电压互感器的异常处理

电压互感器的异常处理
电压互感器的异常处理

电压互感器的异常处理

10kV电网电压互感器基本上都是电磁式的,以我厂为例,由三个JDZJ型单相互感器组成的三相互感器组,一次侧为Y 接线,即中性点是接地的,安装有0.5A的高压熔断器作为本体过流保护。二次侧有两个绕组,一个绕组用于测量电压,接计量装置和保护装置,称之为二次绕组。另一组绕组称之为三次绕组,为开口三角接线,输出为三相电压的矢量和,当母线三相对地电压不平衡时,开口三角绕组便会有输出,这个特性常被用来监视不接地系统的绝缘的情况。一、二、三次绕组的变比为10000/3:lOO /3:100/3。在中性点不接地方式运行的10kV系统中,电网与地之间存在着电容C,与电压互感器一次绕组的电感之间为并联关系,在空母线充电或单相接地等诱因的作用下,电压互感器的铁心过饱和,电感发生改变,满足W2LC=1时,就会发生并联谐振,产生较大的励磁电流,使电压互感器一次熔断器熔断,误发接地信号,或者低电压保护误动作影响机组正常运行。

一电压互感器的异常

(1)电压互感器缺相:出现的情况是电压互感器一次保险丝熔断一相、电压互感器一次保险丝熔断两相、电压互感器一次熔丝全部熔断。

1) 电压互感器一次保险丝熔断一相

为了便于分析,用 UA、UB、UC表示一次绕组各相电压,用Ua 、Ub 、Uc 。表示二次绕组各相电压,用Ua3 、Ub3 、Uc3表示三次绕组各相电压。若一次熔断器熔断一相,以B 相为例,UB=0,其二次、三次绕组相压Ub、Ub3也应为零。根据相量分析,二次绕组相电压Ua、Uc 不变,线电压Uab 和Ubc降低为相电压,约57V,Uac仍然维持全电压100V。对三次绕组来说,开口三角输出电压ULN大小等于其相电压,为33V。

当电压互感器空载,即二次熔断器全部断开时,测量数据与理论分析值是一致的。但是当电压互感器带上负载,即二次熔断器全部投入时,测量数据与理论分析值则有较大的区别,表现为线电压比空载值有所降低,这种端电压低于空载电势属正常现象,但开口三角电压ULN和相电压Ub升高了,线电压Uab和Ubc降低而Uac不变。

2) 电压互感器一次保险丝熔断二相

当10kV 电压互感器一次熔断器熔断两相时,只有一个绕组有电源,反映到二次侧绕组只有一相相电压输出是正常的,另两相相电压接近于零,线电压则降低为57V、57V、0V,三次绕组输出为33V,发“接地”信号。和熔断器熔

断一相相比,负载情况下的线电压降低更大,开口三角电压ULN和故障相相电压升高更多。

3) 电压互感器一次熔丝全部熔断

当一次熔断器三相全部熔断时,二次电压全部为零,首先是0.5s低电压会动作,跳开母线上的电容器等有低电压保护的开关。

(2)电压互感器内部故障

电压互感器二次断路器开关跳闸或电压互感器内部故障,造成母线上三相没有电压。

二总结

(1)10kV电压互感器一次熔断器熔断一相时,发“接地”和“电压回路断线”信号,故障相二次侧相电压不为零,但接近零。

(2)10kV电压互感器任何两相一次熔断器熔断时,发“接地”信号,0.5低电压保护动作跳重要电动机,二次电压同相位,开口三角绕组电压升高。

(3)10kV电压互感器一次熔断器全部熔断时,0.5s低电压保护先动作,跳开母线上的电容器等有低电压保护的开

关,然后10kV母线备用电源自投低电压保护动作跳开工作电源开关。

三处理方法

1出现上述的几种缺相情况时,应及时更换电压互感器一次熔丝,采取的方法是,把进线和电容器的低电压保护压板全部解除,摇出电压互感器小车至试验位置,拔下压变二次航空插头再拉出至检修位置,将一次侧熔断的熔丝换掉,在试验位置插上压变的二次航空插头,再摇进电压互感器小车至工作位置,将分段开关自切和电容器的低电压保护压板分别投上。

