DNA指纹的遗传分析实验报告

DNA指纹的遗传分析实验报告
DNA指纹的遗传分析实验报告

DNA指纹的遗传分析

【实验原理】

“DNA指纹”是指可以利用DNA差异来进行与传统指纹分析相似的身份识别。DNA指纹是以DNA的多态性为基础,而卫星DNA的发现则是其最重要的奠基石。卫星DNA是由一短序列(即重复单位或核心序列)多次重复而成,因此也有人称其为可变数目串联重复序列(variable numbers of tandem reprat,VNTR),在人类基因组中存在多种由不同重复单位组成的卫星DNA,重复单位的碱基序列在不同个体中具有高度的保守性,而卫星DNA 的多态性则来源于重复单位的重复次数不同,并形成了众多的等位基因。列如,人类1号染色体上的VNTR D1S80,核心序列由16个核苷酸组成,拷贝数在14~41个之间,已知29种不同的等位基因。

1984年Jefferys等人首次将分离的人源小卫星DNA用作基因探针,同人类核DNA的酶切片段杂交,产生了由10多条带组成的杂交图谱,不同个体杂交图谱上带的位置就像指纹一样因人而异,因而Jefferys等人称之为DNA 指纹图谱。产生DNA指纹图谱的过程叫做DNA指纹分析,目前包括PCR、RFLP(限制性内切酶酶切片段长度多态性)和RAPD(随机扩增多态性DNA)等方法。

DNA指纹图谱的基本特点:

(1)多位点性:基因组中某些位点的小卫星重复单位含有相同或相似的核心序列。在一定的杂交条件下,一个小卫星探针可以同时与十几个甚至几十个小卫星位点上的等位基因杂交。

(2)高变异性:DNA指纹图谱反应的是多个位点上的等位基因的特征,具有很高的变异性。发现两个无血缘关系个体具有相同DNA指纹图谱的概率仅为5×10-19,因此,除了同卵双胞胎,几乎不可能有两个人的DNA指纹图谱完全相同。

(3)稳定的遗传性:DNA指纹图谱中的谱带能够稳定遗传,杂合带遵守孟德尔遗传规律。子代DNA指纹图谱中产生与双亲都不同的新带的概率(基因突变)仅在0.001~0.004之间。DNA指纹图谱还具有体细胞稳定性,即用同一个体的不同组织如血液、肌肉、毛发、精液等的DNA作出的DNA 指纹图谱是一致的。

由于DNA指纹图谱具有这些显著的特征,他已经成为最具吸引力的遗传标记。Jeffreys是第一个意识到DNA指纹可以建立个人身份识别系统的人,并且首先将其用于亲子鉴定,移民审查和凶杀侦破。1989年该技术获美国国会批准作为正式法庭物证手段。此外,它还被用于医生诊断及寻找与疾病连锁的遗传标记,探明动物种群的起源及进化过程,在作物的基因定位及育种上也有非常广泛的应用。

【实验材料、仪器及试剂】

1. 人类口腔细胞。

2.仪器:微量移液器,小型离心机,恒温水浴锅,漩涡振荡器,PCR 仪,电泳仪,电泳槽,透射式紫外分析仪(或凝胶成像仪)。枪头,1.5mL,0.2 mL离心管,棉签,使用前均需121℃高温灭菌

3.试剂:NaCl,琼脂糖,溴化乙锭,Na2-EDTA,SDS,Tris,Proteinase K,冰醋酸,溴酚蓝,二甲苯腈蓝,蔗糖,甘油,DNA相对分子质量标记,Chelex 100树脂(Bio-Rad),PCR pre-mix(TaKaRa)。

4.溶液配制:

(1)5% Chelex树脂:Chelex 100(Bio-Rad) 0.5g、50mmol/L Tris-HCl 10mL、用4mol/L NaOH调pH至11,室温可保存3个月,使用前充分混匀。

(2)2.0%琼脂糖凝胶:称2.0g琼脂糖放入250ml三角烧瓶,加入1×TAE溶液100mL微波炉加热溶解,冷却至60℃左右加入1μg/mL溴化乙锭(EB),缓慢混匀后倒胶板。

(3)溴化乙锭(EB):用无菌水配制5mg/mL储藏液,工作浓度1μg/mL。

注意;溴化乙锭为诱变剂,有致癌作用。配制、稀释和染色时必须戴手套。

(4)0.5mol/L EDTA(pH8.0):Na2-EDTA 18.61g、NaOH 2g,蒸馏水定容至100mL,室温保存。

(5)10×TAE电泳缓冲液:Tris 48.4g、冰醋酸11.42mL、0.5mol/L EDTA(pH8.0) 20mL,蒸馏水定容至1000mL,室温保存。

(6)10×上样缓冲液(Loading dye):溴酚蓝0.25g、二甲苯腈蓝0.25g、蔗糖50.00g(或甘油50mL),用60mL无菌水(用甘油50mL时,49mL)溶解上述试剂,再定至100mL,室温保存即可。

(7)10%SDS:SDS 10g用无菌水溶解后(可加热),定容至100mL,室温保存。

(8)蛋白酶K溶液:20mg/mL蛋白酶K水溶液5mL、10%SDS 1mL、无菌水94mL,冰箱冷藏。

(9)无菌水:蒸馏水或去离子水,高温灭菌。

(10)1mol/L Tris-HCl(pH8.0):将12.1g Tris溶解在80mL蒸馏水中,

加盐酸调节pH至8.0,加蒸馏水定容至100mL。

5.引物

Primer1:5’-GAAACTGGCCTCCAAACACTGCCCGCCG-3’

Primer2:5’-GTCTTGTTGGAGATGCACGTGCCCCTTGC-3’

【实验操作】

1.收集DNA样本

(1)先漱口,然后用灭菌的牙签充分擦刮口腔内壁,将该牙签放入1.5mL 装有1mL无菌水的小离心管中,使粘附在牙签表面的口腔细胞悬浮其中(以能看到悬浮物为好)。震荡10s,10000 r/min离心1min。

(2)从离心管中吸出970μL无菌水,注意不要吸到沉淀。

(3)向离心管中加入200μL 5% Chelex 100,震荡10s混匀。

(4)加入2μL蛋白酶K,混匀,56℃保温5min。

(5)剧烈震荡10s,沸水浴8min。

(6)10000r/min离心3min,离心管中溶液分成上下两层:下层为Chelex100和细胞碎片的沉淀,上层溶液含DNA分子,可以直接用作PCR 模板。

此DNA样本可在4℃或-20℃保存,必要时可在使用前再次加热并离心,使管内物质分层。

2.PCR扩增D1S80等位基因

(1)每个人用记号笔在0.2mL PCR管上做好标记。

(2)准备冰盒,开始反应前尽量使PCR管保持在冰上。

(3)依次加入下列成分,配制25μL体系的PCR反应溶液:

PCR pre-mix 12.5μL

引物1 1μL

引物2 1μL

口腔细胞DNA样本10μL

加无菌水至总体积25uL。

(4)轻弹管壁,混匀溶液。

(5)离心10s,使管壁上的液滴落下。

(6)按下列程序开始PCR反应:

94℃,1 min

94℃,15s

68℃,15s

72℃,15 s

30个循环

72℃,10min

4℃暂时放置,直至开始电泳

3.PCR扩增产物鉴定与D1S80等位基因分析

(1)准备冰盒。

(2)取出完成反应的PCR管,放冰上待用。

(3)取出10μLD1S80 PCR扩增产物放入0.5mL离心管。

(4)加入2μL上样缓冲液。

(5)轻弹管壁混匀,再瞬时离心,使管壁上的液滴下落。

(6)用1×TAE电泳缓冲液配制2.0%琼脂糖电泳凝胶。

(7)60V预电泳1~2min。

(8)在凝胶上选一孔加6μLDNA相对分子质量标记(DNA100bpLadder)。

(9)每人将刚刚准备好的10μLD1S80 PCR扩增产物+2 uL的上样缓冲液各自加入凝胶样孔,注意不要有气泡进入。

(10)60V电泳30~40min。

(11)取出凝胶用清水漂洗5~10min。

(12)凝胶用紫外分析仪观察,记录每个个体的DNA条带数目及其位置。

4.观察和分析D1S80多态性。

四、结果与分析

本次实验所选择的方法是D1S80指纹图谱分析的常用方法。人群中D1S80座位的杂合率约为86%。从理论上讲,可能存在435种不同的等位基因组合。利用D1S80座位两侧序列设计的引物(Kasai et al,1990),通过PCR反应,很容易确定特定个体的D1S80等位基因构成,纯合体只有一条DNA带,而杂合体有两条不同的DNA带。

1.将小组的电泳结果拍照,附于下:

2.根据电泳结果,填写D1S80等位基因分析结果

序列增加长度16 bp。据此可以催算:

重复数=1+(PCR产物大小-161)/16

【讨论】

1.本人的条带是第二条,不是很清楚,原因可能是样品浓度过稀,也就是一开始刮取的口腔内壁细胞太少了,水浴时又洒了少许,以至于后来PCR也没扩增出。还有一个可能的原因就是DNA的纯度不够,带有太多的杂质,从而跑电泳时DNA被杂质阻滞,因此效果不太好。

2.跑出的条带上的DNA是人源小卫星DN A—DIS80的PCR产物。它是一种具有多位点、高变异、稳定遗传的DNA分子,而且每个人的DIS80DNA中重复序列的数目是不同的,所以它比传统的指纹分析更方便、快捷、准确。

3.实验过程中,有两次水浴的步骤,一定要注意将离心管的盖子盖紧,由于离心管是灭菌的,所以如果盖子盖的不紧,就会从沸水浴中炸开,自己就是这种情况,导致条带不清楚。

思考题:

1.用PCR、RFLP、RAPD方法产生DNA指纹图谱各有哪些利弊?

答:PCR作为现代生物学研究的一种常用方法,具有特异性高、灵敏度高、简便节约、经济的优点;但是它最大的缺点是对不同的片段条件不同,所以很难掌握,而且必须要得到目的基因片段。

RFLP这种方法比较稳定,但RFLP实验操作繁琐,检测时间长,成本较贵,不太适合大规模的分子育种。

PAPD相对RFLP来说,更加省时省力,不需要进行DNA多种酶切、转膜以及探针的制备等多个步骤,但是它不能用来测定多态性是由父本还是母本产生的,而RFLP这种技术可以做到,而且PADA这项技术源于PCR 技术。

2.如果一个个体的两个D1S80等位基因之间相差一个重复,是否仍然可以用琼脂糖凝胶电泳检测,为什么?

答:我认为若DIS80等位基因之间只差一个重复序列的话,就不能使用琼脂糖凝胶胶电泳检测了。因为琼脂糖凝胶电泳的原理是利用琼脂糖的网状聚合结构,分子量的DNA不易穿过,泳动距离就近,反之亦然。但是一个重复序列也只有166bp。实在太小了,琼脂糖凝胶不能将它们分离。

指纹实验报告

中央民族大学生命与环境科学学院 遗传学实验报告 人类指纹的采集识别与分析 2014年11月9日 人类指纹的采集识别与分析 前言 遗传学研究中根据遗传性状的表现特征将其分为两类,即数量性状(quantitative character)和质量性状(qualitative character)。质量性状通常差异显著,呈不连续变异, 由主基因决定,杂交子代的表型呈现出一定的比例,可直接采用孟德尔遗传原理进行分析。 数量性状不同于质量性状,数量性状是可以度量的性状,呈连续变异,由多基因决定,各基 因作用微小并且是累加的,呈剂量效应,因此通常要采用统计学方法分析。指纹性状就是属 于数量形状。 1880年henry fauld及william herschel相继提出利用指纹鉴定个人身份的 设想。 galton研究了有血缘关系的人群的指纹证明了指纹花样对人来说是一个稳定的性状。 1924 年挪威女科学家bonnevie提出指嵴数计数法。指纹在胚胎发育第13周开始形成,第 19周完成。因此如有某种遗传或生理因素造成嵴纹发育不良既能在指纹上反映出来。本实 验中,同学采用石墨粉填充沟纹再用透明胶粘手指的方法取自己的指纹,并利用这些指纹进 行指嵴数计数、分析,从而对多基因遗传的特点有了更深刻地认识。 1. 材料和方法&设备和方法 2b铅笔一只;约20cm×10cm的复印纸一张;透明胶带;直尺一把个人电脑及adobe photoshop软件;拍照设备一台。 2. 实验原理 1.人类指纹的形成:指纹是指人手上的条状纹路,它们的形成依赖于胚胎发育时的环境 和遗传因素。指纹属于多基因遗传,在胚胎第12~13周(也有人提出15~16周)即已形成并 保持终生不变。每个人的指纹都是独一无二的,两人之间甚至双胞胎之间,不存在相同的手 指指纹。拥有相同指纹的可能性在10亿分之一以下。因此指纹被称做是无法伪造的身份证。 对一个个体而言,指纹具有唯一性和稳定性。 2.肤(皮纹)与指纹皮纹包括指纹、掌纹和褶纹。指纹为最常用的皮纹。大量研究表明, 某些遗传病,特别是一些染色体病和先天畸形常伴有特殊的皮纹异常。所以皮纹检查可以 作为某些遗传病诊断的辅助指标。 3.指纹分析的常用指标—— a.类型——3类:弓(a) ,箕(l),斗(w) ,6亚类:as ,at ; lu ,lr ; ws,wd ; b.总嵴纹数——trc (tfrc ,指纹总嵴线数 c.atd角 d.指纹强度指数(pattern intensity index, pid )——pid = (2 w +l)/n = (2 w +l) /10 (w 是斗型纹的百分率,l是箕型纹的百分率,n 是常数(10个手指).) 4.类型分类 a.弓形纹:由几条平行的弧形嵴纹组成。纹线由指的一侧延伸到另一侧,中间隆起成弓 形。弓形纹又可分为两种,一种是中间隆起较平缓的弧形弓,另一种是中央隆起很高的帐形 弓。 b.箕形纹:这种纹有两个特征,①有几条嵴纹从手指一侧发出,向指尖方向弯曲,再折 回发出的一侧,形成一种簸箕状的纹线;②有一个由三组纹线形成的三叉点或称三角区 (delta)。根据箕口的开口方向分为尺箕(或正箕,开口朝本手尺骨一侧,即小指方向)和 桡箕(或反箕,开口朝着桡骨一侧,即拇指方向)。 c.斗形纹(又称螺纹或涡形纹):它有 两个特征,①有两个三叉点(如果你在一个指纹上找到三个或三个以上的三叉点,那可能是 杂形纹);②由几条环形线或螺形线的嵴纹绕着中心点形成一个回路,或者有形成回路的趋

