弯曲刚度问题

弯曲刚度问题
弯曲刚度问题

第9章 弯曲刚度问题

9.1 基本概念

9.1.1 梁弯曲后的挠曲线

吊车梁若变形过大,将使小车行走困难,还会引起梁的严重振动。因此,必须对梁的变形加以限制。

若梁的变形在弹性范围内,梁的轴线在梁弯曲后变为一条连续光滑曲

线,该曲线称为弹性曲线或挠度曲线,简称弹性线或挠曲线。

挠曲线:梁变形后的轴线。

性质:连续、光滑、弹性、极其平坦的平面曲线。 9.1.2 梁的挠度与转角

设有一具有纵向对称面的悬臂梁,在自由端处作用一集中力P F 。P F 力作用在梁的纵向对称面内,使梁发生平面弯曲。 一、挠度与转角

梁的变形可用以下两个基本量来度量。

⑴ 挠度

挠度:横截面形心沿垂直于轴线方向的位移。 梁轴线上各点(各截面)的挠度

w 随着点(截面)的位置x 的不同而

改变 ,即各截面的挠度是截面位置坐标x 的函数。

挠曲线方程 单位:

mm

挠度w 符号规定:向下为正,向上为负。

⑵ 转角

转角:横截面绕中性轴转过的角度。用“θ” 表示。 梁不同横截面其转角是不相同的,θ是横截面位置坐标x 的函数

转角方程 单位:

rad

θ 的符号规定:由变形前的横截面转到变形后,顺时针为正;逆时针为

负。

⑶ 水平位移:横截面形心沿水平方向的位移,用u 表示。

因小变形时,u 与w 相比为高阶无穷小,故忽略不计。

二、挠度

w 于转角θ间的关系

tan ()dw

w x w dx θ''===

tan θθ≈

9.2 小挠度微分方程及其积分

9.2.1 小挠度微分方程

梁发生平面弯曲时,其轴线由直线变成一条曲率为1

ρ的平面曲线。

纯弯曲 1

M EI

ρ=

细长梁横力弯曲 1()

()M x x EI ρ=

由高数知 2

21()d w x dx ρ=± 22()

d w M x dx EI =±

w 向下为正的坐标系中

()M x 与w ''的符号总是相反的。

2

2()d w M x dx EI =- 2

2()d w

EI M x dx

=-

挠曲线近似微分方程

求梁的变形:

解上二阶微分方程可求得挠度w ,再根据 dw

w

dx

θ'== ,可求得截面转角θ。 等截面梁:

EI

=常数。

()

EIw M x ''=-

()EIw dx M x dx

''=-

()l EIw EI M x dx C

θ'==-+?

[()]l

EIw dx M x dx dx Cdx

'=-+?

[()]l

l

EIw M x dx dx Cx D

=-++??

1()l

M x dx C EI

θ=-

+? 转角方程

1[()]l l w M x dx dx Cx D EI

=-++?? 挠度方程 其中

C D 、为积分常数。可根据约束条件求得。

9.2.2 积分常数的确定 约束条件与连续条件 约束条件:

⑴固定铰支座和辊轴支座处:0w = ;

⑵固定端处:0w

=,0θ=。

连续条件:在集中力、集中力偶和分布载荷间断处,两侧的挠度和转角对

应相等,即

12w w =,12θθ=。

【例题1】 一等截面悬臂梁,在自由端作用一集中力P F ,梁的抗弯刚度为

EI

,求自由端截面的转角和挠度。

解:等直梁EI

=常数。建立图示坐标系。梁上距原点

x 远处任一横截面

上的弯矩:

()()P M x F l x =--

根据 2

2()d w

EI M x dx =-

有 2

2P P d w

EI F l F x

dx

=- 积分一次 2

2

P P dw x

EI EI F lx F C

dx θ==-+ 再积分 23

1126

P P EIw F lx F x Cx D

=-++ 由梁的约束条件确定积分常数。 根据固定端

0x =处:0w =,0θ=。

2

002

P P F l F C =?-+, 则 0C =; 23

11000026

P P F l F C D

=?-?+?+ 则

0D =

梁的转角方程:2

11()()

2

P P x F lx F x EI θ=-

梁的挠度方程:23

111()()

26P P w x F lx F x EI =-

x l =代入上两方程,得

222111()22B P P P F l F l F l

EI EI

θ=-

=

333

1111()()

263B P P P w F l F l F l EI EI =-=↓

B θ为正值,表示B 截面顺时针转;B w 为正值,表示挠度是向下的。

例题9-1 承受集中载荷的简支梁,如图所示。梁弯曲刚度EI 、长度l 、载荷P F 等均为已知。试应用小挠度微分方程通过积分,求:梁的挠度方程和转角方程,并加力点B 处的挠度和支承A 和C 处的转角。 解:1.确定梁约束力

0A M =∑, 304A P l F l F -=, 34P

A F F =

0y F =∑, 4

P B P A F F F F =-=

2.分段建立梁的弯矩方程

AB 段: 13()4

P

A F M x F x x == (04)x l ≤≤ BC 段:23()()44

P P F l M x x F x =-- (4)l x l ≤≤ 3.将弯矩方程代入挠曲线微分方程并积分

()EIw M x ''=-

134P F EIw x ''=-

(04)x l ≤≤ ① 23()44P P F l EIw x F x ''=-+-

(4)

l x l ≤≤ ② 将①式积分 2

111

38

P F EIw EI x C θ'==-+ 3

111

8

P F EIw x C x D =-++ 将②式积分

22

222

31()824P P F l EIw EI x F x C θ'==-+-+ 33

222

1()864

P P F l EIw x F x C x D =-+-++

4.利用约束条件和连续条件确定积分常数

约束条件:在0x =处,10w =,x l =处,20w =

连续条件:在

4x l =处12w w =,12θθ=

将0x =代入 3

111

8

P F EIw x C x D =-++ 110EIw D == 10D =

将4x l =代入 2

11

38

P F EI x C θ=-+ 22

22

31()824

P P F l EI x F x C θ=-+-+ 22

1233()()08484P P F F l l C C -+=-++ 12C C

= 将4x l =代入 3

111

8

P F EIw x C x D =-++

33

222

1()864

P P F l EIw x F x C x D =-+-++ 331122

()()844844

P P F F l l l l

C D C D -+?+=-+?+ 120D D ==

33

221()0

864

P P F l EIw l F l C l =-+-+= 2

127128

P C C F l

== (04)x l ≤≤ 22

37()()8128P F x x l EI θ=-+

32

17()()

