硫化锌纳米材料制备及展望

硫化锌纳米材料制备及展望
硫化锌纳米材料制备及展望

PINGDINGSHAN UNIVERSITY 科技文献检索与论文写作

论文题目:硫化锌纳米材料制备方法及展望

班级:12级化工二班

院系:化学化工学院

学号:121170243

姓名:孙明华

指导老师:曹可生

硫化锌纳米材料制备方法及展望

学号:121170243 姓名:孙明华专业:化学工程与工艺年级:12级班级:化工(2)班摘要:对硫化锌纳米材料的研究进行了综述,阐述了Zns纳米材料的制备方法研究现状和发展前景,并对这些方法和成果进行了比较。

关键词:纳米材料,制备方法,前景展望

ZnS作为一种重要的宽带隙半导体材料,具有一些独特的电学、荧光和光化学性能,在平面显示器,电致发光器件,红外窗口,发光二极管,激光器,光学涂料,光电调节器,光敏电阻,场效应晶体管,传感器,光催化等许多领域有着广泛的应用前景。当ZnS 粒子的粒径尺寸小于它的激子的波尔半径时,就会呈现出明显的量子尺寸效应,同时它的光电性能也会随着尺寸和形貌的变化而变化。近年来,纳米级结构的ZnS特别是准一维纳米结构的研究,受到材料科学家的广泛关注,关于ZnS 纳米结构的制备、形态结构、性质及应用等方面开展了广泛研究,出现了多种不同的制备技术。制备方法主要有水热(溶剂热)法,界面合成法,辐射合成法,聚合物网络合成法,模板技术,等,并用这些方法合成了均匀一致的ZnS纳米棒,纳米线纳米带和纳米管。溶剂热方法是一种制备无机纳米材料( 如氧化物、硫化物、磷酸盐、沸石、金刚石等) 的有效方法。因此采用溶剂热法合成具有高度有序和很高的长径比的ZnS纳米结构阵列,对此进行深入研究不仅具有重大的理论意义,而且具有巨大的潜在应用价值。

1.水热( 溶剂热) 法简介

水热( 溶剂热) 法是指在高温、高压反应环境中,以水( 有机溶剂) 为反应介质,使通常难溶或不溶的物质溶解并进行重结晶。通过水热反应可以完成某些有机反应或对一些危害人类生存环境的有机废弃物进行处理以及在相对较低的温度下完成某些陶瓷材料的烧结等。水热法具有反应条件温和、污染小、成本较低、易于商业化、产物结晶好、团聚少、纯度高及可通过调节反应温度、压力、溶液成分和pH 等因素来达到有效地控制反应和晶体生长的目的等特点。

1.1 水热法

水热法是指在密封压力容器的高温高压环境中,以水作为反应介质,制备研究材料的一种方法。低温(温度在25~200℃之间)水热合成反应更加受到人们的青睐,即可得到处于非平衡状态的介稳相物质[1],又可使反应温度较低有利于产品的大规模工业生产。

在水热条件下,水既是溶剂,又是矿化的促进剂,同时还是压力传递的媒介物。与其它湿化学方法相比,主要具有以下两方面优越之处:(1)水热法避免了高温处理而可直接得到结晶良好的粉体,工艺简单,不易团聚等。研究表明,制备出的粒子形状规则且粒度分布窄、纯度高、分散性好、晶型好且可控制、生产成本低。(2)产物的形貌、晶相及纯度与水热反应条件有很大的相关性,可以通过改变反应条件来对产物的这些性质进行调控。

YU W等首先在铜板上镀锌晶种,然后采用简单的水热法在纳米晶锌层上通过醋酸锌和硫脲反应合成了ZnS纳米阵列。实验表明纳米晶锌不仅是水热反应的晶种,而且作为反应物提供硫离子,具有很高的活性。尤其是水热反应在95℃低温和1h短时间条件下完成的,操作简单方便。而且这样制备出的Zns纳米棒具有形貌整齐、长径比高等特点,给未来场致发射的应用带来了很大的潜能。

水热法合成ZnS的实验中,TEM图像显示,表面光滑的Zns纳米棒直径大约20nm,长径比也较高。由选区电子衍射(SATD)图可以得出,在Zns纳米棒上聚焦电子束显示出散布的环,证明ZnS纳米棒是多晶的。TEM图像表明六边形的CuS纳米盘有2个主要的方向,一个是在平的基底上,另一个是垂直于基底。

