者全充满,较稳定,不易与气体分子形成化学吸附键。由此可知,过渡金属的外层电子结构和d轨道对气体的化学吸附起决定作用,有空穴的d轨道的金属对气体有较强的化学吸附能力,而没有d轨道的金属对气体几乎没有化学吸附能力,由多相催化理论,不能与反应物气体分子形成化学吸附的金属不能作催化剂的活性组分。 催化反应中,金属催化剂先吸附一种或多种反应物分子,从而使后者能够在金属表面上发生化学反应,金属催化剂对某一种反应活性的高低与反应物吸附在催化剂表面后生成的中间物的相对稳定性有关,一般情况下,处于中等强度的化学吸附态的分子会有最大的催化活性,因为太弱的吸附使反应物分子的化学键不能松弛或断裂,不易参与反应;而太强的吸附则会生成稳定的中间化合物将催化剂表面覆盖而不利于脱附[2]。 2.2 金属-载体间的相互作用 我们课题组研究的是甲醇气相氧化羰基化合成碳酸二甲酯,使用的是负载型

纳米光催化剂研究现状与展望

年月纳米光催化剂研究现状与展望 马成乡 太原学院山西太原030032 摘要:随着水污染环境问题的日益严重,纳米光催化剂的研究也逐渐的开展起来。本文在分析影响纳米光催化剂性能因素的基础上,探讨了纳米光催化剂的研究现状,并对该材料的发展进行了相关探讨。 关键词:纳米光催化剂;影响因素;研究现状 随着我们国家经济的不断发展,生态环境的污染呈现出不断恶化的趋势,各种环境污染事件开始被社会媒体广泛的暴露出来。在种类比较多的环境污染物中,有机物的比例占到了50%以上。其中天然有机物对环境水体的污染比较小,大多数人工有机物对水体环境的污染程度较大。光催化技术与其他治理环境污染的技术相比,并不需要进行二次净化处理,而且这种纳米光催化剂可以循环使用。 一、影响纳米光催化剂的因素研究 影响纳米光催化剂的性能的因素主要体现在以下几个方面:1.催化剂的晶体结构:通常用作光催化剂的TiO 2具有两种晶体结构,分别为锐钦矿型和金红石型。有的研究结构表明,如果在锐钦矿型的晶体上进行金红石型晶体的生产,能够有效的促进锐钦矿型晶体多污染物的吸收。2.纳米催化剂粒径的影响:催化剂粒径的大小对其催化性能具有着比较重要的影响。很多研究结果表明,随着催化剂粒径的降低,光谱能够响应的范围也就越来越广。尤其当光催化剂离子达到纳米级别时,将会具有更高的氧化还原能力。但是随着纳米粒径的进一步减小,光的载流子在表面符合的概率会进一步增加,也就意味着光催化剂性能的下降。3.比表面积的影响:在反应物质比较充足的情况下,表面积越大,催化剂的活性也就越高;另外催化剂表面的活性中心是并不稳定的。 在反应体系与催化剂的反应条件方面主要影响因素表现在以下几个方面:1.反应的温度:一般来说温度对于光子的表面迁移和吸附以及解吸并不会产生比较明显的影响,所以在某种程度上问对对光催化反应的影响比较小。光催化剂在光的作用下进行各类有机物的催化反应过程时,反应速率与温度比较符合阿伦尼乌斯方程的描述。2.溶液PH 值得影响:溶液的PH 值对半导体的能带分布和表面的性质具有较高的影响。徐成杰等人在研究TiO2在降解有机物的过程中发现,当溶液的PH 值为7时,其降解的效率达到最低。3.光强度的影响:当环境中光的强度较低时,降解速率与光照强度程线性关系;中等光照强度,两者呈现平方根线性关系;当进一步增加光照强度时,催化速率的增加并不明显。 二、纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究 当前纳米的光催化性能研究主要集中在TiO 2的光催化剂掺杂改性研究。在很多学者的研究之中,为了进一步减少自由电子与空穴相互复合的概率,可以在二氧化钛中掺杂少量的稀土离子。非金属离子的掺杂可以使得辐射光谱的范围进一步增强,进而可以提高可见光的利用效率。最近十年以来,双组份甚至是多组分掺杂已经成为纳米光催化剂TiO 2改性研究的热点。美国华盛顿大学的S AKATania 等学者采用溶胶凝胶法制备了La-N-TiO 2光催化剂,ES R 实验研究表明,这种经过掺杂改性的催化剂在500-678nm 光源的照耀下,对于乙醛的降解具有优异的效果。 最近几年以来半导体复合光催化剂的研究引起了学者的广泛注意。从本质上来说,半导体复合就是指一种物质粒子对另外一种物质粒子的修饰。目前的研究结果表明复合半导体比单一半导体具有更好的光催化效果。Tang 等人制备了CaIn 2O 4复合半导体,在亚甲基蓝120min 的脱色实验内,其脱色率可以达到96%。T ony 等人研制除了Fe 2O 3-S nO 2、CuO-SnO 2等类型的复合纳米半导体光催化剂。 三、展望 纳米光催化剂对当前环境问题的解决提供了比较合理的方案,但是目前环境中的光催化剂研究还停留在实验室阶段,并没有得到广泛的应用。目前影响纳米光催化性能的因素主要包括了催化剂的晶体结构、比表面积、反应温度、PH 值等因素;其次对纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究现状进行了一定的分析,指出在以后的污水处理方面,应该设计比较简单的工艺组合反应来处理废水中的污染物,使得纳米光催化剂能够真正的从实验室走向社会。 参考文献: [1]GuoX.,Yang J.,Deng Y.et.al Hydrothermal synthesis and photoluminescence of hierarchic al lead tungstate superstructures re f f ects of reaction temperature and surf actanats[J].European Journalof Inorganic Chemistry,2013,2010(11):1736-1742. [2]SeguraPA,Frane oisM,Ga gnonC,etal.Reviewof theoeeurreneeo f anti-inf eetivesin contaminatedwastew atersandnatUr alanddrinkingw a ters[J].EnvironHealthpersP,2012,117(5):675-684. 管理创新 2014129