2 当出线三相电压完全没有电时,应检查电压互感器二次侧是否有电,如果发现电压互感器的二次开关跳闸时,应检查是否误动作跳闸,如果是应重新合上电压互感器二次开关,如果不是,当合上二次开关再次跳闸时,说明电压互感器二次侧有短路或其它故障,此时不应再次合上电压互感器二次断路器开关,注意电压互感器二次断路器开关只准重合一次。

3当不属于上述两种情况时,应先解除电容器的低电压保护压板和分段开关自切投入,摇出电压互感器至试验位

置,拔下压变二次航空插头再拉出至检修位置,查找原因待问题解决后再在试验位置插上压变的二次航空插头,摇进电压互感器小车至工作位置,放上电容器低电压保护压板和分段开关的自切投入。

电压互感器常见接线图 (图文) 民熔

电压互感器接线图 电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位; 而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。 民熔电压互感器简介: JDZ-10高压电压互感器 10kv 半封闭式 0.5级 羊角型

特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片 电压互感器的电力系统通常有四种接线方式。电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。1、单相电压互感器接线方式 一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。二、两个单相电压互感器互V/V型的接线方式

两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。广泛应用于20kV以下中性点不接地或经消弧图接地的电网。3、三台单相电压互 感器Y0/Y0接线方式 三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型

电压互感器介绍及工作原理 (图文) 民熔

电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 民熔电压互感器产品介绍 JDZ-10高压电压互感器 10kv半封闭式电压互感器0.5级羊角型 JDZX10-10电压互感器 10KV户内高压柜保护用REL10-10互感器

JDZ9-10电压互感器

电压互感器和变压器的基本结构非常相似,它也有两个绕组,一个称为一次绕组,另一个称为二次绕组。两个绕组都安装或缠绕在铁芯上。两个绕组之间以及绕组和铁芯之间有绝缘,因此两个绕组之间以及绕组和铁芯之间存在电隔离。 电压互感器运行时,一次绕组N1与线路回路连接,二次绕组N2与仪表或继电器连接。因此,在测量高压线上的电压时,虽然一次电压很高,但二次电压很低,可以保证操作人员和仪器的安全。 其工作原理与变压器相同,基本结构为铁芯、一次绕组和二次绕组。其特点是容量很小且相对恒定,在正常运行时接近空载状态。 电压互感器本身的阻抗很小。一旦二次侧短路,电流会迅速增加并烧坏线圈。因此,电压互感器的一次侧用熔断器连接,二次侧可靠接地,以避免一次侧和二次侧绝缘损坏时,二次侧对地高电位造成人身和设备事故 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。

低压供电系统的接地方式分类

有关低压供电系统的接地方式的分析 XXXXXXXXXXXXXXXXXXX 一、工程施工供电系统 工程施工用电的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。下面就以上所指各种供电系统做一个扼要的分析。 (一)工程供电的基本方式 根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。 ( 1 )TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。这种供电系统的 设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统不宜在380/220V供电系统中应用。

3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的施工单位是采用TT 系统,施工单位专门安装一组接地装置,引出一条专用 统适用于用电设备容量小且很分散的场合。 ( 2 ) TN 方式供电系统这种供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为(220V)短路电流,这个电流很大,是TT 系统的很多倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。 ( 3 ) TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取~ 根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点

接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗

PT开口三角(三相五柱式电压互感器)的工作原理

PT 开口三角(三相五柱式电压互感器)的工作原理 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统 具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来源:https://www.360docs.net/doc/6615686724.html, 图1 电压互感器二次通过 b 相及JB 接地原理图信息来源:https://www.360docs.net/doc/6615686724.html, 图2 电压互感器二次不接地原理图信息来源:https://www.360docs.net/doc/6615686724.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在 b 相接地系统中,对中性点非直接接地系统,单相接地时,中性 点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为 b 相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地 系统,可用辅助二次绕组的相电压同步。信息来自:https://www.360docs.net/doc/6615686724.html, 1.1.2 在保护回路中信息来源:https://www.360docs.net/doc/6615686724.html, 在b 相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV 以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保 护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与 b 相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0 ,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.360docs.net/doc/6615686724.html, 较为复杂。 信息来自:https://www.360docs.net/doc/6615686724.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网 1.1.3 在测量表计回路中信息来自:https://www.360docs.net/doc/6615686724.html,