1.2溶剂热法

虽然水热法有许多优点,但也有其自身局限性,最明显的就是只能用于氧化物或少数硫化物的制备,这一问题的存在使得非水溶剂反应和溶剂热合成技术应运而生。溶剂热反应是水热反应的发展,它与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水。在溶剂热反应中,一种或几种前驱体溶解在非水溶剂中,在液相或超临界条件下,反应物分散在溶液中并且变的比较活泼,反应发生,产物缓慢生成。该过程相对简单而且易于控制,并且在密闭体系中可以有效的防止有毒物质的挥发和制备对空气敏感的前驱体。另外,物相的形成、粒径的大小、形态也能够控制,且产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、黏度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大。相应的,反应物(通常是固体)的溶解、分散及化学反应活性大大的提高或增强,这就使得反应能够在较低的温度下发生。

Thongtemt等在水合乙醇和甲酸作为pH 稳定剂,并包含了不同分子量不同量聚乙二醇的混合溶剂中,通过CuCl2·2H2O和(NH4)2S200℃热溶液反应成功合成了六边形的CuS。

1.3辐射化学合成法

辐射化学合成法是电离辐射使水溶液或其它溶液生成了溶剂化电子,在这样的反应体系中不需要使用还原剂就可还原金属离子,降低其化合价,经成核生长形成产物颗粒。目前主要的辐射源为γ-射线和紫外线。具有可在常温常压条件下,产物粒度大小可控,制备周期短等优点,还避免对环境造成污染。

1.4溶胶-凝胶法

溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料,且从合成的初始阶段就可控制在纳米尺度,但由于成本相对较高,在应用上也比较局限。陈平清等采用溶胶-凝胶法成功的在ZnS荧光粉表面包覆TiO2薄膜。ZnS荧光粉表面包覆了一层厚度约5nm的TiO2薄膜,该薄膜整体连续性较好,分布较为均匀,且包覆过程对荧光粉的晶型及结晶度无影响,而包覆膜对ZnS的吸光度略有屏蔽且发光强度也有所降低。

1.5化学沉淀法

化学沉淀法属于液相法的一种。向废水中投加某些化学物质,使它和废水中欲去除的污染物发生直接的化学反应,生成难溶于水的沉淀物而使污染物分离除去的方法。缺点是纯度较低,且颗粒粒径较大。

ZhouLimei等用硫酸锌、硫脲和氨水通过化学沉积法只改变硫酸锌浓度成功制备了ZnS薄膜。实验表明,氨水在整个过程中对ZnS薄膜的透射性、同质性、结晶等性能起到了非常重要的作用。

1.6自组装技术

自组装就是利用分子间的氢键、静电力以及疏水作用等相互作用,组装成有序的纳米结构。利用自组装技术,可以在分子水平上控制粒子的形状、尺寸、取向和结构。自组装技术简便易行,无需特殊装置。MeldrumFC等通过生长单层自组装模板成功制备了PbS和ZnS晶体的图案阵列。

1.7电化学技术

电沉积技术越来越成为人们关注的焦点,因为电沉积纳米材料具有以下优点:①多种类纳米晶金属、合金及复合材料都适合用此方法制备;②结晶过程的过电位容易控制,计算机监控,常温常压操作、困难小、工艺灵活,易于实验室向工业现场转变;③电沉积易在大面积和复杂形状的零件上获得较好的外延生长层。因此,利用电沉积技术制备纳米材料有着较

好的前景。

NaglaaF等用脉冲电沉积的方法,以导电玻璃为基底,在不同浓度比的Na2S2O3和ZnSO4水溶液中,成功制备出了ZnS超薄膜。实验表明金属金和铟对ZnS薄膜有类似欧姆特性。通过进一步PEC图片的观察,还发现退火到300℃,可以明显改善薄膜的光电导性。BicerM等采用电化学方法在阳极氧化铝薄膜微孔中合成了CdS纳米线,具有一致的直径和晶体生长方向。由于晶粒的量子效应,CdS纳米线的光吸收表明有一个明显的蓝色偏移。这种合成CdS纳米线的方法很可能也同样会适用合成其他半导体纳米线,例如PbS、ZnS等。

2.界面合成法

界面合成法是指分别溶解在互不相溶的两种溶剂中的反应物向界面扩散而在界面空间发生接触进行反应的方法。根据合成过程中是否提供外力,分为动态界面合成法和静态界面合成法,前者在合成过程中需要超声或者搅拌,后者则要求保持静止。该法最早被用在高分子合成中制备聚酯膜[2-3],后来逐渐用来合成微胶囊,2004 年Huang 等[4]利用该法制备了聚苯胺纳米纤维,把界面合成法引入到了纳米材料的合成领域。该法由于操作容易、条件温和、设备简单、环境友好等优点已引起人们越来越多的重视,特别在近些年,利用界面合成成功地制备了具有特殊性能的新材料,为这种经典的制备聚合物材料的方法带来了新的生机。2005 年,又用该法合成了无机-有机复合纳米材料[5],但其是先合成出无机纳米材料,再利用界面合成法在无机材料的表面复合有机材料。纯粹无机材料的界面合成还鲜有报道。近些年,笔者研究小组也对该法进行了系统研究,已经成功制备了聚苯胺纳米管和纳米纤维[6]、聚糠醛纳米球[7]、PANI /TiO2一维纳米复合材料[8]等纳米结构材料。最近又利用该法成功地制备了CdS 纳米线及ZnS 纳米颗粒,把该法扩大到无机材料的合成领域,方法简单易行,为无机纳米材料的合成提供了一种新的方法。

