传热学实验

传热学实验
传热学实验

《传热学》

实验指导书与报告

工程热物理教研室

传热学实验室编

班级:

姓名:

学号:

华北电力大学

能源与动力工程学院

目录

(一)非稳态(准稳态)法测材料的导热性能实验. . . . . . . . . . . . .2 (二)强迫对流单管管外放热系数测定实验. . . . . . . . . . . . . . . .9 (三)热管换热器实验. . . . . . . . . . . . . . . . . . . . . . . . .18 附:铜—康铜热电偶温度与毫伏对照表

实验一非稳态(准稳态)法测材料的导热性能实验

一.实验目的

1.测量绝热材料(不良导体)的导热系数和比热、掌握其测试原理和方法;

2.掌握使用热电偶测量温差的方法。

二.实验装置(图2和图3)

按上述理论及物理模型设计的实验装置如图2所示,说明如下:

(1)试件

试件尺寸为100mm×100mm×δ,共四块,尺寸完全相同,δ=10~16mm。每块试件上下面要平齐,表面要平整。

(2)加热器

采用高电阻康铜箔平面加热器,康铜箔厚度仅为20μm,加上保护箔的绝缘薄膜,总共只有70μm。其电阻值稳定,在0—100℃范围内几乎不变。加热器的面积和试件的端面积相同,也是100㎜×100㎜的正方形。两个加热器的电阻值应尽量相同,相差应在0.1%以内。

(3)绝热层

用导热系数比试件小的材料作绝热层,力求减少热量通过,使试件1。4与绝热层的接触面接近绝热。这样,可假定式(4)中的热量q c等于加热器发出热量的0.5倍。

(4)热电偶

利用热电偶测量试件2两面的温差及试件2、3接触面中心处的温生速率,热电偶由0.1㎜的康铜丝制成。

实验时,将四个试件齐迭放在一起,分别在试件1和2及试件3和4之间放入加热器1和2,试件和加热器要对齐。热电偶的放置如图3,热电偶测温头要放在试件中心部位。放好绝热层后,适当加以压力,以保持各试件之间接触良好。

三.实验原理

本实验是根据第二类边界条件,无限大平板的导热问题来设计的。设平板厚度为2δ,初始温度为t 0,平板两面受恒定的热流密度qc 均匀加热(见图1)。求任何瞬间沿平板厚度方向的温度分布t(x ,τ)。导热微分方程式、初始条件和第二类边界条件如下:

),(x t =??ττ0=τ时, x=0处,

δ±=x 处, c q x

t

=??-λ

方程的解为:

)]exp()cos(2)1(63[),(02211

220F x

x a q t x t n n n n c μδμμδδδδτλτ--+--=-+∞

=∑ (1)

式中:

τ—时间(s) ;

λ—平板的导热系数(w/m ?℃);

a —平板的导温系数(m 2/s);

n μ=πn n=1,2,3,……; 0F =

2

at

δ

傅立叶准则;

0t —初始温度(℃);

c q —沿x 方向从端面向平板加热的恒定热流密度(w/m 2);

随着时间τ的延长,0F 数变大,式(1)中级数和项愈小。 当0F >0.5时,级数和项变得很小,可以忽略,式(1)变成:

()????

??-+=-612,2220δ

δταλδτx q t x t c (2) 由此可见,当F 0>0.5后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。这种状态称为准稳态。

在准态时,平板中心面x=0处的温度为:

)6

1

(),0(20-=

-δτλδτa q t t c 平板加热面x=δ处为:

)3

1(),(20+=

-δτλδτδa q t t c (3) 此两面的温差为:

λ

δ

ττδc q t t t 21),0(),(=

-=?

如已知q c 和δ,再测出Δt ,就可以由式(3)求出导热系数:

t

q c ?=

λ (4) 实际上,无限大平板是无法实现的,实验总是用有限尺寸的试件。一般可认为,试件的横向尺寸为厚度的6倍以上时,两侧散热试件中心的温度影响可以忽略不计。试件两端面中心处的温度差就等于无限大平板两端面的温度差。

根据势平衡原理,在准态时,有下列关系:

τ

δ

ρd dt

F C F q c = 式中:F 为试件的横截面(m 2);

C 为试件的比热(J/kg ?℃);

ρ为试件的密度(kg/m 3);

τ

d dt

为准稳态时的温升速率(℃/s); 由上式可得比热: τ

δρd dt q c c =

实验时,

τ

d dt

以试件中心处为准。

四.实验步骤

1.记录试件的尺寸:面积F 和厚度δ;