低压配电系统的接地方式(最新版)

低压配电系统的接地方式(最 新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0375

低压配电系统的接地方式(最新版) 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系: T一点直接接地; I-所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T-外露可导电部分对地直接电气连接,与电力系统的任何接地

点无关; N-外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S-中性线和保护线是分开的; C-中性线和保护线是合一的。 XXX图文设计 本文档文字均可以自由修改

电压互感器接线图及含义

电压互感器接线图及含义 电压互感器的含义:

双绕组和三绕组电压互感器的结构: 供测量用的电压互感器,一般都做成单相双绕组结构.当两端绝缘等级相同时,可以单相使用,也可以组合起来作三相使用。对这种电压互感器的主要技术要求是保证必要的准确级。 供接地保护用的电压互感器还具有一个辅助二次绕组,称三绕组电压互感器。三相的辅助二次绕组结成开口三角形,一旦系统发生单相接地时中性点出现位移,辅助二次绕组上会出现一个零序电压,所以辅助二次绕组现称零序电压线组。 三绕组电压互感器一般做成单相,做成三相时应采用三相五拄式(三相三柱旁扼式)铁心,且电压在10kv及以下,这是为了提供零序磁通的回路。对于这种电压互感器,零序电压绕组的准确级要求不高,一般为3B级或6B级,以保证开口三角端子电压在一定范围之内,但要求具有一定的过励磁特性。 三相五柱式电压互感器与单相电压互感器: 三相五柱设计是高压侧Y0接线,低压侧是Y0(三柱) +开口三角(两柱) 低压侧是Y0(三柱)用于线电压和相电压的测量,中性点接地系统。不接地系统只能测线电压,无专用计量PT时,供计量表计电压量。 开口三角(两柱)在开口三角接有电压继电器,用于监视开口三角电压,检测系统的整体绝缘,用来反映系统发生接地时的零序电压。当开口三角电压达到启动值时,提供给保护需要的零序电压。小接地电流系统通常用于发信号。 这种互感器只限制制成10KV以下电压等级。应用于10KV以下系统。其优点是投资小,接线简单,操作及运行维护方便;其缺点是只发出系统接地的无选择性预告信号,不能确切判定发生接地的故障线路,运行人员需要通过拉路分割电网的方法来进一步判定故障线路,影响了非故障线路的连续供电。该装置的优点是以牺牲非故障线路的供电可靠性为代价的。 当然两个或三个同型号同规格单相互感器也可以组合来测量线电压、相电压或继电器保护之用。以及和电度表、功率表组合量电用。电压等级可以比集成的五柱式做得更高,且可以灵活配置,适用范围更广。

变电站电流互感器与电压互感器介绍

https://www.360docs.net/doc/6615686724.html, 变电站电流互感器与电压互感器介绍电流互感器与电压互感器 结构原理:一次绕组串联在主电路中或 直接利用一次母线;二次绕组所接仪表、继电器均串联。 I2N=5A或1A (一)电流互感器(CT) 可选用标准电流互感器校准测定 准确度级:测量用有0.1、0.2、0.5、1、3、5等级, 保护用有5P和10P两级。

https://www.360docs.net/doc/6615686724.html, 高压电流互感器一般制成两个铁心和两个二次绕组,其中准确度级高的二次绕组接测量仪表,其铁心易饱和;准确度级低的二次绕组接继电器,其铁心不应饱和。 一相式接线反应一次电路对应相的电流。通常用在负载平衡的三相电路中测量电流,或在继电保护中作为过负荷保护接线。 两相V形接线广泛用于中性点不接地的三相三线制电路中,供用于三相电流、电能的测量及过电流继电保护。 三相星形接线反应各相电流,因此广泛用于中性点直接接地的三相三线制特别是三相四线制电路中,用于测量或过电流继电保护等。 (二)电压互感器 (PT) 可选用标准电压互感器校准测定 结构原理:一次绕组并联在主电路中,二次绕组中仪表,继电器均并联连接。 有的电压互感器具有3个绕组(有2个二次绕组),其图形符号为 准确度级:有0.2、0.5、1、3等级。 1) 一个单相电压互感器的接线 2) 两个单相电压互感器接成V/V形 常用接线方案有以下几种: 可测量一个线电压 可测量三相三线制电路的各个线电压,它广泛地应用于用户10kV高压配电装置中。

https://www.360docs.net/doc/6615686724.html, 3)三个单相三绕组电压互感器或一个三相五心柱三绕组电压互感器接成Y0/Y0/L 形接成Y0的二次绕组可测量各个线电压及相对地电压,而接成开口三角形的辅助二次绕组可测量零序电压,可接用于绝缘监察的电压继电器或微机小电流接地选线装置。