3.辐射合成法

白波等[9]以锌粉和硫化钠为原料,利用微波水热法制备得到了纳米ZnS 光催化剂.与

直接水热法相比,反应时间明显缩短.荧光增白剂(CBW)水溶液的光催化降解活性测试结果证实, 与直接水热法获得的ZnS 光催化剂相比较,微波水热法制得的产品表现出更高的催化

活性.王峰[28]用辐射法制备具有核壳结构的硫化镉/聚苯乙烯(CdS/PSt)纳米复合微球.

4.聚合物网络合成法

利用聚合物尤其是有机高分子聚合物控制纳米CdS大小和形貌, 是目前制备纳米材料较为有效的方法.聚合物分子网络复合法,包含溶液共混、化学配位法或原位聚合法等, 可同时借助聚合物分子网络的模板作用, 修饰作用及良好的材料力学、光学、电学性质等; 在保证纳米微粒高浓度、单分散性的同时, 也赋予了这种材料极好的可加工性,该法具有可控性好,工艺简单,杂质少的优势,是很有发展前途的方法.

邢德松[10]利用一种新颖、简单的化学方法,通过多相反应, 在多孔硅基体的表面和纳米孔内制得纳米级的ZnS,从而制备出PS( 多孔硅) - ZnS 复合材料,并进一步研究了由发橙红色光的PS 和发蓝- 紫色光的ZnS 组成的复合体系在退火前后发光颜色的变化.孙冬梅等采用一种全新的化学仿生方法———载体支撑液膜法制备ZnS 纳米球链

曹洁明[11]等利用仿生合成方法,通过加入一定量的引发剂使甲基丙烯酸原位聚合,在聚乙二醇(PEG)、聚甲基丙烯酸(PMAA)和十二烷基硫酸钠(SDS)的三元添加剂混合溶液体系中控制了合成硫化锌纳米晶空心球.

4.模板技术

模板技术是指采用具有纳米孔洞的基质材料中的空隙作为模板,进行纳米材料的合成。孔洞的空间分布规律决定了填充于其中的目标材料的空间分布规律。模板可以分为硬模板和软模板两类。

4.1硬模板

硬模板是现在广泛应用的、可以严格控制形貌的方法,主要包括多孔氧化铝碳纳米管等。LiYan等报道了用多孔氧化铝模板制备CdS纳米线。

对于通过沸石分子筛模板法来控制纳米材料的研究已有很多。把纳米微粒放在笼子里能得到尺寸均匀具有空间周期性构型的纳米材料。Herron等混合Cd(NO3)2溶液与Na-Y型沸石,经过离子交换后形成新的Cd-Y型沸石,干燥后和H2S气体反应,在分子筛八面体沸石笼中合成CdS超微粒子。目前有关新型沸石分子筛孔道内组装纳米客体构筑新型主体客体纳米复合材料研究引起了有关研究者的兴趣。

4.2 软化学法

软化学法,通常是对一些没有固定组织结构,但是在某一特定空间范围内又具有了限阀能力的有机分子体系加强应用。软化学法技术操作方便、方法简单、成本低,已成为制备、组装微晶的重要手段。它的缺点是不能象硬模板那样严格控制产物的形状和尺寸,软化学控制合成的研究越来越普遍

4.2.1高分子聚合物法

高分子聚合物具有有机预组织和自组合的结构,交联的网状结构提供了微化学反应环境和成长空间,实现了无机材料的形貌、尺寸和取向的可控性。这种基体作为微晶的复合和组装模板也已有广泛的研究。高分子自组装的过程包括有机基团、无机反应物强烈键合,无机物在聚合物中分散、溶解直到在内部有序规则的微环境中诱导成核。高分子对无机反应物的分散和包裹性,可形成具有一定尺寸和形貌的微晶直至有序排列。ZhangJ等报道了聚丙烯酞胺分子控制合成CdS纳米线。