2.按图2和图3接好电源,接通稳压器,并将稳压器预热10分钟(注:此时开关K 是打开的)。接好热点偶与电位差计及转换开关的导线;

3.校对电位差计的工作电流,然后,将测量转换开关拨至“1”测出试件在加热前的温度,此温度应等于室温。再将转换开关拨至“2”,测出试件两面的温差,此时,应指示为零热电势,测量出示值差最大不得超过0.004mv,即相应的初始温度差不得超过0.1℃;

4.接通加热器开关,给加热器通以恒定电流(试验过程中,电流不容许变化。此值事先经实验确定)。同时,启动秒表,每隔一分钟测读一个数值。齐数值时刻(1分,3分,5分……)测“2”端热点势的毫伏数,偶数值时刻(2分,4分,6分……),测“1”端热点势的毫伏数。这样,经过一段时间后(随所测材料而不同,一般为10~20分钟),系统进入准状态,“2”端热点势的数值(即式(4)中的温差Δt)几乎保持不变。并计下加热器的电源值;

5.第一次实验结束,将加热器开关K切断,取下试件及加热器,用电扇将加热器吹凉,待其和室温平衡后才能继续作下一次实验。但试件不能连续做实验,必须经过四小时以上放置,使其冷却至与室温平衡后,才能再作下一次实验。

6.实验全部结束后,必须切断电源,一切恢复原状。

五.实验数据记录和处理

t:℃加热器电流I: A

室温

加热器电压U:V

试件截面尺寸F:0.00126 ㎡试件厚度δ:0.009 m

试件材料密度ρ=1200 ㎏/m3热流密度q c:w/㎡

求出:热流密度c q [w/㎡]

准稳态时的温差t ?(平均值)[℃]

准稳态时的温升速率

τ

d dt

[℃/小时] 然后,即可计算出试件的导热系数λ[w/m?k ]和比热C[J/㎏?℃]

计算过程:

实验二强迫对流单管管外放热系数测定实验一.实验目的

1.测定空气横向流过单圆管表面时的放热系数;

2.根据对受迫运动放热过程的相似分析,将实验数据整理成准则方程式;

3.通过相似原理的实际应用,加深对相似原理的了解;

4.学习用热电偶测量温度用电压电流测量功率及用比托管测流量的实验技术;

5.计算机在测试技术方面的应用。

二.实验装置

图2表示空气横向流过单圆管表面时的放热实验装置。

图2.单圆管表面横向强迫对流放热实验装置示意图

1.离心式风机

2.自动风机风门

3.软连接

4.毕托管

5.后测温点

6.后测静压点

7.紫铜管试件

8.前测静压点9.前测温点10.整流珊11.进风喇叭口12.角铁支架13.实验台14.毕托管差

压传感器15.加热开关16.加热调节17.风门开关(上开下关) 18.风机开关19.加热电流表

20.加热电压表21.一十六位巡检仪22.试验段阻力差压传感器

实验装置主要由一简单的风洞和量热器组成。风洞是用有机玻璃制成的正方形流道[尺寸为a×b(mm)]。为了避免涡流的影响,风道内表面持光滑。当风机启动后,室内空气经过吸入口2被吸入风洞内。吸入口做成双扭线形以保证进出口气流平稳并减少损失,并且使进口处气流速度分布均匀。在吸入口后连接入口段和工作段。在工作段中有被研究的圆管(同时也是量热器)、加热前流体的测温热电偶、加热后流体的测温热电偶。在工作段之后有一支测量流速的比托管、插板阀、引风机。插板阀用以调节流量。为减少风机振动对风洞内的速度场的影响,工作段之后的风道用亚麻布软管与风机相接。风洞内毕托管与差压变送器相连接后可用来测量流速。工作段前后的空气温度,即t f1、t fa,用热电偶来测量。

图3为量热器简图。

图3 量热器简图

1.电源线

2.压紧螺母

3.保护盖

4.固定板

5.绝热层

6. 绝热层

7.铜管

8.绝缘层

9.加热器

量热器用铜管做成,管内有电加热器,用交流电加热。电热器所消耗的功率即是圆管表面所放出的热量。圆管表面温度t w用焊在管壁上的四对热电偶测量。电路及测量系统如图4所示:

图4电路及测量系统示意图

1.调压器

2. 量热器

3. 加热器

4.测气体温度热电偶

5. 测气表面度热电偶

6. 加热管剖面

7. 差压传感器

8.巡检仪

9. 比托管 10. 差压传感器

三.实验原理

根据牛顿公式物体表面对流放热量Qc 可用下列计算:

F t t Q f w c ?-=)(α w (1)

式中:

w t ——圆管表面平均温度 ℃ f t ——实验段前后流体的平均温度 ℃

F ——圆管表面积 2m ,l d F ??=π:d 、l 分别为圆管的直径和长度 m α——放热系数 c m w o ?2

因此

l

d t t Q f w c

???-=

πα)( w/m 2, ℃ (2)

根据相似理论,强迫流动时放热现象的准则方程式为;

根据实验研究可知,流体横向流过单圆管表面时,一般可将准则方程式整理成下列形式:

25

.038

.0???