纳米金属催化剂的制备方法及其比较_宁慧森

纳米催化材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质[1 ̄2],在催化领域的应用为广大催化工作者开拓了一个广阔空间,国际上已把纳米粒子催化剂称为第四代催化剂,因此纳米材料在催化领域的应用日益受到重视。许多发达国家都相继投入大量人力、财力开展纳米粒子作为高性能催化剂的研究,如美国的Nano中心,日本的Nano ST均把纳米材料催化剂的研究列为重点开发项目。我国对纳米材料的研究也给以高度重视,国家“863”计划、“973”计划大力支持纳米材料及纳米催化剂的研究,已取得了可喜成果[3 ̄5]。目前,国内外纳米催化剂的制备和应用逐步拓展到催化加氢[6]、脱氢[7 ̄9]、聚合、酯化、化学能源[10]、污水处理[11]等方面。纳米金属催化剂制备方法分为化学法及物理法:化学法包括溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法包括气相凝聚法、溅射法和机械研磨法等。 1 化学法制备金属纳米催化剂 1.1 溶胶-凝胶法 该法一般是以金属盐或半金属盐作前驱体,将适当的烷氧化物如四甲氧基硅烷与水、酸性或碱性催化剂与共熔剂,在搅拌超声下进行水解和缩聚反应形成SiO2三维网络结构。在成胶过程中引入的金属组分包埋在三维网络结构中,再进行凝胶老化过程,即将凝胶浸于液体中,继续聚合反应,凝胶强度增加。最后通过干燥,将溶剂从相互关联的多孔网格中蒸发掉,即可得到纳米尺寸的网格结构。溶胶-凝胶技术已成为实现化学剪裁合成纳米材料的主要手段[12 ̄13]。但该法使用的原料价格较昂贵;通常整个溶胶-凝胶过程所需时间较长,有时长达几天或几周;而且凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩。溶胶-凝胶法还被用来制备复合纳米金属催化剂,如Keiji Hashimoto等人[14]利用溶胶-凝胶工艺制备了K+[Zn3(SiO3Al)10(OH)2]-纳米粒子用于醇脱氢反应。李永丹等人[15]还利用溶胶-凝胶法制备了镍基催化剂,并对其进行了甲烷分解制备碳纳米管的研究,所制备的纳米管直径为10 ̄20nm。雷翠月[12]也利用此法,直接制备出了高比表面积、低堆积密度的纤维状纳米级负载型CuO-Al2O3 超细粒子,活性组分以远低于纳米级的微晶粒子簇状态均匀地分散在纳米级氧化铝载体表面,在500℃内具有较高的稳定性,晶粒未聚集长大,在十二醇催化胺化反应中表现出了较高的催化活性。陈立功等人[16]在醇催化胺化反应研究中开发了一种改进的溶胶-凝胶法,利用这种方法制备的铜基纳米催化剂的活性和稳定性都有了显著提高。 1.2 沉淀法 沉淀法是指包括1种或多种离子的可溶性盐溶液,加入沉淀剂(如OH-、C2O42-等)于一定温度下使溶液水解,形成不溶性的氢氧化物、水合氧化物或盐类而从溶液中析出,将溶剂和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化物粉料。