4.2.2微乳液法

微乳液法是近年逐渐发展起来的用反胶团或W/O型微乳液制备超细颗粒的方法。该方法是由表面活性剂、助表面活性剂、有机溶剂和水溶液4部分组成的宏观上均一而微观上不均匀的、透明的、各向同性的液-液均相热力学稳定体系。反应物浓度、微乳液的组成、表面活性剂等因素都有可能影响微乳液法制备超细颗粒。与其它化学法相比,制备的粒子大小可控,分散性好,不易聚结。孙玉凤等以四元体(十六烷基三甲基溴化铵/水/正辛烷/正丁醇)W/O型徽乳体系为介质,制备了纳米硫化锌粉体,研究了硫化锌粉体光催化降解次甲基蓝的能力。

4.2.3单分子膜法

自组装单分子膜技术发展到今天已经非常成熟了,单分子膜适合作为纳米团簇的组装模板,因为它的结构排布很

规则。其中研究使用最多的是LB膜和MD膜,现已用来制备排列规则的纳米材料。

4.2.4生物分子模板法

常用的模板通常是DNA分子,它的组装是通过模板间的分子与纳米团簇结合的低聚核昔酸分子识别而实现,而不是纳米团簇与模板的识别。完善的分子识别功能,使组装过程具有高度的选择性。Braun等采用线状DNA分子为模板制备出直径为100nm的单晶金属纳米线。另一种常用的生物分子模板是蛋白质,Meldrum等用铁蛋白为模板制出了纳米Fe2S3。

5.前景展望

纳米材料,特别是一维纳米材料以纳米级的直径,大的长径比,高的各向异性,各种奇异的结构和特性,在维纳集成电路、集成光路、激光器、传感器方面具有广泛应用。它也可以作为添加剂应用于高性能陶瓷、功能纤维、密封胶、胶粘剂、新型有机玻璃、新型塑料以及金属基复合涂层和整体金属基复合材料之中,还可以用作新型橡胶材料的补强填料。由于纳米材料具有特殊的物理化学性,使它在其他领域也具有特殊的性能。如在医药技术领域,

纳米技术也有着广泛的应用前景。用纳米技术制造的微型机器人,可以安全的进入人体内对健康状况进行检测,必要时还可用它直接进行治疗。此外,纳米技术在工业制造、国防建设环境检测和平面显示系统等领域,也将对科技发展具有重要作用。

随着纳米MS 应用领域的不断深化, 必然会对包含锌族元素硫化物纳米材料液相制备

方法在内的锌族元素硫化物纳米材料合成技术提出更高的要求.在锌族元素硫化物纳米材料液相合成积累大量方法和实践的基础上, 其液相合成技术研究已经出现了决定未来合成技术健康发展的正确方向.随着表面活性剂、高分子聚合物模板作用的研究和应用的不断拓展, 合成思路和合成工艺的创新, 有充分的理由相信, 锌族元素硫化物纳米材料液相制备研究与技术一定会在这种不断适应的调整中得到更快的发展.

水热法因设备简单、易操作、产物产率高、结晶良好,在合成纳米材料方面表现出了良好的性能,从而得到越来越多的应用。近年来,水热法制备形貌可控的ZnS 纳米材料虽取得了很大进展,但由于影响因素众多,如反应的温度、时间、表面活性剂浓度和种类等,且这些反应条件在不同的体系中对水热法制备ZnS 纳米材料的影响并不相同,对水热法制备形貌可控的纳米材料的生长机理也有待进一步研究,这些问题的解决需要有更深的理论进行指导。随着理论研究的不断深入,纳米材料的可控制备技术将取得突破性进展。

参考文献:

[1]姚震宇.低维及多级无机纳米材料的低温液相合成与表征[D].合肥:中国科学技术大学博士论文,2007-04-01.

[2 ] R J Petersen. J. Membr. Sci. ,1993,83(1) : 81 ~ 150.

[3] W R Bowen,H J Mukhtar. Membr. Sci. ,1996,112(2) : 263 ~ 274.

[4 ] J X Huang,B K Richard. J. Am. Chem. Soc. ,2004,126(3) : 851 ~ 855. [5 ] M Kang,S J Myung,H J Jin. Polymer,2006,47: 3961 ~ 3966.

[6 ] B T Su,Y C Tong,J Bai. Indian J. Chem. : Sec. A. ,2007,46A: 595 ~ 599. [7 ]苏碧桃,佟永纯,王克等. 化学学报. 2007,65(12) : 1161 ~ 1164.

[8]佟永纯,胡常林,王清云等. 高等学校化学学报2008,29(2) : 415 ~ 418.

[9] 白波,种法国.柠檬酸助微波水热法制备纳米ZnS 及其光催化性能研究[J].化工新型材料,2005, 33(7):16- 18.