模式识别第二次上机实验报告

北京科技大学计算机与通信工程学院 模式分类第二次上机实验报告 姓名:XXXXXX 学号:00000000 班级:电信11 时间:2014-04-16

一、实验目的 1.掌握支持向量机(SVM)的原理、核函数类型选择以及核参数选择原则等; 二、实验内容 2.准备好数据,首先要把数据转换成Libsvm软件包要求的数据格式为: label index1:value1 index2:value2 ... 其中对于分类来说label为类标识,指定数据的种类;对于回归来说label为目标值。(我主要要用到回归) Index是从1开始的自然数,value是每一维的特征值。 该过程可以自己使用excel或者编写程序来完成,也可以使用网络上的FormatDataLibsvm.xls来完成。FormatDataLibsvm.xls使用说明: 先将数据按照下列格式存放(注意label放最后面): value1 value2 label value1 value2 label 然后将以上数据粘贴到FormatDataLibsvm.xls中的最左上角单元格,接着工具->宏执行行FormatDataToLibsvm宏。就可以得到libsvm要求的数据格式。将该数据存放到文本文件中进行下一步的处理。 3.对数据进行归一化。 该过程要用到libsvm软件包中的svm-scale.exe Svm-scale用法: 用法:svmscale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower = -1,upper = 1,没有对y进行缩放)其中,-l:数据下限标记;lower:缩放后数据下限;-u:数据上限标记;upper:缩放后数据上限;-y:是否对目标值同时进行缩放;y_lower为下限值,y_upper为上限值;(回归需要对目标进行缩放,因此该参数可以设定为–y -1 1 )-s save_filename:表示将缩放的规则保存为文件save_filename;-r restore_filename:表示将缩放规则文件restore_filename载入后按此缩放;filename:待缩放的数据文件(要求满足前面所述的格式)。缩放规则文件可以用文本浏览器打开,看到其格式为: y lower upper min max x lower upper index1 min1 max1 index2 min2 max2 其中的lower 与upper 与使用时所设置的lower 与upper 含义相同;index 表示特征序号;min 转换前该特征的最小值;max 转换前该特征的最大值。数据集的缩放结果在此情况下通过DOS窗口输出,当然也可以通过DOS的文件重定向符号“>”将结果另存为指定的文件。该文件中的参数可用于最后面对目标值的反归一化。反归一化的公式为: (Value-lower)*(max-min)/(upper - lower)+lower 其中value为归一化后的值,其他参数与前面介绍的相同。 建议将训练数据集与测试数据集放在同一个文本文件中一起归一化,然后再将归一化结果分成训练集和测试集。 4.训练数据,生成模型。 用法:svmtrain [options] training_set_file [model_file] 其中,options(操作参数):可用的选项即表示的涵义如下所示-s svm类型:设置SVM 类型,默

基因工程实验报告

基因工程实验报告 、

小麦GAPDH截短体的重组与表达 摘要:本实验通过基因工程(genetic engineering)手段对小麦总RNA进行提取、PCR扩增及与质粒载体的重组构建的操作,并将重组质粒以氯化钙法导入大肠杆菌感受态细胞,诱导目的基因表达,并在蛋白水平进行Western检测。通过本对实验的实践,我们对基因工程技术将会有一个比较全面的认识和了解。 关键字:小麦基因;载体;感受态 前言 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。为在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 (一)实验过程

1.实验部分流程:

2.小麦总RNA提取(Trizol法) 2.1 材料 小麦幼苗 2.2 试剂配制及器具处理 ① 0.1%的DEPC H2O(DEPC:焦碳酸二乙酯) ②器具处理:试剂瓶、量筒、研钵、大小枪头和1.5ml和0.2ml 的EP管等用纱布包裹,在 0.1%的DEPC H2O中浸泡过夜(37℃),高压灭菌,80℃烘干备用。剪刀、镊子和药匙等160℃烘烤6h以上。 ③无RNA酶灭菌水(DEPC H2O):用将高温烘烤的玻璃瓶(180℃×2h)装蒸馏水,然后加入 0.1%的DEPC(体积/体积),处理过夜后高压灭菌。 ④Trizol ⑤ 75%乙醇:用新打开的无水乙醇和DEPC处理过的水配制75%乙醇(用高温灭菌器皿配制),然后装入高温烘烤的玻璃瓶中,存放于低温冰箱。 ⑥氯仿(最好用新的)。 ⑦异丙醇(最好用新的)。 2.3 操作步骤: ①先在研钵中加入液氮,再将小麦叶片剪成小段在液氮中磨成粉末,用液氮预冷的药匙取50~100mg组织粉末加入已盛有1ml的Trizol液的EP管中(注意研磨粉末总体积不能超过所用Trizol体积的10%),充分混合均匀。 ②室温放置5min,然后加入200μL的氯仿,盖紧EP管并剧烈摇荡15秒钟。 ③ 12000rpm离心10min,取上层水相于一新的EP管中(千万不要将中间的沉淀层和下层液混入,否则重新离心分离),加入500μL异丙醇,温和颠倒混匀。室温放置10min,12000rpm 离心10min。 ④小心地弃去上清液,加入1ml的75%乙醇,涡旋混匀,4℃下12000rpm离心5min。 ⑤重复步骤④。 ⑥弃去上清液(尽量将残余液体除去),室温或真空干燥5~10min(注意不要干燥过分,否则会降低RNA的溶解度)。用30μL DEPC处理过的水将RNA溶解,必要时可55℃~60℃水浴10min。RNA可进行mRNA分离,或贮存于70%乙醇并保存于-70℃。 3. RT-PCR扩增目的基因cDNA 3.1 试剂 ① RNA模板 ②Olig(dT)18 ③反转录缓冲液 ④dNTP ⑤ M-MULV反转录酶 ⑥ RNA抑制剂(RNasin) ⑦Premix EX Taq DNA聚合酶 ⑧ PCR特异引物 3.2操作步骤: 3.2.1 RNA的反转录 采用Thermo Scientific(Fermentas)RevertAid First Strand cDNA Synthesis Kit Total RNA 6μL(需加入RNA约1μg) OligodT primer 1μL H2O(nuclease-free)5μL 12μL 65℃ 5min,补加下列试剂: 5× Reaction buffer 4μL RibolockRNase Inhibitor 1μL 10mM dNTP Mix 2μL RevertAid M-MuLV Reverse Transcriptase 1μL 20μL 42℃ 60min 70℃,5min,﹣20℃保存