? ?????=rw rf

r n

ef uf P P P R C N (3)

上式中定性温度为流体平均温度t f ,定型尺寸为管子直径、流速采用流体过圆管时最窄处的流速。

25

.0???

?

??rw rf P P 是考虑热流方向而附加的修正项。

对于空气P r ≈常数,故准则方程式为:

n

ef

uf R C N ?= (4) 式中常数C 和n 可由本实验确定。

本实验是在空气被加热的情况下进行的。圆管内加热器所产生的热量Q 是以对流换热

C Q 和辐射R Q 方式传出的。

因此:R C Q Q Q -=

圆管表面的辐射放热量R Q 可由下式计算:

F T T c Q f w b R ????

?

???????? ??-??? ???=44100100ε W (5) 式中:

ε——为圆管表面黑度 ε=0.22

b c ——绝对黑体的辐射系数 b c =5.67 42k m w ? f w T T 、——分别为圆管表面和流体的平均绝对温度 K

由以上分析可知,实验的中心问题是必须测量以下几个物理量:圆管放热量Q ;管壁温度w t 流体温度f t ;管子直径d ,管子长度l 和空气流速u 。

在不同工况下测量以上数值,将每一工况下ef R 值与uf N 值表示在对数坐标图上,如图一:

用Y 表示lgN uf ,用X 表示lgR ef ,每一对R ef 及N uf 的值可以在图上确定一点,将这些点连成一条直线,此直线的方程可以表示为:

ef uf R n C N lg lg lg +=

式中:

?tg n =——为直线和横坐标之间夹角

?的正切

故:C 值可以通过曲线上任一点处uf N 与ef R 的数值计算出来 n

ef

uf R N C =

因此:实验曲线可用下面方程来表示:

n ef

uf R C N ?=

四、实验步骤

在熟悉实验装置后可把线路接好,调整好测量仪表,经教师检查许可后方可开始实验,实验步骤如下:

1、先关闭插板阀,再合上风机马达的电源,使用风机在空载下起动,然后根据需要开启插板阀,以调节风量。待稳定后启用计算机数据采集系统。

2、合上电加热器电源,调节输出电压(不能超过150伏)在某一定工况下加热。

3、加热约15分钟后观察各热电偶的电势直到稳定为止,(壁面温度在3分钟内保持读数不变即认为到稳定)然后用计算机数据采集系统测量各热电偶的电势。

4、保持加热器功率不变,调节插板阀改变风量至另一数值重复步骤3。

5、实验中应注意以下几点: (1)正确调整使用比托管;

(2)必须待风机起动后再合上加热器电源而实验结束时应先停止加热再停风机。

ef R lg

lg lg

图 1.确定参数之间关系的图解

(3)实验完毕应经教师检查同意后方可离去。

五、实验结果的整理:

整理实验结果时必须采用稳定状态下的数据。 平均放热系数的数值可用下式计算:

l

d t t Q Q f w R ???--=

πα)( c m w o

?2

式中:

Q ——电加热器所消耗的功率 W U I Q ?=

U ——加热器中的电压降 V

I ——加热器中的电流强度 A d 及l ——圆管的直径及长度 m

R Q ——辐射放热量,按式(5)计算

w t ——管壁的平均温度(用每一对热电偶所对应温度的平均值) ℃ f t ——流体的平均温度 ℃

雷诺准则:v

d

u R e =

中流速u 为风洞工作段截面上的平均流速。流体通过毕托管时,通过差压变送器测量出压差,用下式进行计算u :ρ

P

u ?=

2 s m

式中:P ?——差压变送器测量出压差,单位a P

六.实验记录

1.基本数据

实验设备号管子直径d= 0.022 m 管子长度l= 0.24 m

圆管散热

面积

F= 0.0452 2m

F

0.154×0.455

=0.0555 m2F b

0.155×0.085

=0.013 m2

比托管压力

修正系数ξ=1.37

流量

修正系数

17

.1

=

α

所用热电偶种类2.实验数据记录表

3.实验数据整理表:

4.根据实验数据做方程式:ef uf R n C N lg lg lg +=曲线图,并写出准则方程式。

实验三热管换热器实验

一.实验目的

1. 了解热管换热器实验台的工作原理;

2. 熟悉热管换热器实验台的使用方法;

3. 掌握热管换热器换热量Q和传热系数K的测量和计算方法;

二.实验台的结构及其工作原理

热管换热器实验台的结构如下图所示。实验台由翅片管(整体绕制)、热段风道、冷段风道、冷段和热段风机、电加热器、工况调节旋钮、热电偶、比托管测动压、支架等组成。

设备简图

热段管中的电加热器使空气加热,热风经热段风道时,通过翅片管进行换热和传递,从而使冷段风道的空气温度升高。利用风道中的热电偶对冷、热段的进出口温度进行测量,利用比托管对冷、热段的出口风速进行测量,由万能信号输入巡检仪显示仪显示其数值,从而可以计算换热器的换热量Q和传热系数K。

三.实验台参数

1.冷段出口内径:D=80mm;冷段翅片管处断面尺寸160mm?170mm

2.热段出口内径:D=80mm;热段翅片管处断面尺寸160mm?170mm

3.冷段传热表面参数:

翅片管长160mm 钢管直径21mm 翅片直径40mm 翅片个数57个;翅片管数量8根;传热面积:0.42m2

4.热段传热表面参数:

翅片管长160mm 钢管直径21mm 翅片直径40mm 翅片个数59个;翅片管数量8根;传热面积:0.43m2

5.加热功率1500W

6.比托管修正系数

热端:动压修正系数ξ=0.845 流量修正系数α=0.925

冷端:动压修正系数ξ=0.943 流量修正系数α=0.980

注:如对测数据要求较高,最好比托管修正系数应每年用风速仪进行校正。

四.实验步骤

1.连接冷段和冷段热电偶;压差传感器与比托管的连接胶管;

2.接通电源;

3.将功率调节开关旋至最小位置(逆时针),打开电加热器和风机开关开始工作;

4.逐渐将功率调节开关加大;视温度要求设定工况Ⅰ;

5.待工况稳定后(约20分钟后温差基本保持不变时),开始采样测试;

6.改变工况,重复上述步骤,测量另一种工况Ⅱ参数(不高于50℃);

7.实验结束后,先切断加热电源,5分钟后切断所有电源。

五.实验数据处理

将实验测得的数据填入下表中:

计算换热量、传热系数、热平衡误差:

1. 工况Ⅰ 冷段换热量 ()12L L PL L L L L t t C F v Q -??=ρ W 热段换热量

()21Pr r r r r r r t t C F v Q -??=ρ W

热平衡误差 %100)

(?-=

r

L r Q Q Q δ

传热 系数 )(t f Q K L r ??=

式中 L υ,R υ——冷、热段出口平均风速 s m ;

L F , R F ——冷、热段出口断面积 2m ;

传热实验实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之。 二、实验原理 根据传热方程Q=KA△tm,只要测得传热速率Q,冷热流体进出口温度和传热面积A,即可算出传热系数K。在该实验中,利用加热空气和自来水通过列管式换热器来测定K,只要测出空气的进出口温度、自来水进出口温度以及水和空气的流量即可。 在工作过程中,如不考虑热量损失,则加热空气释放出的热量Q1与自来水得到的热量Q2应相等,但实际上因热损失的存在,此两热量不等,实验中以Q2为准。 三、实验流程和设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数和管长进行计算。 实验流程图: 四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体和水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出口温度,记录设备的

有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第4步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机和自来水阀门。 五、实验数据记录和整理 1、设备参数和有关常数 换热流型错流;换热面积㎡