8128

P F w x x l x EI =-+ (4)l x l ≤≤

222

317()[()]

824128P F l x x x l EI θ=-+-+ 332

117()[()]

864128

P F l w x x x l x EI =-+-+

3

3()256P B F l

w EI

=↓,2

7128P A F l EI θ=

,2

5128P C F l

EI

θ=

-

9.3 工程中的叠加法

弯矩的叠加原理---- 梁在几个载荷共同作用下的弯矩值,等于各载荷单独作用下的弯矩的代数和。

叠加法:先分别计算出每一个载荷单独作用下产生的位移,然后再将这些位移代数相加的方法。

一、前提条件:弹性、小变形。

二、叠加法的特征:1、梁在简单载荷作用下挠度、转角应为已知或有变形表可查;2、叠加法适用于求梁个别截面的挠度或转角值。 9.3.1 叠加法应用于多个载荷作用的情形

例题9-2 简支梁同时承受均布载荷q 、集中力ql 和集中力偶2

ql ,如图所示。梁的弯曲刚度为EI

。试用叠加法求梁中点的挠度和右端支座处的

转角。

解:1.将梁上的载荷分解为三种简单载荷单独作用的情形。

2.应用挠度表确定三种情形下,梁中点的挠度和右端支座B 处的转角。

查表得 (转角θ的正负号:从梁轴线转向挠曲线的切线,顺时针转动为正,逆时针转动为负。)

415384C ql w EI =()↓, 4

248C ql w EI

=()↓, 4

316C ql

w EI

=-()↑ 3

124B ql

EI

θ=

-

3

2

16B ql EI

θ=

-

3

3

3B ql EI

θ

=

3.应用叠加法,将简单载荷作用时的挠度和转角分别叠加。

4

4

4

1234

5384481611()

384C C C C ql ql ql

w w w w EI EI EI

ql EI

=++=+-

=-↑

333

123

24163B B B B ql ql ql EI EI EI

θθθθ=++=--+

3

1148ql EI

=

9.3.2 叠加法应用于间断性分布载荷作用的情形 【例2】、图示悬臂梁,求C 截面的挠度和转角。

4()

8B ql

w EI

=↓ EI ql B 63

=

θ EI

ql

B c 63==θ

θ tan a B B w a a θθ=≈ 433()()

86243

C B a ql ql ql l a

w w w a EI EI EI =+=+=+↓ 例题9-3 图示悬臂梁,弯曲刚度为EI 。梁承受间断性分布载荷,如图所示。试利用叠加法确定自由端的挠度和转角。 解:1.将梁上的载荷变为有表可查的情形 2.将处理后的梁分解为简单载荷作用的情形

查表得 4

1()8C ql w EI =↓,3

16C ql EI

θ=

4

2()128B ql w EI =-↑, 3

248B ql EI

θ=-

4

3

2

22321284827()384C B B l ql ql l

w w EI EI ql EI

θ=+?=--?

=-↑ 3

22

48C B ql EI

θθ==-

3.将简单载荷作用的结果叠加

434

12

741()

8384384C C C ql ql ql w w w EI EI EI

=+=-=↓ 3

3

3

12

764848C C C ql ql ql

EI EI EI

θθθ=+=-=

【例3】图示外伸梁。求C 截面的挠度和转角。

解:4

1()

8C qa

w EI

=↓ 3

16C qa EI θ

= 2

36B Ml qa l EI EI

θ==

2

2

6C B qa l EI

θθ==

3

2

tan ()

6C B B qa l

w a a EI

θθ===↓

4

3

3

12

(43)()8624C C C qa qa l qa w w w l a EI EI EI

=+=+=+↓32

2212

()

666C C C qa qal qa a l EI EI EI

θθθ=+=+=+

9.4 简单静不定问题

9.4.1 求解静不定问题的基本方法 一、超静定梁的基本概念

超静定梁:梁的未知约束反力的数目多于所能列出的独立的平衡方程的数

目,以致单凭静力平衡方程不能求出全部的未知约束力,这类梁称为超静定

梁。

例如:

未知约束力个数-独立平衡方程个数=超静定次数=多余未知力个数

二次超静定

相同载荷作用下,超静定梁比静定梁的变形小,受力更均匀,可提高梁

的刚度。

二、用变形比较法解超静定问题

设有一图示超静定梁。该梁为一次超静定,将支座B视为多余约束,F代之,并视其为已知力。超静定梁变为在均布载荷q和集去掉多余约束用B

F共同作用下的静定梁,该静定梁称为原超静定梁的静定基。

中力B

运用叠加法,将右图分解为两种载荷单独作用的悬臂梁。

120B B B w w w =+= 变形协调方程

查表得 4

18B ql w EI

= 3

23B B F l

w EI

=-

代入变形协调方程

3

4

83B F l ql

EI EI

-= 补充方程 38B F ql = 0y F =∑, A B F F ql +=, 35

88A F ql ql ql =-=

0A M =∑, 2

02B A ql

F l M -+=, 218

A M ql =

超静定问题的解题步骤:

1.确定超静定次数;

2.解除多余约束,以约束反力代之,使超静定梁变成静定梁;

3.根据多余约束处的位移情况,建立补充方程并解之求得多余约束反力;

4.利用平衡方程求得其余支座反力;

5.画出剪力图和弯矩图。

与超静定梁对应的静定基不是唯一的,例如

A

M

选左端限制转动的约束视为多余约束,去掉,以多余约束反力A

M代之。

与原梁A端比较,应有120

A A A

θθθ

=+=

变形协调方程

查表得 3

124A ql

EI

θ=

23A A M l

EI θ=-

3

243A M l ql

EI EI -= 补充方程 218A M ql =

0A M =∑, 2

02B A ql

F l M -+= ,

38B F ql = 0y F =∑, A B F F ql +=, 35

88A F ql ql ql =-=

9.4.2 几种简单的静不定问题示例 例题 9-4 图()a 所示之三支承梁,

A 处为固定铰链支座,

B

C 、二处为

辊轴支座。梁作用有均布载荷。已知:均布载荷集度15q N mm =,

4l m =,梁圆截面的直径100d mm =,[]100MPa σ=,试校核

梁的强度是否安全。 解:1.判断静不定次数

梁共受四个未知约束力,但只有三个独立的平衡方程,4-3=1,为一次超静定梁。

2.解除多余约束,使超静定梁变成静定梁。

可选图中B C 、任一个支座为多余约束,先将B 支座视为多余约束除

去,用约束反力B F 代之并视为已知力,超静定梁变成右图中所示的静定梁。

3.比较解除约束前的静不定梁和解除约束后的静定梁,建立变形协调方程

0B Bq BF w w w =+= 变形协调条件

4.查表得 4

5()384Bq ql

w EI =↓ 3

()

