高中数学常用公式定理(113个知识点)

高中数学常用公式定理(113个知识点)
高中数学常用公式定理(113个知识点)

高中数学常用公式定理

1. 元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??.

2.包含关系

A B A A B B =?=U U A B C B C A ????

3.集合A 中有n )(N n ∈个元素,则集合A 的所有不同子集个数共有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.

4. 二次函数c bx ax y ++=2的图象的对称轴方程是a b x 2-=,顶点坐标是???

? ??--a b ac a b 4422, 二次函数的解析式的三种形式:

(1)一般式2()(0)f x ax bx c a =++≠;

(2)顶点式2()()(0)f x a x h k a =-+≠;

(3)零点式12()()()(0)f x a x x x x a =--≠.

5.解连续不等式()N f x M <<常有以下转化形式:

()N f x M <

6. 方程有实数根函数的图象与x 轴有交点函数有零点. 零点存在性定理:

函数在区间上的图像是连续的,且,那么函数在区间上至少有一个零点. 即存在,使得,这个c 也就是方程的根.

7.闭区间上的二次函数的最值

二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在a b x 2-=处及区间的两端点处取得.

8. 逻辑连接词有“或”、“且”和“非”:

9. 命题中常见结论的否定形式: ()0f x =?()y f x =?()y f x =[,]a b ()()0f a f b <()f x [,]a b (,)c a b ∈()0f c =()0f x =

10.四种命题的相互关系

注意:全称命题与存在命题的否定关系。

11.充要条件:

(1)充分条件:若p q ?,则p 是q 充分条件.

(2)必要条件:若q p ?,则p 是q 必要条件.

(3)充要条件:若p q ?,且q p ?,则p 是q 充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

12.函数的单调性

(1)设[]2121,,x x b a x x ≠∈?那么

[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)()(2

121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.

13.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 复合函数的单调性口诀:同增异减.

14.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.

15.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.

16.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数

2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2

b a x +=对称. 17. 函数()y f x =的图象的对称性: ①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-=.②函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.

18.多项式函数110()n n n n P x a x a x a --=+++的奇偶性

多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零.

多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零.

19.函数()y f x =的图象的对称性

函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-=.

20.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.

21.几个函数方程的周期(约定a>0)

(1))()(a x f x f +=,则)(x f 的周期T=a ;

(2)0)()(=+=a x f x f , 或)0)(()

(1)(≠=

+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 则)(x f 的周期T=2a ;

22.分数指数幂 :

(1)m n a

=(0,,a m n N *>∈,且1n >). (2)1

m

n m

n a a

-=(0,,a m n N *>∈,且1n >). 23.根式的性质:

(1

)n a =.

(2)当n

a =; 当n

,0||,0

a a a a a ≥?==?-

24.有理指数幂的运算性质:

(1) (0,,)r s r s a a a

a r s Q +?=>∈. (2) ()(0,,)r s

rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈.

注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

25.指数式与对数式的互化式:

log b a N b a N =?=(0,1,0)a a N >≠>.

26.对数的换底公式

log log log m a m N N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 若a >0,a ≠1,M >0,N >0,则

(1)log ()log log a a a MN M N =+; (2) log log log a

a a M M N N

=-; (3)log log ()n a a M n M n R =∈. 27.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=?.若)(x f 的定义域为R ,则

0>a ,且0a ,且0≥?.对于0=a 的情形,需要单独检验.

28. 平均增长率的问题

如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.

29.数列的同项公式与前n 项的和的关系

11

,1,2n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++).

30.等差数列的通项公式 *11(1)()n a a n d dn a d n N =+-=+-∈;

其前n 项和公式为

1()2n n n a a s +=1(1)2n n na d -=+211()22

d n a d n =+-. 31.等比数列的通项公式

1*11()n n n a a a q q n N q

-==?∈; 其前n 项的和公式为

11

(1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q q q s na q -?≠?-=??=?.

32.若m 、n 、p 、q ∈N ,且q p n m +=+,那么:当数列{}n a 是等差数列时,有

q p n m a a a a +=+;当数列{}n a 是等比数列时,有q p n m a a a a ?=?。

33. 弧长公式:r l ?=α(α是圆心角的弧度数,α>0); 扇形面积公式:r l S ?=2

1; 34.三角函数的定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=

r y ,cos α=r x ,tan α=x

y ,符号法则:全STC. 35.同角三角函数的基本关系式 :

平方关系:22sin cos 1θθ+=,”1”的代换.商数关系:tan θ=θ

θcos sin ,弦化切互化. 36.正弦、余弦的诱导公式: 概括为:奇变偶不变,符号看象限。

212(1)sin ,sin()2(1)s ,n n n co απαα-?-?+=??-?

212(1)s ,s()2(1)sin ,n n co n co απαα+?-?+=??-? 37.和角与差角公式:

sin()sin cos cos sin αβαβαβ±=±;

cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ

±±=. 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.

注意:二化一(辅助角)公式sin cos a b αα+)α?+(辅助角?所在象限由点(,)a b 的象限决定,tan b a

?=

). 38.二倍角公式 : sin 2sin cos ααα=.