六、实验结果及讨论 1、求出换热器在不同操作条件下的传热系数。 计算数据如上表,以第一次记录数据序号1为例计算说明: 2、对比不同操作条件下的传热系数,分析数值,你可得出什么结论? 答:比较一、二、三组可知当空气流量不变,水的流量改变时,传热系数变化不大,比较四、五组可知空气流量改变而水的流量不改变时,传热系数有很大变化,且空气流量越大,传热系数越大,传热效果越好;综上可知,K值总是接近热阻大的流体侧的α值,实验中,提高空气侧的α值以提高K值。。 3、转子流量计在使用时应注意什么问题?应如何校正读数? 答:转子流量计不能用于流量过大的流体测量,使用时流量计必须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。 读数时应读转子的最大截面与玻璃管刻线相交处的数值,可以读初始值和最终值,取两者之差来校正读数。 4、针对该系统,如何强化传热过程才能更有效,为什么? 答:该系统传热效果主要取决于热流体,所以可以通过增加空气流量,提高其所占比例来强化传热效果;减小水的流量;内管加入填充物或采用螺纹管,加热面在上,制冷面在下。因为由实验可知提高热阻大的流体的传热系数可以更有效的强化传热过程。 5、逆流换热和并流换热有什么区别?你能用实验装置加以验证吗? 答:①逆流换热时热流体是冷热流体流动方向相反;而并流传热时,其冷热流体流动方向相同;②在相同操作条件下,逆流换热器比并流换热器所需传热面积小。可以改变冷热流体进出口方向,测得在相同传热效果下,逆并流所需传热面积大小,从而加以验证。 6、传热过程中,哪些工程因素可以调动? t ;④换热过程的流型(并流,逆答:①增大传热面积S;②提高传热系数α;③提高平均温差 m 流,错流)。 7、该实验的稳定性受哪些因素的影响? 答:①冷凝水流通不畅,不能及时排走;②空气成分不稳定,导致被冷凝效果不稳定;③冷热流体流量不稳定;④传热器管表面的相对粗糙度。 8、你能否对此实验装置作些改进,使之能够用于空气一侧对流传热系数的测定? 答:让空气走壳程,水走管程,根据流体在管外的强制对流公式,可提出空气一侧的对流传热系数α值。

传热学作业

沈阳航空航天大学 预测燃气涡轮燃烧室出口温度场 沈阳航空航天大学 2013年6月28日

计算传热学 图1模型结构和尺寸图 1.传热过程简述 计算任务是用计算流体力学/计算传热学软件Fluent求解通有烟气的法兰弯管包括管内烟气流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。在进行分析时要同时考虑导热、对流、辐射三种传热方式。 (1) 直角弯管内外壁面间的热传导。注意:如果壁面按薄壁处理时,则不用考虑此项,因为此时管壁厚度忽略不计,内壁和外壁温度相差几乎为零。 (2) 管道外壁面与外界环境发生的自然对流换热。由于流体浮生力与粘性力对自然对流的影响,横管与竖管对流换热系数略有不同的。计算公式也不一样。同时,管道内壁面同烟气发生的强制对流换热。 (3) 管道外壁和大空间(环境)发生辐射换热 通过烟气温度和流量,我们可以推断出管道内烟气为湍流流动。这在随后的模

沈阳航空航天大学 拟计算中可以得到证实。 2.计算方案分析 2.1 控制方程及简化 2.1.1质量守恒方程: 任何流动问题都要满足质量守恒方程,即连续方程。其积分形式为: 0vol A dxdydz dA t ρρ?+=?????? 式中,vol 表示控制体;A 表示控制面。第一项表示控制体内部质量的增量,第二项表示通 过控制面的净通量。 直角坐标系中的微分形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 上式表示单位时间内流体微元体中质量的增加,等于同一时间段内流入该微元体的净增量。 对于定常不可压缩流动,密度ρ为常数,该方程可简化为 0u v w x y z ???++=??? 2.1.2动量守恒方程: 动量守恒方程也是任何流动系数都必须满足的基本定律。数学式表示为: F m dv dt δδ= 流体的粘性本构方程得到直角坐标系下的动量守恒方程,即N-S 方程: ()()()u u p div Uu div gradu S t x ρρμ??+=+-?? ()()()v v p div Uv div gradv S t y ρρμ??+=+-?? ()()()w w p div Uw div gradw S t z ρρμ??+=+-?? 该方程是依据微元体中的流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和。式中u S 、v S 、w S 是动量方程中的广义源项。和前面方程一样上式

传热实验实验报告

一、 实验名称: 传热实验 二、实验目的: 1.熟悉套管换热器的结构; 2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、. 三、实验原理: 本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。 套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。 传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m ???= (1) 传热实验

图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○ 1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s] V h ——空气流量[m 3/h] ρ——空气密度[kg/m 3 ],以下式计算: ]/)[273(4645.031 m kg t R p P a ++=ρ (3) Pa ——大气压[mmHg] Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃] Cp ——空气比热[K kg J ?/],查表或用下式计算: ]/[04.01009K kg J t C m p ?+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃] ②传热平均面积A m :