48B Bq F l w EI

=-↑ 3

4

50

38448B F l ql EI EI

-= 58B F ql = 5.建立平衡方程

0x

F

=∑,

x F =

y

F

=∑,

Ay B C F F F ql ++-=

0C M =∑,

022Ay B l l

F l F ql --?+?=

结构的刚度计算

建筑力学行动导向教学案例教案提纲

模块六:静定结构的位移计算及刚度校核 6.1.1 杆系结构的位移 杆系结构在荷载或其它因素作用下,会发生变形。由于变形,结构上各点的位置将会移动,杆件的横载面会转动,这些移动和转动称为结构的位移。 图6-1 刚架的绝对位移图6-2刚架的相对位移 我们将以上线位移、角位移及相对位移统称为广义位移。 除荷载外,温度改变、支座移动、材料收缩、制造误差等因素,也将会引起位移,如图11.3(a) 和图11.3(b)所示。 图6-3其他因素引起的位移 6.1.2 计算位移的目的 在工程设计和施工过程中,结构的位移计算是很重要的,概括地说,计算位移的目的有以下三个方面: 1、验算结构刚度。即验算结构的位移是否超过允许的位移限制值。 2、为超静定结构的计算打基础。在计算超静定结构内力时,除利用静力平衡条件外,还 需要考虑变形协调条件,因此需计算结构的位移。 3、在结构的制作、架设、养护过程中,有时需要预先知道结构的变形情况,以便采取一 定的施工措施,因而也需要进行位移计算。 建筑力学中计算位移的一般方法是以虚功原理为基础的。本章先介绍虚功原理,然后讨论在荷载等外界因素的影响下静定结构的位移计算方法。 6.2.构件的变形与刚度校核 6.2.1轴心拉压变形 一、纵向变形 1、拉压杆的位移:等直杆在轴向外力作用下,发生变形,会引起杆上某点处在空间位 置的改变,即产生了位移△l。 2、计算公式

N N F F l l dx dx dx E EA EA σ ε?====??? 图6-4轴心受拉变形 EA l F l N =?—— EA 称为杆的拉压刚度 (4-2) 上式只适用于在杆长为l 长度N 、E 、A 均为常值的情况下, 即在杆为l 长度内变形是均匀的情况 [例6.2-1]某变截面方形柱受荷情况如图6-5所示,F=40KN 上柱高3m 边长为240mm,下柱高4m 边长为370mm ,E=0.03×105 Mpa 。试求:该柱顶面A 的位移。 解:1.绘内力图 图6-5 二、横向变形 1、横向变形 (公式6-1) 2.横向变形因数或泊松比 (公式6-2) 【例6.2-2】 一矩形截面钢杆,其截面尺寸b ×h =3mm ×80mm ,材料的E =200GPa 。经拉伸试验测得:在纵向100mm 的长度内,杆伸长了0.05mm ,在横向60mm 的高度内杆的尺寸缩小了0.0093mm ,试求:⑴ 该钢材的泊松比;⑵ 杆件所受的轴向拉力F P 。 解:(1)求泊松比。 求杆的纵向线应比ε 求杆的横向线应变ε′ 求泊松比μ (2)计算杆受到的轴向拉力 由虎克定律σ=ε·E 计算图示杆件在F P 作用下任一横截面上的正应力 σ=ε·E =5×10-4×200×103=100MPa 333 3 52522.4010310120104100.03102400.03103701.86BC BC AB AB AB BC AB BC N l N l l l l EA EA ?=?+?=+-???-???=+ ????=-求变形: a a d -1=?a a ?-= 'εε εν' =νεε-='4105100 05 .0-?==?= l l ε4 '1055.160 0093.0-?-=-=?=a a ε31.010 51055.14 4 '=??-==--εεμA F N = σ

结构设计之刚度比详解

第三章 刚度比 2014.7.16 一、定义: 刚度比是指结构竖向不同楼层的侧向刚度比值。 二、计算公式: ⑴规范要求: ①、②《抗震规范》第3.4.2和3.4.3条及《高规》第3.5.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ③《高规》第E.0.2条规定当转换层设置在第2层以上时,按本规程式(3.5.2-1)计算的转换层与其相邻上层的侧向刚度比不应小于0.6。 ④《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 框架:i 1i 1i i △△++=V V γ ;其他(框剪、剪…):1 i i i 1i 1i i h h +++?=△△V V γ 详见《高规》P15 ⑶应用范围: ①《抗震规范》第3.4.2和3.4.3条用来判断竖向不规则 ②《高规》第3.5.2条规定的工程刚度比计算。用来避免竖向不规则 ③《高规》第E.0.2条用来计算转换层在二层以上时的侧向刚度比 ④《抗震规范》第6.1.14条规定的工程的刚度比的计算方法1。用于判断地下室顶板能否作为上部结构的嵌固端。 注:SATWE 软件在进行“地震剪力与地震层间位移比”的计算时“地下室信息”中的“回填土对地下室约束相对刚度比”里的值填“0”; 2、按剪切刚度计算 ⑴规范要求: ①《高规》第E.0.1条规定:当转换层设置在1、2层时,可近似采用转换层与其相邻上层结构的等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应小于0.4,抗震设计时γ不应小于0.5。 ②《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 1 22211h h ?=A G A G γ 详见《高规》P177 ⑶应用范围: ①《高规》第E.0.1条用来计算转换层在一二层时的侧向刚度比 ②《抗震规范》第6.1.14条规定的工程的刚度比的计算方法2。用于判断地下室顶板能否作为上部结构的嵌固端。 3、按剪弯刚度计算 ⑴规范要求: ①《高规》第E.0.3条规定:当转换层设置在第二层以上时,尚宜采用图E 所示的计算模型按公式(E.0.3)计算转换层下部结构与上部结构的等效侧向刚度比γe 2。γe 2宜接近1,非抗震设计时γe 不应小于0.5,抗震设计时γe 不应小于0.8。 ⑵计算公式: 2 112H H △△=γ 详见《高规》P178

梁的强度和刚度计算.