2222cos 2cos sin 2cos 112sin ααααα=-=-=-.

22tan tan 21tan ααα

=-. 注意:半角公式是:sin 2α=2cos 1α-± cos 2

α=2cos 1α+± tan 2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1

sin +。

垂径定理经典练习题.

圆垂径定理专题练习题 1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧. 2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( ) A.3 cm B.4 cm C.5 cm D.6 cm 3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( ) A.2.5 B.3.5 C.4.5 D.5.5 4. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___. 5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E. (1)请写出四个不同类型的正确结论; (2)若BE=4,AC=6,求DE的长. 6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )

A.4 B.5 C.6 D.8 7. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的 直径为____. 8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3 千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区, 如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米? 9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____. 10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm, 则EF=____cm. 11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

高中数学公式大全(必备版)

高中数学公式大全(必备版) 高中数学公式大全(必备版) 篇一 篇二 篇三 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα

cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot;cot→tan(奇变偶不变),然后在前面加上把α看成锐

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

九年级数学: 垂径定理典型例题及练习

典型例题分析: 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点,AD ⊥BC 于D ,求证:AD=21BF. O A E F

例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. 2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的 半径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形 [解题过程] 在△ABC 中,C =180°-(A +B ) =180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24 根据正弦定理: a =c sin A sin C =2sin 60°sin 75°=2×3 2 2(3+1)4=6(3-1)=32- 6, b = c sin B sin C =2sin 45° sin 75°=2× 222(3+1) 4 =2(3-1). [题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是: (1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况, ∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边 c. 1.(1)已知A =45°,B =30°,c =10.求b . (2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64, ∴b =c sin B sin C =10×sin 30° sin 105°=10× 122+64 =5(6-2). (2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c sin C , ∴c =b sin C sin B =22×sin 30°sin 45°= 22×12 2 2 =2. 在△ABC 中,A =60°,a =43,b =42,解三角形.

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

高中数学常用公式汇总整理

高中数学常用公式汇总及结论 1 、元素与集合的关 系: 2 、集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个. 3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式:(当已知抛物线的顶点坐标时,设为此式) (3)零点式:(当已知抛物线与轴的交点坐标为时,设为此式) (4)切线式:。(当已知抛物线与直线相切且切点的横坐标为时, 设为此式) 4、真值表:同真且真,同假或假 5 、常见结论的否定形式;

6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.) 充要条件: (1) 则P是q的充分条件,反之,q是p的必要条件; (2)且q ≠> p,则P是q的充分不必要条件; (3) p ≠> p ,且,则P是q的必要不充分条件;(4)p ≠> p ,且则P是q的既不充分又不必要条件。 7、函数单调性: 增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在上有定义,若对任意的,都有成立, 则就叫在上是增函数。D则就是f(x)的递增区间。 减函数:(1)、文字描述是:y随x的增大而减小。 (2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有 成立,则就叫f(x)在上是减函数。D则就是f(x)的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数; (3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数; 注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。 复合函数的单调性: 等价关系: (1)设,那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数. 8、函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数定义:在前提条件下,若有,则f(x)就是奇函数。

正弦定理和余弦定理知识点总结附答案

高频考点一 利用正弦定理、余弦定理解三角形 例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 (2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2 =b 2 +2bc ,则三内角A ,B ,C 的度数依次是________. (3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1 2 , C =π6 ,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6× 2 2 =3,∴b sin A

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2 D .2<x <23 (2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1 解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2 <1, 可得x <22, ∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2 -2x +1=0, ∴x =1,即AB =1. 高频考点二 和三角形面积有关的问题 例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π 4 , b 2-a 2=12 c 2. (1)求tan C 的值; (2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2 =12 c 2及正弦定理得

二项式定理考点大全(详解)

二项式定理高考知识点总结 1.求103 )1 (x x -展开式中的常数项 2.已知9)2(x x a -的展开式中3x 的系数为4 9,求常数a 的值 3.求84)21(x x +展开式中系数最大的项; 4.若n x x )21 (-+的展开式的常数项为-20.求n .

5求当25 (32)x x ++的展开式中x 的一次项的系数? 6.已知n x x )21(4?+ 的展开式前三项中的x 的系数成等差数列. (1)求展开式中所有的x 的有理项; (2)求展开式中系数最大的项. 7. 已知二项式n x x )2(2 -,(n ∈N *)的展开式中第5项的系数与第3项的系数的比是10:1, (1)求展开式中各项的系数和 (2)求展开式中系数最大的项以及二项式系数最大的项 8.求6 998.0的近似值,使误差小于001.0;

9.求证:15151 -能被7整除。 10.求证:32n + 2-8n-9能被64整除. 11 求9192除以100的余数. 12 求证:C n 0+21C n 1+31C n 2+…+11+n C n n =1 1+n (2n+1-1). 13 计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 14.求值:

15、已知数列{a n }(n 为正整数)是首项为a 1,公比为q 的等比数列。 (1)求和:;,3 342331320312231220 2 1C a C a C a C a C a C a C a -+-+- (2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; (3)设q ≠1,S n 是等比数列{an }的前n项和,求: . )1(134231201n n n n n n n n C S C S C S C S C S +-++-+- 16.规定! )1()1(m m x x x C m x +--= ,其中x ∈R ,m 是正整数,且10=x C ,这是组合数m n C (n 、 m 是正整数,且m ≤n )的一种推广. (1) 求3 15-C 的值; (2) 设x >0,当x 为何值时,213)(x x C C 取得最小值? (3) 组合数的两个性质; ①m n n m n C C -=. ②m n m n m n C C C 11+-=+. ?是否都能推广到m x C (x∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

垂径定理典型例题及练习

垂径定理练习题 典型例题分析: 例题、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度 为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. O A E F

2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2 、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半 径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 2.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2 个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1 )n a =.(2)当n a =;当n ,0 ||,0a a a a a ≥?==? -∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r a b a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a , ④.积的对数:N M MN a a a log log )(log +=,商的对数:N M N M a a a log log log -=,

《垂径定理》典型例题

《垂径定理》典型例题 例1. 选择题: (1)下列说法中,正确的是() A. 长度相等的弧是等弧 B. 两个半圆是等弧 C. 半径相等的弧是等弧 D. 直径是圆中最长的弦答案:D (2)下列说法错误的是() A. 圆上的点到圆心的距离相等 B. 过圆心的线段是直径 C. 直径是圆中最长的弦 D. 半径相等的圆是等圆答案:B 例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。 分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。 证明:连结OC、OD ∵M、N分别是OA、OB的中点 ∵OA=OB,∴OM=ON 又CM⊥AB,DN⊥AB,OC=OD ∴Rt△OMC≌Rt△OND ∴∠AOC=∠BOD 例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB的度数和圆的半径。 分析:根据O到AB的距离,可利用垂径定理解决。 解:过O点作OE⊥AB于E ∵AB=12 由垂径定理知:

∴△ABO为直角三角形,△AOE为等腰直角三角形。 例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。求AB、AD的长。 分析:求AB较简单,求弦长AD可先求AF。 解:过点C作CF⊥AB于F ∵∠C=90°,AC=3,BC=4 ∵∠A=∠A,∠AFC=∠ACB ∴△AFC∽△ACB 例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。 分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。 解:连OA,过点O作OM⊥AB于点M ∵点P在AB上,PA=4cm

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

九年级数学垂径定理圆心角弧弦弦心距间的关系人教版知识精讲

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版 【本讲教育信息】 一. 教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O ,垂足M ,弦中点M ,劣弧中点D ,优弧中点C ,五点共线。(M 点是两点重合的一点,代表两层意义) 3. 应用以上定理主要是解直角三角形△AOM ,在Rt △AOM 中,AO 为圆半径,OM 为弦AB 的弦心距,AM 为弦AB 的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt △AOM 时,注意巧添弦心距,或 半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()()1234??? 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。 二. 重点、难点: 垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。 【典型例题】 例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。 点悟:本例的关键在于正确理解什么是O 点到AB 的距离。 解:作OE ⊥AB ,垂足为E ,则OE 的长为O 点到AB 的距离,如图所示: ∴==?=OE AB cm 121 2 126() 由垂径定理知:AE BE cm ==6 ∴△AOE 、△BOE 为等腰直角三角形 ∴∠AOB =90° 由△AOE 是等腰直角三角形 ∴==OA AE 626, 即⊙O 的半径为62cm 点拨:作出弦(AB )的弦心距(OE ),构成垂径定理的基本图形是解决本题的关键。 例2. 如图所示,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为a ,b 。 求证:AD BD a b ·=-2 2 证明:作OE ⊥AB ,垂足为E ,连OA 、OC 则OA a OC b ==, 在Rt AOE ?中,AE OA OE 222=- 在Rt COE ?中,CE OC OE 2 2 2 =- ()() ∴-=---AE CE OA OE OC OE 222222 =-=-OA OC a b 22 2 2 即()()AE CE AE CE a b +-=-22 BD AC ED CE ==, AD ED AE CE AE =+=+∴ BD AC CE AE ==- 即2 2b a BD AD -=? 点拨:本题应用垂径定理,构造直角三角形,再由勾股定理解题,很巧妙。 例3. ⊙O 的直径为12cm ,弦AB 垂直平分半径OC ,那么弦AB 的长为( ) A. 33cm B. 6cm C. 63cm D. 123cm (20XX 年辽宁) 解:圆的半径为6cm ,半径OC 的一半为3cm ,故弦的长度为 ( ) 2632321632 2 2 2 -=-=()cm 故选C 。 例4. 如图所示,以O 为圆心,∠AOB =120°,弓形高ND =4cm , 矩形EFGH 的两顶点E 、F 在弦AB 上,H 、G 在AB ? 上,且EF =4HE , 求HE 的长。 解:连结AD 、OG ∠= ∠=??=?AOD AOB 121 2 12060 OA =OD ∴△AOD 为等边三角形 ∵OD ⊥AN ∴NO =ND =4cm C O A B M D O

相关文档
最新文档