模式识别实验报告

模式识别实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验报告 实验课程名称:模式识别 姓名:王宇班级: 20110813 学号: 2011081325 实验名称规范程度原理叙述实验过程实验结果实验成绩 图像的贝叶斯分类 K均值聚类算法 神经网络模式识别 平均成绩 折合成绩 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 6月

实验一、 图像的贝叶斯分类 一、实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念: 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。 最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为

二、人类皮纹分析

二、人类皮纹分析 实验学时:10 学时 实验类型:设计性 每组人数: 4 人/组 一、实验目的 1、掌握皮纹分析的基本知识和方法。 2、了解皮纹分析在遗传学中的作用。 二、实验原理 人体的手、脚掌面具有特定的纹理表现,简称皮纹。人类的皮肤由表皮和真皮构成。真皮乳头向表皮突起,形成许多排列整齐、平行的乳头线,此线又称嵴纹。嵴纹上有许多汗腺的开口。突起的嵴纹相互又形成凹陷的沟。这些凹凸的纹理就构成了人体的指(趾)纹和掌纹。目前,皮纹学的知识和技术,广泛应用于人类学、遗传学、法医学以及作为临床某些疾病的辅助诊断。 人体的皮纹既有个体的特异性,又有高度的稳定性。皮纹在胚胎发育第13周开始出现,第19周左右形成,出生后终生不变。 三、主要仪器及试剂 本实验基本不需要用仪器设备,学生可以对自己选定的皮纹通过肉眼直接观察收集数据。(或使用放大镜、印台、印油、白纸、直尺、铅笔、量角器。) 四、实验方案 肉眼直接观察或将双手洗净、擦干,把全手掌在印台上均匀地涂抹上印油,五指分开按在白纸上。注意用力不宜过猛过重,不能移动手掌或白纸,以免所印皮纹重叠而模糊不清。 1、指纹观察 手指末端腹面的皮纹称为指纹。根据纹理的走向和三叉点的数目,可将指纹分为三种类型:弓形纹、箕形纹、斗形纹。 1.1 弓形纹(arch,A):特点是嵴线由一侧至另一侧,呈弓形,无中心点和三叉点。根据弓形弯度分为简单弓形纹和篷帐式弓形纹。

1.2 箕形纹(loop,L):箕形纹俗称簸箕。在箕头的下方,纹线从一侧起始,斜向上弯曲,再回转起始侧,形状似簸箕。此处有一呈三方向走行的纹线,该中心点称三叉点。根据箕口朝向的方位不同,可分为两种:箕口朝向手的尺侧者(朝向小指)称正箕或尺箕;箕口朝向手的桡侧者(朝向拇指),称反箕或桡箕。 1.3 斗形纹(whorl,W):是一种复杂、多形态的指纹。特点是具有两个或两个以上的三叉点。斗形纹可分绞形纹(双箕斗)、环行纹、螺形纹和囊形纹等。 根据统计,指纹的分布频率因人种而异,存在种族,性别的差异。东方人尺箕和斗形纹出现频率高,而弓形纹和桡箕较少;女性弓形纹多于男性,而斗形纹较男性略少。 2、嵴纹计数 2.1 指嵴纹计数:弓形纹由于没有圆心和三叉点,计数为零。箕形纹和斗形纹,则可从中心(圆心)到三叉点中心绘一直线,计算直线通过的嵴纹数。斗形纹因有两个三叉点,可得到两个数值,只计多的一侧数值。双箕斗分别先计算两圆心与各自三叉点连线所通过的嵴纹数,再计算两圆心连线所通过的嵴纹数,然后将三个数相加起来的总数除以2,即为该指纹的嵴纹数。 2.2指嵴纹总数(TFRC):为10个手指指嵴纹计数的总和。我国男性平均值为148条,女性为138条。 图:指纹的类型

基因工程实验报告

基因工程实验报告

————————————————————————————————作者:————————————————————————————————日期: 2

基因工程实验报告 、

小麦GAPDH截短体的重组与表达 摘要:本实验通过基因工程(genetic engineering)手段对小麦总RNA进行提取、PCR扩增及与质粒载体的重组构建的操作,并将重组质粒以氯化钙法导入大肠杆菌感受态细胞,诱导目的基因表达,并在蛋白水平进行Western检测。通过本对实验的实践,我们对基因工程技术将会有一个比较全面的认识和了解。 关键字:小麦基因;载体;感受态 前言 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。为在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 (一)实验过程