电压互感器与电流互感器的作用原理两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器; D:在第二位,表示单匝贯穿式,在型号的最后一个字母时表示差动保护用(部分生产厂用B或C标出)

低压配电系统的接地方式及特点

编号:SM-ZD-97536 低压配电系统的接地方式 及特点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

低压配电系统的接地方式及特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。此种方式也叫保护接零。

电压互感器几种常见接地点的作用

图片: 图片:

图片: 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 电压互感器的接地方式通常有三种: 一次侧中性点接地 二次侧线圈接地 互感器铁芯接地 三种接地的作用不尽相同,如下: 1)一次侧中性点接地。由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV

就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 2)二次侧接地。电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。另外,通过接地,可以给绝缘监视装置提供相电压。 二次侧的接地方式通常有中性点接地和V相接地两种,如下图所示。 根据继电保护等具体要求加以选用。 采用V相接地时,中性点不能再直接接地。为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用。 二次侧接地点按规程规定,均应选在主控室保护屏经端子排接地,而在配电装置处只设置试验检修时的安全接地点。 3)铁心接地,在电压互感器外壳上有一个接地桩头,这是铁心和外壳的接地点,起安全保护作用。

低压配电系统接地方式及接地故障保护

低压配电系统接地方式及接地故障保护 0 前言 随着我国工业的急速发展, 电能已成为工业生产中最基本的不可代替的能源。然而, 当电能失去控制时,就会引发各类电气事故, 其中对人身伤害即触电事故是最常见的, 而人们最忽视的就是间接触电。保护接地和保护接零是防止间接触电最基本的措施。目前,供配电系统的接地方式主要有三种:即TN系统、TT系统和IT 系统三种形式。本文对上述三种中性点接地方式进行了分析与比较, 指出了他们各自的优缺点。 1IT 系统 IT 系统是三相三线式供电及接地系统, 如图1 所示: 该系统变压器(或发电机组三相输出)中性点不接地或经高阻抗接地, 无中性线(俗称零线)N, 只有线电压(380V), 无相电压 (220V), 电器设备保护接地线(PE 线)各自独立接地。 IT 系统在供电距离不长时, 供电可靠性高, 安全性好。电源 侧也可采取中性点经高阻抗接地。 IT 系统在一相接地时, 单相对地漏电电流小, 不破坏电源的 电压平衡。一般用于不允许停电的场所, 或是严格要求连续供电的地方。 如果一相发生接地故障, 通过熔断器等可以切断该相, 其它 两相可以供电。而且,用电设备有接地保护,当单相绝缘损坏碰到外

壳,使金属外壳呈带电状态时, 人员触及带电金属外壳可以避免触电事故的发生。这是因为电流经过两条并联电路流通, 一路通过接地线、大地, 另一路是通过人体、大地。由于接地电阻(要求不超过4Q ,最大不超过10Q)比人体电阻(最小1000 Q )小得多, 所以大部分电流通过接地体入地, 只有很小部分电流通过人体, 即通过人体的电流不超过人体安全电流,从而保护了设备和人员安全。 当中性点不接地系统单相接地电流超过规定值时, 为了避免产生断续电弧, 避免引起过电压或造成短路, 减小接地电弧电流并使电弧容易熄灭, 中性点应经消弧线圈接地。消弧线圈实际上就是电抗线圈。假设,L1 相对地短路, 由于中性点接地电抗的存在, 感性对抗电流滞后90°, 而线路分布电容电流超前90°, 从而有效减小了短路电流的电弧。 2TN 系统 TN系统采用接零保护,系统有一点直接接地,电气设备外露可导电部分通过保护线(或公用中性线PEN与接地连接。按照中性线与保护组合情况的不同,TN 系统又可分为三种型式, 即TN-C 系 统,TN-S系统和TN-C-S系统。 2.1TN-C 系统 TN-C系统(如图2)中保护零线(PE)与工作零线(N)共用,当发生电气设备相线与外壳接触故障时, 故障电流经中性线回流到接地点,故障电流较大。TN-C系统适用于三相负荷基本平衡场合, 若三相负荷不平衡,PE线中存在不平衡电流,使设备外壳带电,易造