[10] 邢德松,石建新,龚孟濂,等.纳米硫化锌的原位制备及其对多孔硅复合体系发光的调控.[J].高等学校化学学报, 2004, 25(1):24- 26.

[11] 曹洁明,邓少高,冯杰,等.三元添加剂水溶液体系合成亚微米硫化锌空心球[J].高等学校化学学报,2005, 26(2):199- 203.

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米材料应用特点

超细微粒、超细粉末,这些其实都是纳米材料的别称。它具有自己的一些性能特点,同时应用范围较广,例如生物医药、能源环保、化工等等行业。本文就给大家详细介绍一下。 一、应用 由于纳米颗粒粉体具有电、磁、热、光、敏感特性和表面稳定性等性能,显著不同于通常颗粒,故其具有广泛的应用前景。经过多年探索研究,已经在物理、化学、材料、生物、医学、环境、塑料、造纸、建材、纺织等许多领域获得广泛应用。下面为大家例举几个纳米材料的应用实例。 (1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。 (2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其

产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,然后能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。 (3)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。 (4)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。 二、特点 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

纳米材料的一种制备方法

固液界面反应一水热晶化法制备二氧化锡纳米颗粒 一、简介 水热晶化法: 水热晶化法是合成无机纳米材料广泛采用的一种方法,装置简单,只需衬有聚四氟乙烯内胆的高压釜和加热设备(例如鼓风烘箱、油浴锅等)即可。在高温与溶剂自生高压的条件下,体系能够模拟自然界的成矿过程。水热晶化法的特点是适用范围广,可以用来制备各种金属氧化物、硫化物、磷酸盐等无机纳米材料。生产成本低,合成的材料纯度高,结晶度好。可以通过调节溶剂、物料配比、体系的pH值、有机添加剂等参数达到对粒径、形貌、结构的控制。 二氧化锡纳米材料的制备也常常运用水热晶化法。Chiu等人使用2-propanol 与蒸馏水作为混合溶剂,SnCl4?5H2O为锡源,在碱性条件下(pH=12)水热合成了3nm的SnO2纳米颗粒。Guo等人使用水热晶化法,通过调节SnCl4和NaOH的摩尔比,即体系的pH值,控制合成出空心微球、中空核-壳微球和纳米颗粒三种形态的二氧化锡。水热过程中,不同的结构导向剂也能控制二氧化锡的形貌结构。例如,Guo等人同样使用SnCl4玩为锡源,在CTAB模板剂的作用下,水热获得了棒状纳米二氧化锡。而Han等人换用环六亚甲基四胺作为结构导向剂,依旧使用SnCl4作为锡源,水热合成了核-壳结构的二氧化锡微球。Sun等人使用PVP(MW=30000)作为结构导向剂,并换用SnC12?2H2O作为锡源,双氧水预处理后,水热获得了蒲公英状二氧化锡。 在各种结构导向剂中,油酸分子由于能在颗粒表面选择性吸附,从而可以有效地引导各种结构的形成,并对纳米微粒起到稳定保护作用。 固液界面反应: 在纳米材料的制备过程中,通常会发生氧化、水解、沉淀等各种化学反应。利用在两相界面发生的化学反应来控制材料的合成引起了一定的关注。Kang等人利用水相与油相界面Sn2+的氧化反应制备出了不同粒径大小的二氧化锡纳米材料。由于水-油界面的存在,产物的结晶度比较高,尺寸分布也较窄。Deng等人使用PVP(MW=30000)作为保护试剂,乙二胺作为催化剂,过氧化氢作为氧化剂,室温下,利用单质锡块与水的界面发生的氧化反应,获得了由约3.8nm的纳米晶自组装形成的纳米球。纳米球的直径约为30nm,且具有良好的分散性。Wang 等人基于liquid-solid-solution(LSS)相转移原理合成了一系列纳米材料,其实也利用了界面间的化学反应。在这些利用界面反应控制纳米材料合成的文献中,有些纳米材料的制备其实也运用了水热晶化过程,综合利用了界面反应与水热晶化两者在材料控制合成方面的优势。 金属油酸盐是一种合成无机纳米材料比较理想的有机前驱物,它不能溶解于水或一些低碳醇(如乙醇)中,而会形成固液界面相。对于油酸锡而言,它又易发生水解反应。所以在本章中使用油酸锡作为锡源,利用固液界面反应-水热晶化过程来制备二氧化锡纳米材料。并且在油酸锡的水解过程中,可生成目前较受关注的油酸表面修饰结构导向剂。 二、实验步骤 所有原料均未作任何纯化处理,直接使用。首先,10mL去离子水中溶解