1.实验部分流程: 片段胶 小麦幼苗小麦总RNA RT-PCR扩增小麦pGEX-4T-1 表达载体 表达菌株 目的蛋白 目的蛋白 Western

2.小麦总RNA提取(Trizol法) 2.1 材料 小麦幼苗 2.2 试剂配制及器具处理 ① 0.1%的DEPC H2O(DEPC:焦碳酸二乙酯) ②器具处理:试剂瓶、量筒、研钵、大小枪头和1.5ml和0.2ml 的EP管等用纱布包裹,在 0.1%的DEPC H2O中浸泡过夜(37℃),高压灭菌,80℃烘干备用。剪刀、镊子和药匙等160℃烘烤6h以上。 ③无RNA酶灭菌水(DEPC H2O):用将高温烘烤的玻璃瓶(180℃×2h)装蒸馏水,然后加入 0.1%的DEPC(体积/体积),处理过夜后高压灭菌。 ④Trizol ⑤ 75%乙醇:用新打开的无水乙醇和DEPC处理过的水配制75%乙醇(用高温灭菌器皿配制),然后装入高温烘烤的玻璃瓶中,存放于低温冰箱。 ⑥氯仿(最好用新的)。 ⑦异丙醇(最好用新的)。 2.3 操作步骤: ①先在研钵中加入液氮,再将小麦叶片剪成小段在液氮中磨成粉末,用液氮预冷的药匙取50~100mg组织粉末加入已盛有1ml的Trizol液的EP管中(注意研磨粉末总体积不能超过所用Trizol体积的10%),充分混合均匀。 ②室温放置5min,然后加入200μL的氯仿,盖紧EP管并剧烈摇荡15秒钟。 ③ 12000rpm离心10min,取上层水相于一新的EP管中(千万不要将中间的沉淀层和下层液混入,否则重新离心分离),加入500μL异丙醇,温和颠倒混匀。室温放置10min,12000rpm 离心10min。 ④小心地弃去上清液,加入1ml的75%乙醇,涡旋混匀,4℃下12000rpm离心5min。 ⑤重复步骤④。 ⑥弃去上清液(尽量将残余液体除去),室温或真空干燥5~10min(注意不要干燥过分,否则会降低RNA的溶解度)。用30μL DEPC处理过的水将RNA溶解,必要时可55℃~60℃水浴10min。RNA可进行mRNA分离,或贮存于70%乙醇并保存于-70℃。 3. RT-PCR扩增目的基因cDNA 3.1 试剂 ① RNA模板 ②Olig(dT)18 ③反转录缓冲液 ④dNTP ⑤ M-MULV反转录酶 ⑥ RNA抑制剂(RNasin) ⑦Premix EX Taq DNA聚合酶 ⑧ PCR特异引物 3.2操作步骤: 3.2.1 RNA的反转录 采用Thermo Scientific(Fermentas)RevertAid First Strand cDNA Synthesis Kit Total RNA 6μL(需加入RNA约1μg) OligodT primer 1μL H2O(nuclease-free)5μL 12μL 65℃ 5min,补加下列试剂: 5× Reaction buffer4μL RibolockRNase Inhibitor 1μL 10mM dNTP Mix 2μL RevertAid M-MuLV Reverse Transcriptase 1μL 20μL 42℃ 60min 70℃,5min,﹣20℃保存

基因工程大实验报告

基因工程综合实验报告 A型产气荚膜梭菌α毒素基因克隆及表达 班级生物工程081班 姓名盖雪 学号08771029 指导教师高凤山 实验时间2011.10.10-10.14 成绩

一、实验原理 二、主要试剂 DNA Ligation Kit Ver.2.0; Eco RI、Bam HI限制性内切酶;含15%甘油的 0.1mol/L CaCl2,20-30mL。无菌;0.1mol/L CaCl2 , 20-30mL ;50%甘油(无菌,保存菌种用,50mL)4×25mL LB液体培养基(现配现用),卡那霉素(Kan)100mg/mL配2mL(过滤),X-gal 二甲基甲酰胺配成20mg/mL 配2mL; IPTG 24mg/mL, 配2mL(需过滤);蛋白Marker; 0.5M EDTA,pH8.0; 溴化乙锭溶液(EB) (贮存浓度:10mg/mL,使用浓度0.5μg/mL)

三、仪器设备 紫外成像系统,高速冷冻离心机,恒温震荡培养箱,高压灭菌锅,冰箱,水浴锅,微波炉,电炉子,试管架,tube 架,试管,瓶塞,锥形瓶,胶板,电泳槽(包括琼脂糖凝胶和SDS-PAGE),电泳仪,培养皿,移液枪,枪头(各种规格),玻璃涂棒,记号笔,标签纸,卫生纸,水漂(水浴用),试纸,称量纸,一次性手套,酒精灯,火柴,药勺,搅拌子,量筒,烧杯,镊子,tip, tube(1.5mL, 2mL) 五、实验步骤 (一)准备工作 LB培养基配制;LB固体培养基配置;接菌(制备感受态用) 1)LB固体配制 配制固体培养基100mL 加入蒸馏水100mL溶解,用2mol/L NaOH调pH值至7.4,121℃灭菌20min。 灭菌结束后,待温度降至80℃以下时,方能取出,在超净台上,当培养基凉至50-60℃时,迅速加入Kan 30μL(若氨苄,加100ul),摇匀,倒板(4个)。凝固后放入4℃冰箱。 2)LB液体配制 配制100mL液体LB培养基 加入蒸馏水100mL溶解,用2mol/L NaOH调pH值至7.4。 然后分装,每管5mL,每人分装2管,一共12管;另外分装30mL LB与三角瓶中,余下的LB在原三角瓶中与试管等一起高压,121℃,20min。高压后,将剩余三角瓶中的LB分装至1.5mL tube中,每管800μL LB (共10个)。在时间允许的情况下,将高压后的LB试管加入卡那,每管1.5μL。 总结:需要灭菌的东西-液体培养基(试管、30mL三角瓶及剩余液体LB的三角瓶)-固体培养基、离心管(至少30个)、各种规格的枪头。 3)接菌 下午,接种BL21感受态于1管5mL培养基中,37℃震荡培养。 (二)感受态细胞制备、转化、重组菌接种 1)感受态细胞的制备 1.从大肠杆菌DE3平板上挑取一个单菌落接种于5mL LB液体培养基的试管

种质资源DNA指纹图谱库

“种质资源DNA指纹图谱库”科研计划启动铁观音可做“亲子鉴定” 发布时间:2011-10-20 8:31:07 稿件来源:泉州网-泉州晚报 “市面上销售的安溪铁观音是否原产于安溪,做了‘亲子鉴定’就知道。”近日,记者获悉,针对漳州华安、浙江海宁等地茶园冒用铁观音品牌的情况,安溪本地茶企举起科技大旗,以DNA指纹图谱鉴定方式鉴别茶叶的原产地。 抢搭品牌便车 安溪铁观音、西湖龙井、祁门红茶、武夷岩茶……纵观中国十大名茶,每一个茶叶品种之前都要冠上特定的地名,可以说,只有特定的水土和气候条件才能够产出举世闻名的好茶。 安溪西坪铁观音茶叶研究所所长魏火连告诉记者,作为中国十大名茶之一,安溪铁观音以其独具的“香、韵”风靡全国,这让不少外地的茶企动起了“品牌”搭便车的念头。 据悉,漳州华安县本以盛产“清香型五季茶”闻名,可是近年来部分茶企频频使用铁观音对产品进行包装宣传;三明大田县部分茶企则将当地种植的茶叶冠以“安溪铁观音”之名进行销售;此外,福建漳平、贵州黎平等县、市也大量种植铁观音,其部分成品没有标明原产地,而是冠以“安溪铁观音”之名进行销售。 冲击本地茶企 “制茶是一件天时地利人和的事情,要有合适的气候和水土,更要有人工炒茶的技艺和经验。”国家级非物质文化遗产乌龙茶(铁观音)制作技艺代表性传承人魏月德告诉记者,安溪有将近三百年的铁观音制茶经验,这是外地无法复制的。因此,无论华安还是大田,即使两者有安溪相似的地理自然条件,但要做出和安溪一样品质的铁观音,实属不易。 “最怕的是,客商买到冒充安溪铁观音的茶叶后,认为安溪铁观音品质下降,不仅影响来年订单量,还损坏了安溪铁观音的品牌美誉度。”中国茶都茶叶交易市场的茶商吴女士告诉记者,大量外地茶叶的冲击还会导致安溪铁观音价格下跌,这对安溪本地的茶企来讲,是个不容忽视的危险信号。 查图谱辨真伪 “安溪铁观音品牌维权的难题在于如何鉴定茶叶是否原产于安溪。”魏火连告诉记者,铁观音茶产业让安溪近百万人口走上了致富的道路,经30年高速发展,如何保持茶产业的可持续发展,保护好安溪铁观音的品牌价值显得尤为重要。 针对这一情况,福建魏荫名茶有限公司联合福建农林大学茶学系设立了博士后工作站,启动了“铁观音种质资源DNA指纹图谱库”科研计划。 据福建农林大学茶学系主任孙威江教授介绍,利用DNA指纹图谱库检测相当于给茶叶做亲子鉴定,它能分辨安溪产和安溪以外产地生产的铁观音,甚至可分辨出“内安溪”和“外安溪”茶叶。随着图谱信息的完善,查出某批茶叶产自安溪哪个厂商的技术也将成为现实。 安溪县工商局相关科室的负责人告诉记者,该图谱库的研究与建立有利于安溪铁观音的原产地保