常用电压互感器的接线

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。

V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。 图1 (正确)图2(错误) 图3 根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca线电压变为。

电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 二次侧接地 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的

电压互感器与电流互感器作用区别

电流互感器与电压互感器的区别 电流互感器的作用: 电流互感器是电力系统中很重要的一个一次设备,其原理是根据电磁感应原理而制造的.它的一次线圈匝数很少,通常采用单匝线圈,即一根铜棒或一根铜排.二次线圈主要接测量仪表或继电器的线圈.电流互感器的二次侧不能开路运行,当二次侧开路时,一次侧的电流主要用于激磁,这样会在二次侧感应出很高的电压,从而危及二次设备和人身的安全,也会造成电流互感器烧毁. 其主要作用是:1、将很大的一次电流转变为标准的5安培;2、为测量装置和继电保护的线圈提供电流;3、对一次设备和二次设备进行隔离。电压互感器和电流互感器在作用原理上的区别主要区别是正常运行时工作状态大不相同,主要表现为: 1)电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路 2)对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。 3)电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值. 4)电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。把大电流按规定比例转换为小电流的电气设备,称为电流互感器。电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。

电磁式互感器的工作原理

在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。当今电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。) 电流互感器原理线路图微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。 微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/6615686724.html,。

配电系统

建筑工程低压供电使用的基本供电系统有三相四线制,但这些名词术语内涵不是十分严格。国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。下面内容就是对各种供电系统做一个扼要的介绍。 供电系统→IT 系统 TT 系统 TN 系统→TN-C TN-S TN-C-S (一)工程供电的基本方式 根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。 (1)IT 方式供电系统: 1)I 表示电源侧变压器中性点没有工作接地,或经过高阻抗接地。每二个字母T 表示负载侧电气设备迚行保护接地。2)I T 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,运用IT 方式供电系统,由于电源中

性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡。 3)I T 方式当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有保护接地,可以大大减少触电的危险性,使漏电设备的外壳对地电压在安全电压范围内。4)但是,如果I T 方式用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。在负载发生漏电时,漏电电流经大地形成回路,使设备外壳带电电压升高,而保护设备又因电流小不一定动作,这是危险的。只有在供电距离不太长时才比较安全。 (2 )TT 方式供电系统 1)TT 方式第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接; 2 )在线电压380v供电系统,当设备漏电时,相电压220v 漏电流通过保护接地电阻、工作接地电阻串联形成回路,这时保护接地电阻的电压高于安全电压,不在安全范围内,是个不安全供电系统,在我国禁止使用TT 方式供电;

电压互感器的接地方式

电压互感器的接地方式通常有三种: ?一次侧中性点接地 ?二次侧线圈接地 ?互感器铁芯接地 三种接地的作用不尽相同,如下: 1)一次侧中性点接地。由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。

2)二次侧接地。电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。另外,通过接地,可以给绝缘监视装置提供相电压。 二次侧的接地方式通常有中性点接地和V相接地两种,如下图所示。 根据继电保护等具体要求加以选用。

采用V相接地时,中性点不能再直接接地。为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用。 二次侧接地点按规程规定,均应选在主控室保护屏经端子排接地,而在配电装置处只设置试验检修时的安全接地点。 3)铁心接地,在电压互感器外壳上有一个接地桩头,这是铁心和外壳的接地点,起安全保护作用