ZnS合成方法参考

本科毕业论文(设计)题 目 气相法合成ZnS纳米结构的研究 学 院 物理科学与技术学院 专 业 物理学 年 级 2006 学 号 222006315011019 姓 名 李 云 华 指 导 教 师 赵建伟 副教授 成 绩 2010 年4月30日

目录 摘要 (3) Abstract (3) 一、引言 1 纳米材料概述 (3) 2 ZnS的物相结构 (5) 3 ZnS的性质与应用 (5) 4 制备方法 (7) 二、实验过程 (8) 三、实验结果与分析 (10) 四、实验结论 (12) 五、参考文献 (12) 六、致谢 (14)

气相法合成ZnS纳米结构的研究 李云华 西南大学物理科学与技术学院 重庆 400715 摘要:本论文主要对化学气相沉积过程中ZnS一维纳米结构的生长进行了研究。具体过程是采用单晶Si片为衬底,以Au做催化剂,ZnS粉末为原料,利用气相沉积的方法,通过调控硫化锌的适宜的生长条件,在陶瓷舟中获得硫化锌纳米结构:硫化锌纳米线。在实验的基础上,合理解释了硫化锌纳米结构的生长机理。 关键词:气相沉积;ZnS纳米结构;纳米线 Synthesis of ZnS Nanostructures by Vapor Deposition Method LI Yunhua School of Physical Science and Technology,Southwest University, Chongqing 400715, China Abstract: I n this thesis, We mainly researched the growth of ZnS one-dimensional nanostructure in the chemical vapor deposition process. That is: single-crystal Si was used as substrate, with a Au film as catalyst, ZnS powder as source materials. The method of vapor deposition was used to synthesis ZnS nanostructures. Finally,ZnS one-dimension nanostructures were obtained. On the base of experiment, a reasonable explanation was given to show the growth mechanism of the ZnS nanostructure. Key word:Vapor deposition; ZnS nanostructures; nanowires 一、 引言 1、纳米材料概述 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。当今新材料的发展方向:高性能化、高功能化、高智能化、复合化、极限化、仿生化、环境友好化,发展新兴高性能的半导体材料是当前社会工业化进程的迫切需求。

纳米材料的特性和应用

纳米材料的特性和应用 摘要本文简要介绍了纳米材料的分类及特性,并对纳米材料在化工、生物医学、环境、食品等领域的应用进行了综述,最后对纳米材料的发展趋势进行了展望。关键词纳米材料;分类;特性;应用;发展 1 引言 有科学家预言, 在21 世纪纳米材料将是“最有前途的材料”, 纳米技术甚至会超过计算机和基因学, 成为“决定性技术”。国际纳米结构材料会议于1992 年开始召开(两年一届) , 并且目前已有数种与纳米材料密切相关的国际期刊。德国科学技术部预测到2010 年纳米技术市场为14 400 亿美元, 美国政府自2000 年 克林顿总统启动国家纳米计划以来, 已经为纳米技术投资了大约20 亿美元。同时, 欧盟在2002~2006 年期间将向纳米技术投资10 多亿美元。日本2002 年的纳米技术开支已经从1997 年的1. 20 亿美元提高到7. 50 亿美元。 2 纳米材料及其分类 纳米材料(nano- material)又称为超微颗粒材料,由纳米粒子组成。粒子尺寸范围在1-100 nm 之间,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。根据三维空间中未被纳米尺度约束的自由度计,将纳米材料大致可分成四种类型,即零维的纳米粉末(颗粒和原子团簇)、一维的纳米纤维(管)、二维的纳米膜、三维的纳米块体。 3 纳米材料的特性1 3.1 小尺寸效应 当纳米晶粒的尺寸与传导电子的德布罗意波长相当或更小时, 周期性的边界条件将被破坏, 使其磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化。如银的熔点约为900℃, 而纳米银粉熔点仅为100℃, 一般纳米材料的熔点为其原来块体材料的30%~50%。 3.2 表面效应 纳米晶粒表面原子数和总原子数之比随粒径变小而急剧增大后所引起的性质变化。纳米晶粒的减小, 导致其表面热、表面能及表面结合能都迅速增大, 致使它表现出很高的活性,如日本帝国化工公司生产的T iO2平均粒径为15 nm , 比