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤=γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算

v w f It ≤=τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。腹板计算高度边缘的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

平面弯曲梁的强度与刚度计算

第八章平面弯曲梁的强度与刚度计算 §8-1 纯弯曲时横截面的正应力 一.纯弯曲试验: 纯弯曲:内力只有弯矩,而无剪力的弯曲变形。 剪切弯曲:既有弯矩,又有剪力的弯曲变形。 为了研究梁横截面上的正应力分布规律,取一矩形截面等直梁,在表面画些平行于梁轴线的纵线和垂直干梁轴线的横线。在梁的两端施加一对位于梁纵向对称面内的力偶,梁则发生弯曲。梁发生弯曲变形后,我们可以观察到以下现象: ①横向线仍是直线且仍与梁的轴线正交,只是相互倾斜了一个角度; ②纵向线(包括轴线)都变成了弧线; ③梁横截面的宽度发生了微小变形,在压缩区变宽了些,在拉伸区则变窄了些。 根据上述现象,可对梁的变形提出如下假设: ①平面假设:梁弯曲变形时,其横截面仍保持平面,且绕某轴转过了 一个微小的角度。

②单向受力假设:设梁由无数纵向纤维组成,则这些纤维处于单向受 拉或单向受压状态。 可以看出,梁下部的纵向纤维受拉伸长,上部的纵向纤维受压缩短,其间必有一层纤维既不伸长也木缩短,这层纤维称为中性层。中性层和横截面的交线称为中性轴,即图中的Z轴。梁的横截面绕Z 轴转动一个微小角度。 二.梁横截面上的正应力分布: 图中梁的两个横截面之间距离为dx,变形后中性层纤维长度仍为dx且dx=ρdθ。距中性层为y的某一纵向纤维的线应变ε为: 对于一个确定的截面来说,其曲率半径ρ是个常数,因此上式说明同一截面处任一点纵向纤维的线应变与该点到中性层的距离成正比。 由单向受力假设,当正应力不超过材料的比例极限时,将虎克定律代入上式,得: 由上式可知,横截面上任一点的弯曲正应力与该点到中性轴的距离成正比,即正应力沿截面高度呈线性变化,在中性轴处,y=0,所以正应力也为零。

高层设计 层刚度比的理解与计算方法

(一)地震力与地震层间位移比的理解与应用 ⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ⑵计算公式:Ki=Vi/Δui ⑶应用范围: ①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。 ②可用于判断地下室顶板能否作为上部结构的嵌固端。 (二)剪切刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2.计算公式见《高规》151页。 ②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2.其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。 ⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。 ⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。 (三)剪弯刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe 不应大于2,抗震设计时γe不应大于1.3.计算公式见《高规》151页。 ②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。

白车身弯曲刚度分析规范(参考Word)

1、范围 本标准规定了乘用车弯曲刚度分析的要求; 本标准适用于本公司乘用车白车身弯曲刚度分析。 2、输入条件 2.1 BIW 几何模型 数据要求如下: 1)模型完整,数据无明显的穿透或干涉; 2)各个零件的厚度齐全; 3)几何焊点数据齐全; 4)各个零件的明细表完整齐全。 2.2 BIW有限元模型 1)各个零件网格模型完整,数据中无穿透; 2)焊点数据齐全; 3)各个零件厚度数据齐全; 4)各个零件材料数据齐全。 3、输出物 BIW刚度分析输出物为PDF文档格式的分析报告,正对不同车型统一命名为《XX车型BIW 刚度CAE分析报告》 4、分析方法 4.1 分析模型 分析模型包括BIW有限元模型,钣金件均采用壳单元模拟,点焊采用CWELD单元模拟,线焊和螺栓连接采用RBE2模拟,减震胶采用SOLID模拟。 4.2分析模型建立 建立有限元模型,应符合以下要求: 1)BIW网格质量符合求解器要求; 2)BIW材料须与明细表规定的明细表相对应; 3)BIW的厚度须与明细表规定的厚度相对应; 4)焊点几何坐标须与3D焊点坐标一致,焊点连接的层数须明确,点焊采用CWELD模拟,线焊和螺栓采用RBE2模拟,减震胶采用SOLID模拟。 4.3刚度分析 1)定义刚度分析约束条件 2)定义防毒分析求解工况 3)定义刚度分析载荷条件 4)求解器设置 4.4分析工况 约束条件:在前后悬架与车身连接处,约束XYZ移动自由度; 载荷条件:在前排左右座椅质心处各施加1000N的吹响李,后排座椅质心处施加2000N的垂向力。

5分析数据处理 5.1在车身纵梁下部和门槛梁下部分布了一系列考核点,通过考核点的X坐标值和Z向变形量绘制弯曲刚度曲线。 5.2绘制白车身弯曲刚度变形曲线 5.3刚度计算 刚度计算公式k=F/δ(F为加载力,δ为位移)。

平面弯曲梁的强度与刚度计算.

第八章平面弯曲梁的强度与刚度计算 目的要求: 掌握弯曲梁正应力的讣算和正应力分布规律。 教学重点: 弯曲梁正应力的汁算和正应力分布规律。 教学难点: 平行移轴定理及瓦应用。 学时分配: 7学时 §8-1纯弯曲时梁的正应力 一、纯弯曲概念: 1、纯弯曲:平而弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。 2、剪切弯曲:平而弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。 二、纯弯曲时梁的正应力: 1、中性层和中性轴的概念: 中性层:纯弯曲时梁的纤维层有的变长,有的变短。其中有一层既不伸长也不缩短,这一层称为中性层。 中性轴:中性层与横截面的交线称为中性轴。 z (中性轴) 2.纯弯曲时梁的正应力的分布规律: 以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性 规律分布,最大的正应力发生在上下边沿点。 3、纯弯曲时梁的正应力的计算公式: (1)、任一点正应力的计算公式:

(2 )、最大正应力的计算公式: 0皿一------ 一— lz必 其中:M-一截面上的弯矩;I二-一截而对中性轴(z轴)的惯性矩:厂一所求应力的点到中性轴的距离。 说明:以上纯弯曲时梁的正应力的计算公式均适用于剪切弯曲。 §8-2常用截而的二次矩平行移轴龙理 一、常用截而的二次矩和弯曲截面系数: b 严■ y dy h y I z = \ydA= \ybdy=^-\ =等< ± 3 12 2 — ”7 Iz bh, 亿=—=— % 6 2、圆形截面和圆环形截而:

圆环形截而 A = /v =詈0 -a") W:=W y=唱(l-a) 其中: d a =—— D 3、型钢:型钢的二次矩和弯曲截面系数可以查表。 二、组合截而的二次矩平行移轴左理 1、平行移轴定理: 截面对任一轴的二次矩等于它对平行于该轴的形心轴的二次矩,加上截而而积与两轴之间的距离平方的乘积。 I 二1=1 二+£A 2、例题: 例1:试求图示T形截面对其形心轴的惯性矩。 解:1、求T形截而的形心座标yc

弯曲刚度问题

第9章 弯曲刚度问题 9.1 基本概念 9.1.1 梁弯曲后的挠曲线 吊车梁若变形过大,将使小车行走困难,还会引起梁的严重振动。因此,必须对梁的变形加以限制。 若梁的变形在弹性范围内,梁的轴线在梁弯曲后变为一条连续光滑曲 线,该曲线称为弹性曲线或挠度曲线,简称弹性线或挠曲线。 挠曲线:梁变形后的轴线。 性质:连续、光滑、弹性、极其平坦的平面曲线。 9.1.2 梁的挠度与转角 设有一具有纵向对称面的悬臂梁,在自由端处作用一集中力P F 。P F 力作用在梁的纵向对称面内,使梁发生平面弯曲。 一、挠度与转角 梁的变形可用以下两个基本量来度量。

⑴ 挠度 挠度:横截面形心沿垂直于轴线方向的位移。 梁轴线上各点(各截面)的挠度 w 随着点(截面)的位置x 的不同而 改变 ,即各截面的挠度是截面位置坐标x 的函数。 挠曲线方程 单位: mm 挠度w 符号规定:向下为正,向上为负。 ⑵ 转角 转角:横截面绕中性轴转过的角度。用“θ” 表示。 梁不同横截面其转角是不相同的,θ是横截面位置坐标x 的函数 转角方程 单位: rad θ 的符号规定:由变形前的横截面转到变形后,顺时针为正;逆时针为 负。 ⑶ 水平位移:横截面形心沿水平方向的位移,用u 表示。 因小变形时,u 与w 相比为高阶无穷小,故忽略不计。 二、挠度 w 于转角θ间的关系 tan ()dw w x w dx θ''=== tan θθ≈

9.2 小挠度微分方程及其积分 9.2.1 小挠度微分方程 梁发生平面弯曲时,其轴线由直线变成一条曲率为1 ρ的平面曲线。 纯弯曲 1 M EI ρ= 细长梁横力弯曲 1() ()M x x EI ρ= 由高数知 2 21()d w x dx ρ=± 22() d w M x dx EI =± 在 w 向下为正的坐标系中 ()M x 与w ''的符号总是相反的。

刚度校核

刚度校核 l.轴的弯曲刚度校核计算 2.轴的扭转刚度校校计算 l.轴的弯曲刚度校核计算 常见的轴大多可视为简文梁。若是光轴,可直接用材料力学中的公式计算其挠度或偏转角;若是阶梯轴,如果对计算精容要求不高,则可用当量直径法作近似计算。把阶梯轴看成是当量直径为dv的光轴,然后再按材料力学中的公式计算。当量直径为 式中:l i——阶梯轴第i段的长度,mm; d i——阶梯轴第i段的直径,mm; L——阶梯轴的计算长度;m。; Z——阶梯轴计算长度内的轴段数。 当载荷作用干两支承之间时,L=l(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度)。 轴的弯曲刚度条件为: 挠度 偏转角 式中:[y]——轴的允许挠度,mm,见表15-5; [θ]——轴的允许偏转角,rad,见表15-5。

表15-5 轴的允许挠度及允许偏转角 2.轴的扭转刚度校校计算 轴的扭转变形用每米长的扭转角p来表示。圆轴扭转角P的计算公式为: 光轴 阶梯轴 式中:T——轴所受的扭矩,N·mm; G——轴的材料的剪切弹性模量,MPa,对于钢材,G=8.1*104MPa; I p——轴截面的极惯性矩,mm4,对于圆轴,I p= d4/32 L——阶梯轴受扭矩作用的长度,mm; T i、l i、I pi——分别代表阶梯轴第i段上所受的扭矩、长度和极惯性矩,单位同前; z——阶梯轴受扭矩作用的轴段数。 轴的扭转刚度条件为

?≤[?] ( °)/m 式中[?] 为轴每米长的允许扭转角,与轴的使用场合有关。对于一般传动轴,可取[?]=0.5-1( °)/m;对于精密传动轴,可取[?]=0.25-0.5( °)/m;对于精度要求不高的轴,[?]可大于1( °)/m。 表15-4 抗弯,抗扭截面系数计算公式 注:近似计算时,单,双键槽一般可忽略,花键轴截面可视为直径等于平均直径的圆截面。

空气弹簧刚度计算公式

空气弹簧刚度计算公式 1. 载荷与气压关系式: )A p (p P a -= ----(1) 式中: P 载荷 p 气囊内绝对气压 A 气囊有效承压面积 a p 标准大气压,其值与运算单位有关: 采用N 、mm 时,a p =0.0981≈0.1N/mm 2 采用kgf 、cm 时,a p =1 kgf/cm 2 采用1b 、in 时,a p =14.223 lb/in 2(psi) 2. 气压与容积变化关系式―――气体状态方程式 m )V V (p p 00= 式中: p 任一位置气囊内气体的绝对气压 V 任一位置气囊内气体容积 0p 静平衡位置气囊内气体的绝对气压 0V 静平衡位置气囊内气体容积 m 多变指数,静态即等温过程 m =1; 动态即绝热过程 m =1.4; 一般状态,可取 m =1.33。 3. 刚度:弹性特性为弱非线性,取其导数,即 dx dP K = 式中: K 任一位置的刚度 P 载荷 x 气囊变形量即行程 即: dx )A]p d[(p K a -= dx )A]p V V d[(p a m m 00-= dx dV V V Amp dx dA )p V V (p 1m m 00a m m 00?--=+ ----(2)