此法是传统制备氧化物方法之一[17],主要包括以下4种。 1.2.1 共沉淀法 将过量的沉淀剂加入混合后的金属盐溶液中, 纳米金属催化剂的制备方法及其比较 宁慧森,白国义 (河北大学化学与环境科学学院,河北保定 071002) 摘 要:纳米金属催化剂的制备方法包括化学法和物理法。化学法中主要有溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法主要有气相凝聚法、溅射法和机械研磨法等。其中化学法 中的溶胶-凝胶法及沉淀法应用最广。对纳米金属催化剂的制备方法进行了比较,并简要论述了制备及应 用过程中存在的主要问题。 关键词:纳米催化剂;催化;制备 中图分类号: TQ426.8 文献标识码: A 文章编号: 1672-2191(2007)03-0015-04 收稿日期:2007-03-25 基金项目:河北大学博士基金资助项目(2005046) 作者简介:宁慧森(1976-),男,河北保定人,在读硕士研究生,研究方向为精细化工和催化领域。 电子信箱:nhs-lyq@163.com 2007年第5卷第3期 Chemical Propellants & Polymeric Materials · 15 ·

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经

洗涤、干燥和活化后即可使用。 (8)离子交换法 NaY 制HY (9)滚涂法和喷涂法 (10)均相络合催化剂的固载化 (11)金属还原法 (12)微波法 (13)燃烧法(高温自蔓延合成法) 常用尿素作为燃烧机 (14)共沸蒸馏法 通过醇和水的共沸,改变沉淀的形貌、孔结构。 2、催化剂制备新技术 (1)溶胶-凝胶法(水溶液Sol-gel 法和醇盐Sol-gel 法) 金属醇盐 醇 水水解聚合胶溶剂解胶陈化溶胶 a 胶体凝胶法(胶溶法) 胶体凝胶法是通过金属盐或醇盐完全水解后产生无机水合金属氧化物,水解产物与胶溶剂(酸或碱)作用形成溶胶,这种溶胶转化成凝胶是胶粒聚集在一起构成网络,胶粒间的相互作用力是静电力(包括氢键)和范德华力。 b 聚合凝胶法(分子聚合法) 聚合凝胶法通过金属醇盐控制水解,在金属上引入OH 基,这些溶胶转化成凝胶时,在介质中继续缩合,靠化学键形成氧化物网络。 两种方法的区别在于加入水量的不同, 注意事项:1)水的加入量;2)醇的加入量;3)水解温度;4)胶溶剂加入量 (2)超临界技术 a 气凝胶催化剂的制备(超临界干燥) b 超临界条件下的催化反应 能够改进反应的传质、传热性能,改进产物的分离过程 c 用于因结焦、积垢和中毒而失活催化剂的再生。 具有温度低、不发生局部过热现象的特性,从而有效地防止催化剂的烧结失活。 (3)纳米技术 a 固相合成法 1)物理粉碎法(又称为机械研磨法或机械合金化法) 采用超细磨制备超微粒,很难使粒径小于100 nm 。