硫化锌的性能与制备

N型自聚集ZnS薄膜的特征和制备我们已经在不同的PH值的条件下用乙酸锌和硫脲的方法合成了N型ZnS薄膜。通过X射线衍射测得的平均颗粒的大小在3-5nm之间。通过红外光谱频带的多声子吸收的观测已证实硫化锌的生成,红外光谱也证实了硫化锌络合剂的存在。使用自聚集的方法硫化锌薄膜也沉积在玻璃或者石英底衬上面,同事薄膜的折射率也得以确定。通过Tauc的推导来计算光学带隙,利用改变PH值的方法来发现光学带隙,对这些薄膜电导率的测量和活化能的计算已经完成。 关键词:: n-ZnS,纳米晶体,自聚集,光学带隙 1.简介 近年来,由于科学研究对纳米材料的涉及及其应用,人们对纳米材料也长生很大的兴趣。对于纳米尺寸的材料,量子表面效应产生重要影响,从而使物理量发生急剧的变化。由于半导体材料受到量子表面效应的影响而具有的新奇的电学和光学特性,使其备受关注。硫化锌是一种具有3.65eV带隙的II-VI族半导体,在光电器件中有非常广泛的应用,比如蓝光发光二极管,电致发光器件,光伏细胞等在显示器,传感器和激光器中广泛应用。近几年,由于其纳米级颗粒性质的与众不同,纳米晶体硫化锌备受关注,所以研究人员尽力控制晶体大小和形态以及晶带的多晶来改变它们的物理性质,因此,在制备半导体纳米颗粒和薄膜的技术方面越来越热门。湿化学合成法是一种简单且廉价的可以替代复杂的化学气相沉积技术和其他物理方法的制备方法。那些常应

用于制备纳米材料的一般的物理方法,通常都因为分辨率的限制而受到制约。另一方面,湿化学合成法提供了一种简单的方法来制备大小适合分布均匀的纳米材料。因此,作者决定通过改变沉积参数例如PH值等方案来制备N型硫化锌颗粒或薄膜。 2.实验过程 在不同的PH值(=7,10,12)的条件下使用络合剂合成硫化锌纳米晶体。将溶解在锌-醋酸的硫化锌水溶液,络合剂(柠檬酸三钠),硫脲混合在50ml的去离子水中,搅拌均匀之后升高温度。最后,固相隔离,通过过滤和热水浴,获得残留物,制取样品。固体成分就是硫化锌纳米晶体,薄膜已沉积在干净的玻璃或者石英底衬或者KBr底衬上面,用来测量它们的光学性质和电学性质及其结构。 现在晶体研究已经使用2Θ的范围内从100到700的CuKα的射线的菲利普斯PE-1610X射线衍射仪。红外光谱由Perkin-Elmer PE-Rx 1的红外分光分光计确定.通过实验可知该红外光谱仪的分辨率为1 cm-1。为了研究n型硫化锌薄膜的光学特性,对于所有的样品采用波长范围在300-1000nm的双记录光束UV/VIS/NIR 光谱仪。这些样品的电学性能测量在特殊设计的金属样品架中进行.通过这个仪器保持10-3mbar的真空条件。长为1.0厘米,电极间隙为8 × 10 - 2cm的薄膜平面形状用来测量其电学性能,厚电极作为电触点.薄膜厚度大约为615nm,由轮廓仪测量。电导率通过一个皮安表的示数来指出,准确度通常是1pa。

纳米材料的热学特性

纳米材料的热学特性 【摘要】:纳米材料的应用及其广泛,涉及到各个领域。本文将从纳米材料的热容,晶格参数,结合能,内聚能,熔点,溶解焓,溶解熵及纳米材料参与反应时反应体系的化学平衡等方面对纳米材料的热学性质的研究进行阐述,并对纳米材料热学的研究和应用前景进行了展望。 【关键词】:纳米材料热学特性发展前景 【正文】: (一)纳米材料 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。 纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 (二)热学特性 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和

纳米材料的制备与合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (1) 1.1纳米粉体的湿化学法制备 (1) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (2) 1.2.2溅射法 (2) 1.2.3真空蒸镀法 (2) 1.2.4等离子体方法 (3) 1.2.5激光诱导化学气相沉积法(LICVD) (3) 1.2.6爆炸丝方法 (3) 1.2.7燃烧合成法 (3) 1.3纳米薄膜的化学法制备 (4) 1.4纳米单相及复相材料的制备 (4) 2纳米材料的物理法制备 (5) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (5) 2.2纳米粉体的高能机械球磨法制备 (5) 2.3纳米晶体非晶晶化方法制备 (6) 2.4深度塑性变形法制备纳米晶体 (6) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (6) 2.6纳米薄膜物理气相沉积技术 (6) 3纳米材料的应用展望 (7) 4 总结 (7) 参考文献 (8)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。本文系统地阐述纳米材料的结构、性能、制备以及应用,以获得对纳料材料更为深刻和全面的理解。[1] 纳米材料的制备科学在当前纳米材料科学研究中占据极为重要的地位。新的材料制备工艺和过程的研究与控制对纳米材料的微观结构和性能具有重要的影响.纳米材料的合成与制备包括粉体、块体及薄膜材料的制备。 1纳米材料的化学制备 1.1纳米粉体的湿化学法制备 湿化学法制备工艺主要适用于纳米氧化物粉体,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优异。 上海硅酸盐所在采用共沉淀法、乳浊液法、水热法图等湿化学法制备氧化错