配电系统保护接地形式

配电系统保护接地形式 GB9089.2规定了配电系统接地型式共有TN、,TT及IT三种。 1)接地型式文字代号的意义 TN、TT、IT三种型式均使用两个字母,以表示三相电力系统和电气装置的外露可导电部分(即设备的外壳、底座等)的对地关系。 第一个字母表示电力系统的对地关系,即 T:表示一点直接接地(通常为系统中性点); I:表示不接地(所有带电部分与地隔离),或通过阻抗(电阻器,电抗器)及通过等值线路接地。 第二个字母表示电气装置外露可导电部分的对地关系,即 T:表示独立于电力系统可接地点而直接接地; N:表示与电力系统可接地点直接进行电气连接。 在TN系统中,为了表示中性导体和保护导体的组合关系,有时在TN代号后面还可附加以下子母: S:表示中性导体和保护导体在结构上是分开; C:表示中性导体和保护导体在结构上是合一的(PEN 导体)。 保护导体(PE 导体)是为满足某些防护需要用来与下列任一部件电气连接的导体:外露可导电部分、外界可导电部分、主接地端子、接地极、电源接地点或人工接地点。 中型导体(N 导体)是与系统中性点连接并能其传输电能作用的导体。 保护中性导体(PEN 导体)兼具PE和N导体的功能。 2)各种接地型式的说明 TN系统。这系统的电力系统有一点直接接地,电气装置的外露可导电部分通过保护导体与该点连接。按PE和N导体的组合情况,TN系统可以分为以下三种型式: TN—S系统:PE和N导体在整个系统中是分开的(见图1—1 ) TN—C—S系统:系统中一部分PE和N导体合一(见图1—2 ) TN—C系统:PE和N导体在整个系统中是合一的(见图1—3 ) 图1—1 中性导体与保护导体在系统中是分开的TN系统(TN—S)

电压互感器二次侧为什么有的电压互感器采用B相接地

电压互感器二次侧为什么有的电压互感器采用B相接地,而有的采用零相接地? 一般电压互感器的二次接地都在配电装置端子箱内经端子排接地。对220 千伏的电压互感器二次侧一般采用中性点接(也叫零相接地);对发电机及厂用电的电压互感器,大都采用二次侧B机接地。 为什么电压互感器的二次侧有两种接地方法呢?主要原因是: (1)习惯问题。通常有的地方(380伏低压厂用母线)为了节省电压互感器台数,选有V/V接。为了安全,二次侧总得有个接地点,这个接地点一般选在二次侧两线圈的公共点。而为了接线对称,习惯上总把一次侧的两个线圈的首端一个接在A相上,一个接在C相上,而把公共端接在B相。因此,二侧侧对应的公共点就是B 相,于是,成了B相接地。 从理论上讲,二次侧哪一相端头接地都可以,一次侧哪一相作为公共端的连接相也者可以,只要一、二次对应就行。 对于三个线圈星形连接的电压互感器有的也采用二次侧B相接地(如发电机及厂用高压母电压互感器),同样是为了接线对称的习惯问题。 有的星形连接的电压互感器,二次侧B相接地是为了与低压厂用各电压等级的电压互感器二次侧接方式相一致,因为在一个发电厂的厂用电中,总不希望同时存在几种电压互感器二次侧接地方式,不然的话,会给厂用电的二次接线造成不应有的麻烦。 (2)继电保护的特殊需要。220千伏的线路都装有距离保护,而距离保护对于电压互感器二次回路均要求零相接地,因为要接断线闭锁装置需要有零线。所以,220千伏系统的电压互感器是采用零相接地,即中性点接地而不采用B相接地。对于发电厂来说,为了满足不同要求,电压互感器二次侧既有中性点接地,又有B相接地的。当这两种接地方式的电压互感器都用于同期系统时,一般采用隔离变压器来解决因不同的接地方式引起的可能烧坏星形接线的电压互感器B相线圈的问题。 电压互感器二次侧B相接地的接地点一般放在熔断器之后。为什么B相也配置二次熔断器呢?这是为了防止当电压感器一、二次间击穿时,经B相接地点和一次侧中性点形成回路,使B相二次线圈短接以致烧坏。 凡采用B相接地的电压互感器二次侧中性点都接一个击穿保险器JB。这是考虑到在B相二次保险熔断的情况下,即使高压窜入低压,仍能击穿保险器,而使电压互感器二次有保护接地。击穿保险器动作电压约为500伏。 电压互感器开口三角形额定电压(单相): 用在大接地系统中的PT开口绕组额定电压为100V,用在小接地或不接地系统中的