人类指纹花样的遗传分析

人类指纹花样的遗传分析 实验时间2016.10.25晚 摘要:人类、灵长类的手足上有两类明显不同的痕迹,一类是褶痕,另一类是皮纹,皮肤可分为凸起的嵴纹及两条嵴纹之间凹陷的沟纹。手指尖端的皮纹即为指纹。人类利用和研究指纹的历史非常久远,指纹在刑侦起着重要的作用[1],同时,指纹与亲缘关系、性别、疾病等都有着较为密切的联系[2][3]。通过图像处理法收集2015级134名同学的指纹,统计指纹类型、总指嵴数(TRC)等信息,进一步分析指纹类型、总指嵴数(TRC)与性别的关系。对总指嵴数(TRC)作频次分布直方图,分析总指嵴数(TRC)是否为数量性状。 引言 人类对指纹研究的历史非常漫长。最早可追溯到17世纪的英国植物生理学家Nehemiah Grew,他于1684年描述了手脚皮肤的嵴纹、沟纹与汗腺孔。1892年,Galton通过收集了大量指纹并进行分析后,将指纹类型分为弓、箕、斗三类[4],奠定了指纹分类的基础。1924年,Bonnevie借鉴Golton和Henry指嵴数的算法提出总指嵴数(TRC)来用客观的数值来表示一个个体的指纹特征[5]。本实验收集了生物学院2015级134名同学的指纹,对指纹类型比例进行统计,对总指嵴数(TRC)进行简单分析。 1实验材料 1.1实验材料和器具 2B铅笔一只;A4复印纸一张;透明胶带;直尺一把;装有图像处理软件的电脑;普通平板扫描仪一台。 1.2实验步骤 1.2.1印取指纹 1) 将A4 复印纸对折。在一半纸上用铅笔分上下两排画出10个格子,每排5格,每格约3cm×4cm,用于贴印取的指纹。在格子的最左边写上“左手”“右手”,表格上方写上“拇指”“食指”等字样,并标上姓名、班级。

DNA重组技术实验报告

一、实验名称: 重组DNA技术 二、实验目的: 1.了解掌握DNA重组技术理论基础; 2.掌握质粒载体、外源DNA的准备、酶切、连接技术方法; 3.掌握连接产物的转化方法及操作; 4.掌握阳性重组体的的鉴定和筛选方法; 三、实验原理: 1.重组DNA技术 重组DNA技术是指在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型的技术。它主要包括以下几个步骤: ①目的基因的获取:主要有化学合成、PCR、基因组文库、cDNA文库构建等。cDNA文库是以mRNA为模板,利用反转录酶合成与mRNA互补的DNA,再复制成双链cDNA片段,与适当载体连接后转入受体菌,这些受体菌包含了所有cDNA信息,总称cDNA文库。常用于筛选编码蛋白质的结构基因。基因组DNA文库是利用限制性核酸内切酶将组织或细胞染色体DNA切割后,与适当载体连接后转入受体菌,这些受体菌包含了所有基因组DNA信息,因此称为基因组DNA文库。 ②基因载体的选择与构建:常用载体有质粒、噬菌体、病毒DNA等。分为克隆载体和表达载体。克隆载体:用于目的基因的克隆、扩增、序列分析和体外定点突变等。表达载体:用于在宿主细胞中表达外源目的基因,获得大量表达产物。选择好的载体与目的基因利用限制性内切酶切割成合适片段。

③目的基因与载体的拼接:通过粘性末端连接法(同源互补粘性末端连接、非同源互补粘性末端连接)、平端连接、人工接头连接、同聚物接尾、经部分补平的不匹配末端的连接等将目的基因与载体进行连接。 ④重组DNA分子导入受体细胞:将连接有目的DNA的载体导入宿主细胞,主要有以下几种方法:a、转化:将质粒或其它外源DNA导入宿主细胞(常用大肠杆菌),并使其获得新的表型的过程。b、转染:将外源DNA导入真核细胞的过程。c、感染:以λ噬菌体、柯斯质粒和病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增。 ⑤重组体的筛选:可通过遗传标记如抗药性标志选择、营养缺陷型的互补筛选法及分子标记(PCR、分子杂交)等直接筛选或是根据免疫化学法、酶联免疫检测法等进行间接筛选。 ⑥无性繁殖转化子(含重组分子的受体细胞) ⑦目的基因的表达 2、质粒酶切及鉴定原理 限制性内切酶是一种工具酶,其特点是具有能够识别双链DNA分子上的特异核苷酸序列的能力,能在这个特异性核苷酸序列内,切断DNA双链,形成一定长度的DNA序列。根据限制性内切酶的识别切割特性、催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ三类,II型限制性内切酶只需要二价镁离子的激活,酶在其识别序列内切割双链DNA,产生的各种DNA片段具有相同的末端结构,而且大多数的II型酶可提供粘性未端,有利于片段再连接,限制性内切酶对环状质粒DNA产生的酶切片段数与切口数一致。因此,鉴定酶切后的片段在电泳凝胶的区带数,就可以推断切口的数目;从片段迁移率可判断酶切片段大小。用已知分子量的线状DNA为对照,通过电泳迁移率的比较,可以粗略地测出分子形状相同的未知DNA的相对分子大小。本实验采用的限制性内切酶是Bam HI 和Hind III。 对于DNA回收,回收的目的是为了纯化提取的质粒,以用于以后的分子杂交、重组质粒的构建、序列分析等。目前常用的回收技术有:柱纯化回收法、电洗脱法、低熔点琼脂糖凝胶法、DEAE滤膜插片法等,其中柱纯化回收法、电