硫化锌纳米材料制备及展望

PINGDINGSHAN UNIVERSITY 科技文献检索与论文写作 论文题目:硫化锌纳米材料制备方法及展望 班级:12级化工二班 院系:化学化工学院 学号:121170243 姓名:孙明华 指导老师:曹可生

硫化锌纳米材料制备方法及展望 学号:121170243 姓名:孙明华专业:化学工程与工艺年级:12级班级:化工(2)班摘要:对硫化锌纳米材料的研究进行了综述,阐述了Zns纳米材料的制备方法研究现状和发展前景,并对这些方法和成果进行了比较。 关键词:纳米材料,制备方法,前景展望 ZnS作为一种重要的宽带隙半导体材料,具有一些独特的电学、荧光和光化学性能,在平面显示器,电致发光器件,红外窗口,发光二极管,激光器,光学涂料,光电调节器,光敏电阻,场效应晶体管,传感器,光催化等许多领域有着广泛的应用前景。当ZnS 粒子的粒径尺寸小于它的激子的波尔半径时,就会呈现出明显的量子尺寸效应,同时它的光电性能也会随着尺寸和形貌的变化而变化。近年来,纳米级结构的ZnS特别是准一维纳米结构的研究,受到材料科学家的广泛关注,关于ZnS 纳米结构的制备、形态结构、性质及应用等方面开展了广泛研究,出现了多种不同的制备技术。制备方法主要有水热(溶剂热)法,界面合成法,辐射合成法,聚合物网络合成法,模板技术,等,并用这些方法合成了均匀一致的ZnS纳米棒,纳米线纳米带和纳米管。溶剂热方法是一种制备无机纳米材料( 如氧化物、硫化物、磷酸盐、沸石、金刚石等) 的有效方法。因此采用溶剂热法合成具有高度有序和很高的长径比的ZnS纳米结构阵列,对此进行深入研究不仅具有重大的理论意义,而且具有巨大的潜在应用价值。 1.水热( 溶剂热) 法简介 水热( 溶剂热) 法是指在高温、高压反应环境中,以水( 有机溶剂) 为反应介质,使通常难溶或不溶的物质溶解并进行重结晶。通过水热反应可以完成某些有机反应或对一些危害人类生存环境的有机废弃物进行处理以及在相对较低的温度下完成某些陶瓷材料的烧结等。水热法具有反应条件温和、污染小、成本较低、易于商业化、产物结晶好、团聚少、纯度高及可通过调节反应温度、压力、溶液成分和pH 等因素来达到有效地控制反应和晶体生长的目的等特点。 1.1 水热法 水热法是指在密封压力容器的高温高压环境中,以水作为反应介质,制备研究材料的一种方法。低温(温度在25~200℃之间)水热合成反应更加受到人们的青睐,即可得到处于非平衡状态的介稳相物质[1],又可使反应温度较低有利于产品的大规模工业生产。 在水热条件下,水既是溶剂,又是矿化的促进剂,同时还是压力传递的媒介物。与其它湿化学方法相比,主要具有以下两方面优越之处:(1)水热法避免了高温处理而可直接得到结晶良好的粉体,工艺简单,不易团聚等。研究表明,制备出的粒子形状规则且粒度分布窄、纯度高、分散性好、晶型好且可控制、生产成本低。(2)产物的形貌、晶相及纯度与水热反应条件有很大的相关性,可以通过改变反应条件来对产物的这些性质进行调控。 YU W等首先在铜板上镀锌晶种,然后采用简单的水热法在纳米晶锌层上通过醋酸锌和硫脲反应合成了ZnS纳米阵列。实验表明纳米晶锌不仅是水热反应的晶种,而且作为反应物提供硫离子,具有很高的活性。尤其是水热反应在95℃低温和1h短时间条件下完成的,操作简单方便。而且这样制备出的Zns纳米棒具有形貌整齐、长径比高等特点,给未来场致发射的应用带来了很大的潜能。 水热法合成ZnS的实验中,TEM图像显示,表面光滑的Zns纳米棒直径大约20nm,长径比也较高。由选区电子衍射(SATD)图可以得出,在Zns纳米棒上聚焦电子束显示出散布的环,证明ZnS纳米棒是多晶的。TEM图像表明六边形的CuS纳米盘有2个主要的方向,一个是在平的基底上,另一个是垂直于基底。 1.2溶剂热法

相关文档
最新文档