当气囊处在平衡位置时, V =0V , p =0p , dx dV =-A , 即: 020a 00V A mp dx dA )p (p K +-= ----(3) 在平衡位置时之偏频: 0a 000)V p (p mgA p dx dA A g 2π1n -+?= (Hz) ----(4) 式中: dx dA 称为有效面积变化率; g 重力加速度。 可见,降低dx dA 、增大0V ,可降低0n ,提高平顺性。 P.S.有时采用相对气压p 1来运算更为方便: p 1 =p -a p ----(5) 代入式(1)即P = p 1 A 或:0p = a 10p p + 代入式(3) 即:02a 10100V A )p m(p dx dA p K ++= ----(6) 0 10a 100V mgA p p p dx dA A g 2π1n ?++?= (Hz) ----(7) 又∵2 D 4πA = D 为有效直径, ∴dx dD 2πD dx dA ?= 代入式(6) 0 2 a 10100V A )p m(p dx dD 2πDp K ++?= ----(8) 式中: dx dD 称为有效直径变化率。 dx dD 或dx dA 由空气弹簧制造商提供数据或曲线, 对囊式空气弹簧,一般dx dD =0.2--0.3, 对膜式空气弹簧,一般dx dD =0--0.2, 甚至有dx dD =-0.1,取决于活塞形状。

白车身弯曲刚度分析报告

编号:QQ-PD-PK-066白车身弯曲刚度分析报告 项目名称:QQ458321486 编制:日期: 校对:日期: 审核:日期: 批准:日期: XX汽车有限公司 2013年03月

目录 1分析目的 (1) 2使用软件说明 (1) 3有限元模型建立 (1) 4白车身弯曲刚度分析边界条件 (1) 5分析结果 (3) 6结论 (10)

1分析目的 车身是轿车的关键总成,除了保证外形美观以外,汽车设计工程师们更注重车身结构的设计。车身应有足够的刚度,刚度不足,会导致车身局部区域出现大的变形,从而影响了车的正常使用。低的刚度必然伴随有低的固有频率,易发生结构共振和声响。 本报告以QQ白车身为分析对象,利用有限元法,对其进行了弯曲刚度分析。 2使用软件说明 本次分析采用Hypermesh作前处理,Altair optistruct求解。HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器于一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。Altair Optistruct最强大的功能是其友好的CAO接口,通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。 3有限元模型建立 根据设计部门提供的白车身的工艺数模建立QQ的计算模型,对模型进行了有限元离散处理:白车身所有零部件都采用板壳单元进行离散,并尽量采用四边形板壳单元模拟,少量三角形单元以满足高质量网格的过渡需要;粘胶用实体单元模拟,焊点采用CWELD 和RBE2单元模拟。其中四边形单元469700个,三角形单元15543个,三角形单元比例3.4%。 QQ数模及有限元模型见下图: 图1QQ数模及有限元模型 4白车身弯曲刚度分析边界条件 对设计车QQ施加边界条件:在前悬架与车身连接处约束X、Y、Z移动自由度,三个子工况分别约束后悬架板簧前吊耳铰接处、两吊耳中间限位支架处、板簧后吊耳铰接处Y、Z移动自由度,与前悬架的约束组成整个白车身的约束;在每个子工况中,找到纵梁上位于前后约束X方向的中心位置,施加左右各4000N,共8000N的集中载荷。

拉压扭簧计算公式弹簧刚度计算

弹簧刚度计算 压力弹簧 · 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

· 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) · 拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 · 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). · 弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数

梁的强度与刚度

第八章梁的强度与刚度 第二十四讲梁的正应力截面的二次矩 第二十五讲弯曲正应力强度计算(一) 第二十六讲弯曲正应力强度计算(二) 第二十七讲弯曲切应力简介 第二十八讲梁的变形概述提高梁的强度和刚度

第二十四讲纯弯曲时梁的正应力常用截面的二次矩 目的要求:掌握弯曲梁正应力的计算和正应力分布规律。 教学重点:弯曲梁正应力的计算和正应力分布规律。 教学难点:平行移轴定理及其应用。 教学内容: 第八章平面弯曲梁的强度与刚度计算 §8-1 纯弯曲时梁的正应力 一、纯弯曲概念: 1、纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。 2、剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。 二、纯弯曲时梁的正应力: 1、中性层和中性轴的概念: 中性层:纯弯曲时梁的纤维层有的变长,有的变短。其中有一层既不伸长也不缩短,这一层称为中性层。 中性轴:中性层与横截面的交线称为中性轴。 2、纯弯曲时梁的正应力的分布规律: 以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。

3、纯弯曲时梁的正应力的计算公式: (1)、任一点正应力的计算公式: (2)、最大正应力的计算公式: 其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。 说明:以上纯弯曲时梁的正应力的计算公式均适用于剪切弯曲。

§8-2 常用截面的二次矩平行移轴定理 一、常用截面的二次矩和弯曲截面系数: 1、矩形截面: 2、圆形截面和圆环形截面: 圆形截面 圆环形截面 其中:

(完整版)层刚度计算的三种计算方法

层刚度计算的三种计算方法?层刚度比的含义是什么? (一)地震力与地震层间位移比的理解与应用 ⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ⑵计算公式:Ki=Vi/Δui ⑶应用范围: ①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。 ②可用于判断地下室顶板能否作为上部结构的嵌固端。 (二)剪切刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2.计算公式见《高规》151页。 ②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2.其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。 ⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。 ⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。 (三)剪弯刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe不应大于2,抗震设计时γe不应大于1.3.计算公式见《高规》151页。