DNA指纹图谱分析实验

DNA指纹图谱分析实验 一. 实验目的 1. 掌握DNA指纹图谱技术的概念、原理和基本操作过程 2. 学习DNA的限制性酶切的基本技术 3. 掌握琼脂糖凝胶电泳的基本操作技术,学习利用琼脂糖凝胶电泳测定DNA片段的长度,并能对实验结果进行分析。 二. 实验原理 1984年英国莱斯特大学的遗传学家Jefferys及其合作者首次将分离的人源小卫星DNA 用作基因探针,同人体核DNA的酶切片段杂交,获得了由多个位点上的等位基因组成的长度不等的杂交带图纹,这种图纹极少有两个人完全相同,故称为"DNA指纹",意思是它同人的指纹一样是每个人所特有的。DNA指纹的图像在X光胶片中呈一系列条纹,很像商品上的条形码。DNA指纹图谱,开创了检测DNA多态性(生物的不同个体或不同种群在DNA结构上存在着差异)的多种多样的手段,如RFLP(限制性内切酶酶切片段长度多态性)分析、串联重复序列分析、RAPD(随机扩增多态性DNA)分析等等。各种分析方法均以DNA的多态性为基础,产生具有高度个体特异性的DNA指纹图谱,由于DNA指纹图谱具有高度的变异性和稳定的遗传性,且仍按简单的孟德尔方式遗传,成为目前最具吸引力的遗传标记。 DNA指纹具有下述特点:1.高度的特异性:研究表明,两个随机个体具有相同DNA图形的概率仅3×10-11;如果同时用两种探针进行比较,两个个体完全相同的概率小于5×10-19。全世界人口约50亿,即5×109。因此,除非是同卵双生子女,否则几乎不可能有两个人的DNA指纹的图形完全相同。2.稳定的遗传性:DNA是人的遗传物质,其特征是由父母遗传的。分析发现,DNA?指纹图谱中几乎每一条带纹都能在其双亲之一的图谱中找到,这种带纹符合经典的孟德尔遗传规律,即双方的特征平均传递50%给子代。3.体细胞稳定性:即同一个人的不同组织如血液、?肌肉、毛发、精液等产生的DNA指纹图形完全一致。 1985年Jefferys博士首先将DNA指纹技术应用于法医鉴定。1989年该技术获美国国会批准作为正式法庭物证手段。我国警方利用DNA?指纹技术已侦破了数千例疑难案件。DNA 指纹技术具有许多传统法医检查方法不具备的优点,?如它从四年前的精斑、血迹样品中,仍能提取出DNA来作分析;如果用线粒体DNA检查,时间还将延长。此外千年古尸的鉴定,在俄国革命时期被处决沙皇尼古拉的遗骸,以及最近在前南地区的一次意外事故中机毁人亡的已故美国商务部长布朗及其随行人员的遗骸鉴定,都采用了DNA指纹技术。

实验七 DNA指纹的遗传分析

实验七DNA指纹的遗传分析 【实验原理】 ◆“DNA指纹”是指利用DNA差异来进行与传统指纹分析相似的身份识别。DNA指 纹是以DNA的多态性为基础,而卫星DNA的发现则是其最重要的奠基石。 ◆卫星DNA是由一短序列(即重复单位或核心序列)多次重复而成,因此也有人称 其为可变数目串联重复序列(variable numbers of tandem reprat,VNTR),在人类基因组中存在多种由不同重复单位组成的卫星DNA,重复单位的碱基序列在不同个体中具有高度的保守性,而卫星DNA的多态性则来源于重复单位的重复次数不同,并形成了众多的等位基因。例如,人类1号染色体上的VNTR D1S80,核心序列由16个核苷酸组成,拷贝数在14~41个之间,已知有29种不同的等位基因。 DNA指纹图谱的基本特点: ◆多位点性:基因组中某些位点的小卫星重复单位含有相同或相似的核心序列。在一 定的杂交条件下,一个小卫星探针可以同时与十几个甚至几十个小卫星位点上的等位基因杂交。 ◆高变异性:DNA指纹图谱反应的是多个位点上的等位基因的特征,具有很高的变异 性。发现两个无血缘关系个体具有相同DNA指纹图谱的概率仅为5×10-19,因此,除了同卵双胞胎,几乎不可能有两个人的DNA指纹图谱完全相同。 ◆稳定的遗传性:DNA指纹图谱中的谱带能够稳定遗传,杂合带遵守孟德尔遗传规律。 子代DNA指纹图谱中产生与双亲都不同的新带的概率(基因突变)仅在0.001~0.004之间。DNA指纹图谱还具有体细胞稳定性,即用同一个体的不同组织如血液、肌肉、毛发、精液等的DNA作出的DNA指纹图谱是一致的。 【材料】 人类口腔细胞。 【仪器与试剂】 1.仪器 微量移液器,小型离心机,恒温水浴锅,漩涡振荡器,PCR仪,电泳仪,电泳槽,透射式紫外分析仪(或凝胶成像仪)。 枪头,1.5mL,0.2 mL离心管,棉签,使用前均需121℃高温灭菌 2.试剂 NaCl,琼脂糖,溴化乙锭,Na2-EDTA,SDS,Tris,Proteinase K,冰醋酸,溴酚蓝,二甲苯腈蓝,蔗糖,甘油,DNA相对分子质量标记,Chelex 100树脂(Bio-Rad),PCR pre-mix。3.溶液配制 (1)5% Chelex树脂 Chelex 100(Bio-Rad) 0.5g 50mmol/L Tris-HCl 10mL 用4mol/L NaOH调pH至11,室温可保存3个月,使用前充分混匀。 (2)2.0%琼脂糖凝胶 称2.0g琼脂糖放入250ml三角烧瓶,加入1×TAE溶液100mL微波炉加热溶解,冷却至60℃左右加入1μg/mL溴化乙锭(EB),缓慢混匀后倒胶板。 (3)溴化乙锭(EB) 用无菌水配制5mg/mL储藏液,工作浓度1μg/mL。 注意;溴化乙锭为诱变剂,有致癌作用。配制、稀释和染色时必须戴手套。 (4)0.5mol/L EDTA(pH8.0)

DNA指纹图谱

DNA指纹图谱实验 上课地点:化学楼120 上课时间:选课时 任课教师:薛闯办公地点:生化楼215 电话:84706308 课程要求: 预习实验内容,掌握实验目的及原理、仪器和试剂、实验步骤; 手写完成预习报告(实验名称、实验目的、实验原理、实验器材与试剂、实验方法与步骤),课堂检查预习报告情况。 自带U盘和尺子。 实验注意事项: 1、实验台上物品按实验室管理老师要求摆放整齐; 2、实验废物按实验室管理老师要求收集; 3、实验结束后,经老师检查后方可离开。 实验纪律: 1、按时上课 2、穿实验服(白大衣) 3、不许吃东西,课堂严禁大声喧哗 4、手机静音 实验成绩: 预习报告:20分 实验操作:40分 报告内容:结果和讨论40分