][2m L d A m m π= (5) 式中:d m =传热管平均直径[m] L —传热管有效长度[m ] ③传热平均温度差△t m 用逆流对数平均温差计算: T ←——T t 1——→t 2 )(),(2211t T t t T t -=?-=? 2 1 2 1ln t t t t t m ???-?= ? (6) 式中:T ——蒸汽温度[℃] 2、传热膜系数(给热系数)及其关联式 空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示: n r m e P AR Nu = (7) 式中:N u ——努塞尔特准数 R e ——雷诺准数 P r ——普兰特准数 A ——系数,经验值为0.023

高等传热学作业修订版

高等传热学作业修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ? θ? θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各 向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2222222sin )(sin sin )( (1-6)

传热膜系数实验报告

化工原理实验报告 实验三 传热膜系数测定实验 实验日期:2015年12月30日 班级: 学生姓名: 学号: 同组人: 报告摘要 本实验选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。 二、 目的及任务 1.掌握传热膜系数α及传热系数K 的测定方法; 2.通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 的方法; 3.了解工程上强化传热的措施。 三、基本原理 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关 系式的一般形式为:p n m Gr A Nu Pr Re 对于强制湍流而言。Gr 数可忽略,即

n m A Nu Pr Re = 本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,得到直线方程为 Re lg lg Pr lg 4.0m A Nu += 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。在直线上任取一点函数值带入方程中,则可得系数A ,即 m Nu A Re Pr 4.0= 用图解法,根据实验点确定直线位置有一定人为性。而用最小二乘法回归,可得到最佳关联结果。应用计算机辅助手段,对多变量方程进行一次回归,就能的道道A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其特征数定义式分别为 μρ du = Re , λμ Cp = Pr , λαd Nu = 实验中改变空气的流量,以改变Re 值。根据定性温度(空气进、出口温度的算数平均值)计算对应的Pr 值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。 牛顿冷却定律为 Q=αA △t m 式中α——传热膜系数,W/(m 2.℃);

西安交通大学传热学大作业---二维温度场热电比拟实验

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图1-1所示,假设在垂直于纸面方向上用冷空气及砖墙的温度变化很小,可以近似地予以忽略。在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在0℃及30℃; 第二种情况:内外壁均为第三类边界条件,且已知: K m K m W h C t K m W h C t ?=?=?=?=?=∞∞/35.0/93.3,10/35.10,302 22211λ砖墙导热系数 二、数学描写 由对称的界面必是绝热面,可取左上方的四分之一墙角为研究对象,该问题为二维、稳态、无内热源的导热问题。 控制方程: 02 222=??+??y t x t 边界条件: 第一种情况: 由对称性知边界1绝热: 0=w q ; 边界2为等温边界,满足第一类边界条件: C t w ?=0; 边界3为等温边界,满足第一类边界条件: C t w ?=30。 第一种情况: 由对称性知边界1绝热: 0=w q ; 边界2为对流边界,满足第三类边界条件: )()( 2f w w w t t h n t q -=??-=λ; 边界3为对流边界,满足第三类边界条件: )()(2f w w w t t h n t q -=??-=λ。 1 -1图2 -1图

三、方程离散 用一系列与坐标轴平行的间隔0.1m 的二维网格线将温度区域划分为若干子区域,如图1-3所示。 采用热平衡法,利用傅里叶导热定律和能量守恒定律,按照以导入元体(m,n )方向的热流量为正,列写每个节点代表的元体的代数方程, 第一种情况: 边界点: 边界1(绝热边界): 5~2)2(4 1 1,11,12,1,m =++= +-m t t t t m m m , 11~8)2(4 1 1,161,16,15,16=++=+-n t t t t n n n n , 边界2(等温内边界): 7,16~7;7~1,6,0,=====n m n m t n m 边界3(等温外边界): 12,16~2;12~1,1,30,=====n m n m t n m 内节点: 11 ~8,15~6;11~2,5~2)(41 1,1,,1,1,====+++= -+-+n m n m t t t t t n m n m n m n m n m 第二种情况 边界点: 边界1(绝热边界): 5~2)2(4 1 1,11,12,1 ,m =++=+-m t t t t m m m , 11~8)2(4 1 1,161,16,15,16=++=+-n t t t t n n n n , 边界2(内对流边界): 6~1) 2(2221 11,61,6,5,6=++++= ??-+n Bi t Bi t t t t n n n n , 3 -1图

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4 .0Pr Re ??=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化 ??? ? ???=223,,μρβλμμρλαtl g c lu F l p 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a 圆管传热基本方程: m t A K t T t T t T t T A K Q ???=-----?=111 22112211 1ln ) ()( 热量衡算方程: )()(12322111t t c q T T c q Q p m p m -=-= 圆管传热牛顿冷却定律: 2 2112211 22211221121 1ln ) ()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----?=-----?=αα 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54 .02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