②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。 ⑵SATWE软件所采用的计算方法:高位侧移刚度的简化计算 ⑶应用范围:可用于执行《高规》第E.0.2条规定的工程的刚度比的计算。 (四)《上海规程》对刚度比的规定 《上海规程》中关于刚度比的适用范围与国家规范的主要不同之处在于: ⑴《上海规程》第6.1.19条规定:地下室作为上部结构的嵌固端时,地下室的楼层侧向刚度不宜小于上部楼层刚度的1.5倍。 ⑵《上海规程》已将三种刚度比统一为采用剪切刚度比计算。 (五)工程算例: ⑴工程概况:某工程为框支剪力墙结构,共27层(包括二层地下室),第六层为框支转换层。结构三维轴测图、第六层及第七层平面图如图1所示(图略)。该工程的地震设防烈度为8度,设计基本加速度为0.3g. ⑵1~13层X向刚度比的计算结果: 由于列表困难,下面每行数字的意义如下:以“/”分开三种刚度的计算方法,第一段为地震剪力与地震层间位移比的算法,第二段为剪切刚度,第三段为剪弯刚度。具体数据依次为:层号,RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层。 其中RJX是结构总体坐标系中塔的侧移刚度(应乘以10的7次方);Ratx1为本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均刚度80%的比值中的较小者。具体数据如下: 1,7.8225,2.3367,否/13.204,1.6408,否/11.694,1.9251,否 2,4.7283,3.9602,否/11.444,1.5127,否/8.6776,1.6336,否 3,1.7251,1.6527,否/9.0995,1.2496,否/6.0967,1.2598,否 4,1.3407,1.2595,否/9.6348,1.0726,否/6.9007,1.1557,否 5,1.2304,1.2556,否/9.6348,0.9018,是/6.9221,0.9716,是

动静刚度计算方法

2.2空气弹簧的支撑、弹性作用取决于空气弹簧内的压缩气体。容积比、气体压缩系数基本上决定了理想空气弹簧的性能。理想气体状态方程为 绝对压力(Pa) 除以气体密度(kg/m3)等于气体常数(N?m/(kg?K) 乘以绝对温度(K) 或者绝对压力(Pa) 乘以体积 = 气体质量 x 气体常数(N?m/(kg?K)) x绝对温度(K) 不同的气体R值不同,空气的R=287N?m/(kg?K) 当气体质量m为常数时: 绝对压力(Pa)x体积的n次方=const(const为常数) 式中,n----多变常数;当变速过程缓慢时,可将其视为等温过程,则n=1;当变速过程较快时,可视为绝热过程,不同的气体n值不同,空气n=1.4。 理想气体的微分方程为: 绝热过程:体积的n次方x 绝对压力的导数 + n x 绝对压力 x 体积的(n-1)次方的导数=0 等温过程难n=1时: 体积x绝对压力的导数+绝对压力x体积的导数=0 即绝对压力的导数除以绝对压力 = ―体积的导数除以体积 空气弹簧的承载能力: F=变化压力x承载面积变化压力=绝对压力-原来的压力 空气弹簧的理论刚度:空气弹簧的刚度是F对空气弹簧变形量(行程)

s的导数,即 k=承载能力对行程求导=初始压力x承载面积对s的导数+初始承载面积Ae0 x 压力对行程的导数 由以上可知,空气弹簧刚度取决于两部分:式中右边第一项为弹簧的几何变化(有效承载面积的变化);第二项为空气弹簧内部压力的变化,而且刚度随弹簧的变形速度而变化。 注意到 Ae=体积对行程的导数 当振动频率f﹥0.2 Hz时,可取n=K,此时其刚度可认为是动刚度,即 Kd=初始压力x 有效面积对行程的导数+绝对温度x(初始压力+承载压力)x(有效承载面积的平方 除以 体积) 当振动频率f﹤0.2 Hz时,可取n=1,此时的其刚度可认为是静刚度,即 Kd=初始压力x 有效面积对行程的导数+(初始压力+承载压力)x(有效承载面积的平方 除以 体积) 通过对空气弹簧力学公式的分析可知指数n的选取对空气弹簧刚度有重要影响。n值与空气弹簧的变形速度或振动频率有关。振动频率越高,n值越大。对于等温过程,取n=1;对于绝热过程,取n=1.4。对于汽车常遇到的振动频率范围,空气弹簧的气体变化过程介于等温过程与绝热过程之间。准确的n值通过试验确定。若空气弹簧底座有节流孔与气囊相通。

案例-弯曲变形与强度.

台湾丰原高中礼堂坍塌事故原因分析 建筑物坍毁是工程事故发展的最终阶段,因此所有坍塌事故均属于恶性事故。按照《建筑结构设计统一标准》(GB 68—84、GB 50068—2001)和结构抗震设计“小震不坏,中震可修,大震不倒”三准则的要求,所有坍塌事故,包括地震灾后的坍塌事故,都属于责任事故,应该追究当事人责任。只有经过分析鉴定,确认事故原因存在设计安全水准以外的意外因素时,才能界定为天灾,豁免当事人责仟。下面列举的坍塌事故都是近年来发生在国内外的引起全社会关注的恶性事故,并且都是人为过失事故。说明在所有工程事故中,人为过失事故占了很大比例,值得警惕! 1.案例背景 该礼堂位于一栋19.5m×49.5m的两层长方形建筑的第2层(底层为教室),层高6m,平面如图1所示。屋顶结构由跨度19.5m、中心间距4.5m的钢桁架承重。桁架端部高125cm,跨中高135cm,次桁架起纵向支撑的作用,并与主桁架相连接构成整体,由40cm×60cm的钢筋混凝土柱与纵向连系梁组成纵向排架支承,并在⑤~⑧轴处从联系梁则面悬挑出一很大的钢筋混凝土雨篷。屋盖系统如图2所示。 图1 中学礼堂平面图图2 礼堂顶层结构简图 施工过程中,由于某种原因,在底层教室完工后,曾有10个月的停工间隙期,因而在第2层楼面以上的钢筋混凝土立柱中,存在施工缝的处理问题。 该建筑于1975年1月竣工。由于出现严重的屋面渗漏现象,在1983年6月对屋面进行返修。返修时,为了改善屋面的保温隔热性能,在屋顶上增加了一个蓄水保温系统。 1983年8月24日,该礼堂屋顶结构发生坍塌。虽然事故的前一天曾经下过雨,但在事故发生的时候,并未在结构上施加任何临时额外荷载,坍毁前也没有出现异兆。 2.可用于事故原因分析的线索 (1)节点连接的施工质量问题 台湾技术学院的C.Y.林教授经过现场考察认为,结构系统的坍毁很可能是始于下弦拉杆的某一焊接头断裂,或者是由于垂直杆与斜撑杆的螺栓接头松