电压互感器原理及作用

电压互感器和电流互感器都是一种特殊的变压器,它们的应用主要是保护测量仪表和继电器,同时使二次侧设备小型化,那么电压互感器的原理和作用具体是什么呢? 电压互感器的工作原理和特性 电压互感器可分为电磁式和电容分压式两种,电压等级在220kV 及以下时多为电磁式,那么就以电磁式介绍。 1.工作原理 电压互感器利用了电磁感应原理,在闭合的铁芯上,绕有两个不同匝数、相互绝缘的绕组,接入电源侧的是一次绕组N1,输出侧是二次绕组N2。 当一次绕组加有电压时,绕组就会有交流电流通过,铁芯中就会产生与电源频率相同的交变磁通¢1,由于一次绕组和二次绕组在一个铁芯上,根据电磁感应定律,在二次绕组会产生频率相同到数值不同的感应电动势E2。因为匝数的不同导致两个绕组的感应电动势不同,具体数值关系就是:N1/N2=U1/U2根据国标,电压互感器二次侧输出电压值是100V。 2.电压互感器特性 电压互感器一次电压不受二次负荷的影响。 电压互感器二次侧仪表或继电器的电压线圈阻抗很大,通过的电流很小,因此电压互感器正常工作时接近空载状态。

电压互感器二次侧不能短路,因为短路后二次侧会产生很大的短路电流,会烧毁电压互感器,所以一般电压互感器一次、二次侧装设熔断器用于短路保护。 电压互感器接线 电压互感器有单相和三相两种,三相电压互感器一般只有20kV 以下电压等级。 单相电压互感器:两台单相互感器接成Vv接线,三台单相电压互感器接成开口三角形。 三相电压互感器:一台三相三柱式接成Yy0接线,用于测量线电压。 结束语 电压互感器和电流互感器原理一样都是利用了电磁感应原理,通过“电生磁”和“磁生电”将高电压转化成低电压,将大电流转化成小电流,使二次侧设备(测量仪表和继电器)都能小型化,同时也能使工作人员原理高压,保障人身安全。

浅谈供电系统的接地方式

浅谈供电系统的接地方式 1.绪论 工程施工用电的基本供电系统有(380V)三相三线制、(380/220V)三相四线制、三相五线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面就以上所指各种供电系统做一个简要的分析。 2.供电线路符号小结 2.1国际电工委员会(IEC)规定的供电方式符号中,第一个字母表示电力(电源)系统对地关系。如T表示是中性点直接接地;I表示所有带电部分绝缘(不接地)。 2.2第二个字母表示用电装置外露的金属部分对地的关系。如T表示设备外壳接地,它与系统中的其他任何接地点无直接关系;N表示负载采用接零保护。 2.3第三个字母表示工作零线与保护线的组合关系。如C表示工作零线与保护线是合一的(我们称零地合一),如TN-C;S表示工作零线与保护线是严格分开的,所以PE线称为专用保护线,如TN-S。 3.供电的基本方式的使用范围 3.1TN-S:适宜大中公共建筑中的配电系统。 3.2TN-C:适宜三相负荷平衡以及未装设剩余电流保护器的配电系统。 3.3TN-C-S:适宜小区居民住宅楼的配电系统。 3.4TT:是地区供电部门规定采用的配电系统或在TN接地系统中装设剩余电流保护器的配电系统。 3.5IT:适宜诸如消防配电系统、医院手术室等对不间断供电要求高的配电系统。 4.TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1-1所示。 4.1TT方式供电系统特点 4.1.1当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 4.1.2当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统不宜在380/220V供电系统中应用。 4.1.3TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 4.2TT方式供电系统的改进 现在有的施工单位是采用TT系统,施工单位专门安装一组接地装置,引出一条专用接地保护线,以减少需接地装置钢材用量,如图1-2所示。 4.2.1TT方式供电系统的改进的特点 4.2.1.1把新增加的专用保护线PE线和工作零线N分开,共用接地线与工作零线没有电的联系; 4.2.1.2正常运行时,工作零线可以有电流,而专用保护线没有电流;4.2.1.3TT系统适用于用电设备容量小且很分散的场合。 5.TN方式供电系统

相关文档
最新文档