传热学实验

一、实验目的 1、了解对流换热的实验研究方法; 2、测定空气横向流过管束表面时的平均放热系数α,并将实验数据整理成准数方程式; 3、学习测量风速、温度、热量的基本技能。 二、主要实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、倾斜式微压计、皮托管、电位差计、功率表以及调压变压器等组成。 三、实验原理 根据相似理论,流体强制流过物体时的放热系数α与流体流速、物体几何参数、物体间的相对几何位置以及物性等的关系可用下列准数方程式描述: Pr)(Re,f Nu = 实验研究表明,空气横向流过管束表面时,由于空气普郎特数(Pr=0.7)为常数,故一般可将上式整理成下列的指数形式, n C Nu Re = 式中 C,n 均为常数,由实验确定, Nu ——努塞尔特准数 λ ad Nu = Re ——雷诺准数 v d ω= Re 上述各准则中,α——壁面平均对流换热系数[?2/m W ℃] d ——实验管外径,作为定性尺寸,[m] λ——空气导热系数,[?2/m W ℃] ω——空气流过实验管外最窄截面处流速,[m/s] ν——空气运动粘度,]/[2s m 定性温度:空气边界层平均温度)(2 1 f w m t t t +=。 式中:m t ——实验管壁面平均温度[℃]

f t ——空气平均温度本实验的任务在于确定C 与 n 的数值,首先使空气流速一定,然后测定有关的数据:电流I 、电压 V 、管壁温度w t 、空气温度f t 、微压计动压头h 。至于α和ω在实验中无法直接测得,可通过计算求得,而物性参数可在有关书中查得。得到一组数据后,可得一组 Re 、Nu 值;改变空气流速,又得到一组数据,再得一组 Nu 、Re 值;改变几次空气流速,就可得到一系列的实验数据。 四、实验数据及处理结果 1.测试所得原始数据 表1测试数据表 2.数据分析与计算 ◆表2热电偶测管温度平均值 ◆已知管长L=450mm,管直径d=40mm ,求得管表面积为205655 .0m L d A =??=π ◆空气进出口的平均绝对温度[K]:K T T T f 15.273)(2 1 21++= ,(见表3)由差值法及查表可知,热电偶

生活中的传热学(问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题: 1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析? 答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△ t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。 2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。 3、滚烫的砂锅放在湿地上易破裂。为什么? 答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而壁的热又一下子传不出来,外壁冷却很快的收缩,壁却还很热,没什么收缩,加以瓷特别脆,所以往往裂开。 或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而壁温度降低慢,砂锅外收缩不均匀,故易破裂。 4、往保温瓶灌开水时,不灌满能更好地保温。为什么? 答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么? 答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。 7、冬壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么? 答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。 基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间所传递的热量不至于达到灼伤人的温度

《传热学》实验:平板导热系数测定实验

《传热学》实验一: 准稳态平板导热系数测定实验 一、 实验目的 1.快速测量绝热材料(不良导体)的导热系数和比热,掌握其测试原理和方法。 2.掌握使用热电偶测量温差的方法。 二、 实验原理 本实验是根据第二类边界条件,无限大平板的导热问题来设计的。 设平板厚度为δ2,初始温度为0t ,平板两面受恒定的热流密度c q 均匀加热(见图1)。求任何瞬间沿平板厚度方向的温度分布()τ,x t 。 导热微分方程、初始条件和第二类边界条件如下: ()()22,,x x t a x t ??=??τττ ()00,t x t = (),0c t q x δτλ ?+=? ()0,0=??x t τ 方程的解为: ()()()()2212002132,1cos exp 6n c n n n n q x x t x t F ατδτδμμλδδμδ∞+=??-??-=-+--?? ????? ∑ (1) 式中: τ——时间; λ——平板的导热系数; α——平板的导温系数;123n n n μβδ==,,,, ; 02a F τδ =——傅里叶准则; 0t ——初始温度; c q ——沿x 方向从端面向平板加热的恒定热流密度。 随着时间τ的延长,0F 数变大,式(1)中级数和项愈小。当5.00>F 时,级数和项变得很小,可以忽略,式(1)变成: 图1