接触刚度的计算

step(time,0,0d,0.68,-12000d)+step(time,0.68,0d,1.77,0d)+step(time,1.77,0d,2.45,12000d) 3.2.3定义齿轮啮合的接触碰撞力 为了保证仿真分析的真实性,齿轮之间的啮合运动关系没有被定义成理想化的几何约束关系,而是被定义为基于接触碰撞的力约束关系,即齿轮之间只能通过接触碰撞力(法向)和摩擦力(切向)相互约束,而不存在其他的约束关系。 在ADAMS 中有两种接触碰撞的计算模型,一种是基于Hertz 理论的Impact 函数模型,一中是基于恢复系数(Coefficient of restitution )的泊松(POISSON )模型。两种力模型都来自于法向接触约束的惩罚函数。ADAMS/C++Solver 使用惩罚因子来转换所有的接触约束。 采用Impact 函数来计算各啮合齿轮轮齿之间的接触碰撞力。Impact 函数模型将实际中物体的碰撞过程等效为基于穿透深度的非线性弹簧—阻尼模型,其计算表达式为: ()()?????>时,两物体不发生接触,接触力为0,当1x x <时,两物体接触,接触力大小与接触刚度系数、非线性指数、阻尼系数以及两物体距离的改变量即穿透量有关。由以上公式可知,Impact 接触力包括两个部分: (1)弹性分量n x x K )(1-,相当于一个非线性弹簧; (2)阻尼分量(). 1max 10,,,,x x C d x x step -,其方向与运动方向相反,为了避免阻尼分量突变而使得函数变得不连续,采用了阶跃函数()step 来定义阻尼,()step 函数是利用三次多项式逼近海赛(Heacisde )阶跃函数,具有连续的一阶导数,但在起始点处二阶导数不连续。在ADAMS 中的表达形式为:

最新弯曲变形和剪切变形的区别

弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。 框架结构,剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点: 1、框:抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大.第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形. 2、剪:抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁; 3、框剪:位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调.在结构的底部,框架的侧移减小;在结构的上部,剪力墙的侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏. 剪切滞后 在受剪力作用的薄壁梁中,距剪力作用点较远的突缘上的正应力(见应力)小于按平截面假设求得值的现象。剪切滞后取决于结构中力的扩散(传播)。力的扩散是指作用在结构某一部分上的非自身平衡的力系,向结构其他部分传递,直至与外力或约束反力相平衡的过程。 图1为一宽突缘工字形悬臂梁,它由上下各五根细长突缘杆、上下各四块突缘板和中间一块薄腹板组成。在剪力Q的作用下,梁中出现剪切滞后现象,这可由下面的力的扩散过程来说明。在杆仅受正应力而板仅受剪应力的简化假设下,当剪力Q作用于腹板的自由端时,整个腹板具有剪应力τ。此剪应力直接作用于与腹板相连的中心杆A1B1上,所以在自由端附近的截面上仅A1B1杆中有正应力和正应变。而A2B2杆和A3B3杆均无正应力和正应变。但A1B1杆的正应变引起突缘板A1B1B2A2的剪应变和剪应力,此剪应力又使突缘杆 A2B2产生正应力。在A2B2杆受力变形的基础上,通过同样方式又使A3B3杆受力。图1中在工字梁的左侧用阴影线表示突缘杆中的正应力,右侧绘出突缘板中的剪应力。由于内力是由受剪腹板经与其相连的突缘杆逐步向远处承力突缘杆传播的,所以在力的扩散过程结束后,远离受剪腹板的杆所受的力在空间上有一定落后,而且受力的值小于按平截面假设求得的值,这就是剪切滞后。而根据平截面假设,各杆的受力情况没有差别,这与实际情况相差较远。因此,在计算薄壁梁的应力时,一般不能采用平截面假设。 剪切滞后造成结构内部受力不均匀,影响结构材料的利用率。例如,由于剪力Q的作用,在图2所示的箱形薄壁结构的上下盖板中就出现剪切滞后现象 (正应力在腹板附近大,中间部分小)。甚至当腹板附近的盖板接近破坏时,盖板的中间部分还处于低应力状态。为了估计剪切滞后对盖板利用率的影响程度,可采用折合宽度概念。即假定宽为 W0的一块板的承载能力恰好相当于一块宽仅为Wb 而充分发挥了承载能力的板,Wb称为折合宽度,而比值嗞=Wb/W0称为减缩系数。嗞值小说明材料的利用率低。通常盖板越宽嗞值越小。在工程设计中,应考虑减少腹板的间距,以提高材料的利用率。 很常见的四个概念,弯曲变形、剪切变形,弯曲型变形、剪切型变形。注意,一个字之差,意思却大不相同。弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由

M法的计算土弹簧-刚度

《JTG D63-2007公路桥涵地基与基础设计规范》 桩基土弹簧计算方法 这次设计计算m取用15000kN/m4 根据地基基础规范中给出的m法计算桩基的土弹簧: 基本公式: mz ③ K=ab 1 式中: a:各土层厚度 b :桩的计算宽度 1 m:地基土的比例系数 z:各土层中点距地面的距离 计算示例: 当基础在平行于外力作用方向由几个桩组成时, b1=0.9×k(d + 1) ① h1=3×(d+1) ∵ d=1.2 ∴ h1=6.6 L1=2m L1<0.6×h1=3.96M ∴ k=b′+((1-b′)/0.6)×L1/h1 ② 当n1=2时,b′=0.6 代入②式得:k= 当n1=3时,b′=0.5 代入②式得:k=0.92087542 当n1≥4时,b′=0.45 带入②式得:k=0.912962963 将k值带入①式可求得b1, 对于非岩石类地基,③式中m值可在规范表P.0.2-1中查到 对于岩石类地基,③式中m值可由下式求得: m=c/z 其中c值可在表P.0.2-2中查得 将a、b1、m、z带入③可求得K值 m

同时,《08抗震细则》,第6.3.8中规定,对于考虑地震作用的土弹簧, M 动=(2~3倍)M 静。 桥梁的地震反应分析研究中,考虑桩-土共同作用时,在力学图式中作如下处理。 假定土介质是线弹性的连续介质,等代土弹簧刚度由土介质的动力m 值计算。“m -法”是我国公路桥梁设计中常用的桩基静力设计方法。在此采用的动力m 值最好以实测数据为依据。由地基比例系数的定义可表示为 z zx x z m ??=σ 式中,zx σ是土体对桩的横向抗力,z 为土层的深度,z x 为桩在深度z 处的横向位移(即该处土的横向变位值)。 由此,可求出等代土弹簧的刚度为s K z m b a x x z m b a x A x P K p z z p z zx z s s ???=????===)()(σ 式中,a 为土层的厚度,p b 为该土层在垂直于计算模型所在平面的方向上的宽度,m 值见表1。

相关文档
最新文档