纳米材料及纳米催化剂的制备

纳米材料及纳米催化剂的制备 纳米技术是一门崭新的综合性科学技术,当物质被“粉碎”到纳米级并制成纳米材料时,不仅光、电、热、磁等性能发生变化,而且具有辐射、吸收、催化、吸附等许多新特性,可较大地改变目前的产业结构[1],纳米技术有着广阔的发展前景。 1纳米材料科学的基本原理 200年来,人们对宏观物体与微观基本粒子进行了深入的研究,发现它们虽然化学组成相同,但理化性质却相差很大,因此想象,处于宏观物质与微观粒子之间应该有一个过度状态,物质处于这个颗粒尺寸为0~100nm的过度状态即为纳米微粒(NanoParticles)和纳米团族(NanoClusters)。随着显微技术发展到扫描隧道显微镜(STM)和原子显微镜(AMF),使观察、制备、表征纳米材料成为可能,又由于处于纳米过度状态的物质与处于宏观状态的物质,在电子性质、表面性质等方面异差非常大,一门新的学科—纳米科学技术随即问世。 1.1纳米材料 纳米材料包括纳米颗粒、纳米薄膜、纳米晶体、纳米非晶体、纳米纤维、纳米块体等。纳米颗粒尺寸大于原子族,小于超细微粒,在1至100nm之间。纳米颗粒沿一维方向的排布则形成纳米丝;沿二维方向排布则形成纳米膜;沿三维方向排布则形成纳米块体。由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒经的减小,表面光滑程度较差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。这些性质恰恰满足了纳米催化材料和助剂材料所要求的其颗粒大小、表面积大小、电子性质、吸附性能和催化反应性能等。 1.2纳米材料的制备方法 1.2.1超声波震荡法制备纳米材料 例如将材料A和材料B一起加热至全部熔化,保持熔融状态,用超声波震荡粉碎,直到材料A的纳米液分散在材料B中,然后固化成纳米固体颗粒和纳米复合材料,这是一种易于人为控制、简便的制备纳米材料的方法。 1.2.2固相化学反应制备纳米材料 例如制备过渡金属超细微粒就是用这种方法。它是用固态的金属氯化物和固态的硼氢化钾(钠)一起研磨,然后在氮气气氛下200~450℃下焙烧,再经水洗得到非晶态的超细微粒。 1.2.3熔胶—凝胶法制备纳米级α-AL2O3颗粒 此方法是采用一般铝盐为材料,加入一定的添加剂形成溶胶,在溶胶中加入高氯物单体、关联剂或引发剂,在高温下经溶胶—凝胶过程形成高聚凝胶,再经1200℃热处理得到10~50nm尺寸的α-AL2O3颗粒。1.2.4沉淀法制备纳米结构的氧化物和氢氧化物[6]。此方法是使反应剂溶液喷雾雾化进入前体溶液中,以形成纳米结构的氧化物或氢化物沉淀溶液,然后对该沉淀物进行热处理,接着是声处理;或者是先声处理,接着再热处理。可得到掺杂和未掺杂的氢氧化镍、二氧化锰以及氧化钇稳定的氧化锆。可得到不寻常形态的超细结构,包括完好的圆柱体或纳米棒状物,以及氢氧化镍和二氧化锰的新结构,包括纳米结构纤维的组合、纳米结构纤维和纳米结构粒子的附聚物以及纳米结构纤维和纳米结构粒子的组合。这些纳米材料具有高渗透速率和高密度的活性部位,特别适合于作催化剂。 2纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而上文中介绍的纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展 摘要:分子筛是一种具有特定空间结构的新型催化剂,具有活性高、选择性好、稳定性和抗毒能力强等优点,因此,近几十年来它作为一种化工新材料发展的很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用。本文介绍了几种常见的分子筛及应用前景,并对分子筛的性能做了详尽的概述[1]。 