DNA指纹图谱实验 (指导教师:薛闯) 一.实验目的 1. 掌握DNA 指纹图谱技术的概念、原理和基本操作过程 2. 掌握琼脂糖凝胶电泳的基本操作技术,学习利用琼脂糖凝胶电泳测定DNA 片段的长度。 3. 掌握对DNA指纹数据进行基本统计分析方法。 二. DNA指纹图谱实验原理 1984 年英国莱斯特大学的遗传学家Jefferys 及其合作者首次将分离的人源小卫星DNA 用作基因探针,同人体核DNA 的酶切片段杂交,获得了由多个位点上的等位基因组成的长度不等的杂交带图纹,这种图纹极少有两个人完全相同,故称为"DNA指纹",意思是它同人的指纹一样是每个人所特有的。DNA 指纹的图像在X光胶片中呈一系列条纹,很像商品上的条形码。由于DNA 指纹图谱具有高度的变异性和稳定的遗传性,且仍按简单的孟德尔方式遗传,成为目前最具吸引力的遗传标记。 DNA 指纹具有下述特点: 1. 高度的特异性:研究表明,两个随机个体具有相同DNA 图形的概率仅3×10-11 ;如果同时用两种探针进行比较,两个个体完全相同的概率小于5×10 -19。全世界人口约50 亿,即5×109。因此,除非是同卵双生子女,否则几乎不可能有两个人的DNA 指纹的图形完全相同。 2. 稳定的遗传性:DNA 是人的遗传物质,其特征是由父母遗传的。分析发现,DNA指纹图谱中几乎每一条带纹都能在其双亲之一的图谱中找到,这种带纹符合经典的孟德尔遗传规律,即双方的特征平均传递50 % 给子代。 3. 体细胞稳定性:即同一个人的不同组织如血液、肌肉、毛发、精液等产生的DNA 指纹图形完全一致。 DNA 指纹图谱法的基本操作:

模式识别实验报告(一二)

信息与通信工程学院 模式识别实验报告 班级: 姓名: 学号: 日期:2011年12月

实验一、Bayes 分类器设计 一、实验目的: 1.对模式识别有一个初步的理解 2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识 3.理解二类分类器的设计原理 二、实验条件: matlab 软件 三、实验原理: 最小风险贝叶斯决策可按下列步骤进行: 1)在已知 ) (i P ω, ) (i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计 算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x 2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a 3)对(2)中得到的a 个条件风险值) (X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的 决策k a ,即()() 1,min k i i a R a x R a x == 则 k a 就是最小风险贝叶斯决策。 四、实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。 现有一系列待观察的细胞,其观察值为x : 已知先验概率是的曲线如下图:

)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果 进行分类。 五、实验步骤: 1.用matlab 完成分类器的设计,说明文字程序相应语句,子程序有调用过程。 2.根据例子画出后验概率的分布曲线以及分类的结果示意图。 3.最小风险贝叶斯决策,决策表如下: 结果,并比较两个结果。 六、实验代码 1.最小错误率贝叶斯决策 x=[ ] pw1=; pw2=; e1=-2; a1=; e2=2;a2=2; m=numel(x); %得到待测细胞个数 pw1_x=zeros(1,m); %存放对w1的后验概率矩阵 pw2_x=zeros(1,m); %存放对w2的后验概率矩阵

基因工程实验报告资料

实验报告 实验项目名称:基因工程综合实验所属课程名称:基因工程原理 班级:12生物工程3班学号:201230620312 姓名:李杰锋 指导老师:徐学锋

目录 0.摘要 (1) 1.前言 (1) 2.实验材料和仪器 (2) 2.1 实验材料 (2) 2.2 实验仪器 (2) 3.实验试剂 (2) 3.1DNA提取所需试剂 (2) 3.2 PCR实验所需试剂 (2) 3.3 双酶切实验所需试剂 (2) 4.实验步骤 (3) 4.1 质粒DNA提取 (3) 4.2 聚合酶链式反应(PCR) (3) 4.3 质粒DNA的双酶切分析 (4) 4.4 琼脂糖凝胶制备 (4) 5.实验结果与分析 (5) 5.1质粒DNA提取所得凝胶电泳结果 (5) 5.2 PCR扩增实验结果 (5) 5.3质粒DNA的双酶切分析结果 (6)

摘要:本实验包括质粒DNA的提取、DNA的凝胶电泳、质粒DNA中靶基因的酶切分析及质粒DNA中重组进的靶DNA序列的PCR扩增。通过本综合实验,进一步理解质粒DNA的提取原理、凝胶电泳中DNA分离的机理、限制性内切酶的工作原理及PCR是如何实现DNA扩增的,也掌握了DNA的提取技术、凝胶电泳技术、DNA酶切分析技术及靶基因的体外快速扩增技术,进而了解实验中出现的现象并学会分析与解决实验中出现的有关问题。 聚合酶链式反应(Polymerase Chain Reaction,简称PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA或RNA的地方。 关键词:凝胶电泳限制线内切酶DNA质粒 1 前言 本次实验对象为含有重组了1kb DNA片段的PET32.a表达质粒。该表达质粒中长度约6kb。首先采用离心破碎法破碎细胞,再使用碱裂解法提取质粒DNA。最后通过各种化学抽提纯化质粒DNA,最后得到纯化后的DNA质粒作为之后实验的材料。在碱性溶液中,双链DNA氢键断裂,DNA双螺旋结构遭破坏而发生变性,但由于质粒DNA分子量相对较小,且呈环状超螺旋结构,即使在高碱性pH条件下,两条互补链也不会充分分离,当加入中和缓冲液时,变性质粒DNA 又恢复到原来的够型;而线性的大分子量细菌染色体DNA则不能复性,与细胞碎片、蛋白质、SDS等形成不溶物,通过离心沉淀可被除去,而质粒DNA及小分子量的RNA则留在上清液中。混杂的RNA可用RNaseA酶消除,再用酚/氯仿处理,可除去残留的蛋白质,达到纯化质粒DNA的目的。 PCR是根据DNA双螺旋结构在变性温度下解链为单链DNA,在退火温度下加入反应体系的特异引物根据碱基互补配对原则与单链DNA特异结合,然后在延伸温度下,通过DNA聚合酶的聚合作用,不同的脱氧核苷酸按照碱基互补配对原则,由引物引导合成出与模板DNA互补的新链,实现DNA的扩增的技术。本次实验我们将以纯化后的质粒DNA作实验材料,在预先设计好引物后

相关文档
最新文档