关键词:分子筛;催化剂;应用;性能 Development and research of the molecular sieve catalyst Abstract:Zeolite is a new catalyst with specific spatial structure, with high activity, good selectivity, advantages, stability and antitoxic ability etc. Therefore, in recent decades, as a kind of new material chemical development soon, have been widely applied in. Especially as industrial catalysts in refining and petrochemical petroleum plays a very important role. This paper introduces the composition and application of molecular sieve, and the properties of molecular sieves as described in detail. Key words:Molecular sieve;catalyst;application;performance 1.分子筛的发展现状 所谓分子筛催化剂,就是将气体或液体混合物分子按照不同的分子特性彼此分离开的一类物质,实际上是一些具有实际工业价值且具有分子筛作用的沸石分子筛,构成沸石分子筛基本结构特征主要是硅氧四面体和铝氧四面体,这些四面体交错排列形成空间网状结构,存在大量空穴,在这些空穴内分布着可移动的水分和阳离子。基本组成物质为:Na2O、Al2O3、SiO2。上世纪50年代末发现小分子的催化反应可以在分子筛的孔道中进行,才使得这种材料得以迅速的发展。美国的多家公司,具有代表的是Linder公司、Exxon公司、联合碳化公司(UCC )模拟天然沸石的类型与生成条件,开发了一系列低硅铝和中硅铝的人工合成沸石。 上世纪60年代左右,上海试剂五厂开展沸石分子筛的研制开发工作,合成出A型、X型、Y型沸石分子筛。上世纪80年代,金陵石化有限公司炼油厂首次工业化生产ZSM-5沸石分子筛。已有南开大学、北京石科院、兰化炼油厂等单位纷纷开展ZSM -5沸石分子筛的开发生产,并将其广泛应用催化裂解、辛烷值助剂、柴油、润滑油降凝、芳烃烷基化、异构化及精细化工等领域。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的规模也在不断扩大。中科院大连物化所自上世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂。已完成中试放大实验,据称,该研究所采用改性SAPO-34分子筛催化剂可使二甲醚单程转化率大于97%,低碳烯烃选择性达90%。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实现了大孔分子筛的合成。上海骜芊科贸发展有限公司生产经营ZSM-5高硅沸石分子筛结晶粉体、疏水晶态ZSM-5吸附剂等系列分子筛。南开大学催化剂厂主要生产了NFK-5分子筛(直接法合成ZSM-5分子筛)、Beta分子筛、Y型分子筛以及以其为载体的获得国家级发明奖的各类催化剂。 2.分子筛的性能 一切固体物质的表面都有吸附作用,只有多孔物质或表面积很大的物质,才有明显的吸附效应,才是良好的吸附剂。常用的固体吸附剂活性炭、硅胶,活性氧化铝和分子筛等都有很大的表面积。其中沸石分子筛在吸附分离方面有十分重要的地位,它除了有很高的吸附量外,还有独特的选择性吸附性能。这是由于它具有规整的微孔结构,这些均匀排列的孔道和尺寸固定的孔径,决定了能进入沸石分子筛内部的分子的大小。

合成甲醇催化剂研究进展

化学反应工程论文 合成甲醇催化剂的研究进展 摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景 甲醇作为一种基础化工原料,在化工、医药、轻纺等领域有着广泛的用途。主要用于制造甲醛、氯甲烷、醋酸、甲胺、甲基丙烯酸甲酯、甲酸甲酯(MF)、二甲醚(DME)、碳酸二甲酯(DMC)、对苯二甲酸二甲酯(DMT)、甲基叔丁基醚(MTBE)等一系列有机化工产品。随着甲醇深加工产品的不断增加和化学应用领域的不断开拓,甲醇在许多领域有着广阔的应用前景:

相关文档
最新文档