()20221,26c q x t x t δαττλδδ??-=+- ??? (2) 由此可见,当5.00>F 后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。这种状态称为准稳态。 在准稳态时,平板中心面0=x 处的温度为: ()0210,6c q t t δαττλδ??-=- ??? 平板加热面x δ=处为: ()?? ? ??+=-31,20δτλδτδa q t t c 此两面的温差为: ()()λ δττδc q t t t ?=-=?21,0, (3) 如已知c q 和δ,再测出t ?,就可以由式(3)求出导热系数: t q c ?=2δλ (4) 实际上,无限大平板是无法实现的,实验中是用有限尺寸的试件。一般可以认为,试件的横向尺寸是厚度的6倍以上时,两侧散热对试件中心的温度影响可以忽略不计。试件两端面中心处的温度差就是无限大平板时两端面的温度差。 根据热平衡原理,在准稳态时,有下列关系: τ δρd dt F c F q c ????=? (5) 式中: F ——试件的横截面积; c ——试件的比热; ρ——其密度; τd dt ——准稳态时的温升速率。实验时,τ d dt 以试件中心处为准。 由式(5)可得比热: τ δρd dt q c c ??= 按定义,材料的导温系数可表示为 2()()2c c c t t c q t λδλδδδαρττ ===??? m 2/s 综上所述,应用恒热流准稳态平板法测试材料热物性时,在一个实验上可同时测出材料的三个重要热物性:导热系数、比热容和导温系数。 三、 实验装置 非(准)稳态法热物性测定仪内,实验本体由四块厚度均为δ、面积均为F 的被测试材重叠在一起组成。 在第一块与第二块试件之间夹着一个薄型的片状电加热器,在第三块和第四

《传热学》(第四版)习题附答案

第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: )(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳 兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其原因。 答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A 与B ,注入同样温度、同样体积的热水后不久,A 杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好?

传热学课程实验(1)

传热学实验1 顺流式换热器传热系数测定 [实验目的] 1. 熟悉换热器性能的测试方法; 2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征; 3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。 [实验原理] 换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。 图1实验装置简图 1.热水流量调节阀 2. 热水螺旋板、套管、列管启闭阀门组 3.热水流量计 4.换热器进口压力表 5.数显温度计 6.琴键转换开关 7.电压表 8.电流表 9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀 本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。 实验台参数: 1.换热器换热面积{F}: ⑴.套管式换热器具0.45 m2 ⑵.螺旋板式换热器0.65 m2 ⑶.列管式换热器 1.05 m2 2.电加热器总功率:9.0 kw 3.冷、热水泵: ⑴.允许工作温度:< 80 ℃ ⑵.额定流量: 3 m3/h

⑶.扬程:12 m ⑷.电机电压:220 V ⑸.电机功率:370 W 4.转子流量计: ⑴.型号:LZB-15 ⑵.流量:40-400升/小时 ⑶.允许温度范围:0―120 ℃ 1.冷水泵 2.冷水箱 3.冷水转子流量计 4.冷水顺逆流换向阀门组 5.列管式换热器 6.电加热水箱 7.热水转子流量计 8.回水箱 9. 热水泵10. 螺旋板式换热器11. 套管式换热器 [实验操作] 1.实验前准备: ⑴. 熟悉实验装置及使用仪表的工作原理和性能; ⑵. 打开所要实验的换热器阀门,关闭其它阀门; ⑶. 按顺流方式调整冷水换向阀门的开或关; ⑷. 向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。 2.实验操作: ⑴. 接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量; ⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度; ⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁); ⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果; ⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。 [实验数据与处理]

传热学课后作业问题详解

1-10 一炉子的炉墙厚13cm ,总面积为202 m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是 2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 KW t A Q 2.7513.0) 50520(2004.1=-??=?= δλ 每天用煤 d Kg /9.3101009.22 .753600244 =??? 1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式 ()f w t t rlh q -=π2 所以 ()f w t t d q h -= π=49.33W/(m 2.k) 1-18 宇宙空间可近似地看成为0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250℃,表面发射率为0.7,试计算航天器单位表面上的换热量。 解:4T q εσ==0.7 155250)./(1067.54 428=???-K m W W/2m 1-30 设图1-4所示壁面两侧分别维持在20℃及0℃,且高温侧受到 流体的加热, )./(200,100,08.02 101K m W h C t m f ===δ,过程是稳态的,试确定壁面材料的导热系数。 解: ()()21111w w w f t t t t h q -= -=δλ () 21111w w w f t t t t h --= ∴δλ =64)./(K m W 1-32 一玻璃窗,尺寸为60cm cm 30?,厚为4mm 。冬天,室内及室外温度分别为20℃及-20℃,内表面的自然对流换热表面系数为W ,外表面强制对流换热表面系数为50)./(K m W 。玻璃的导热系数)./(78.0K m W =λ。试确定通过玻璃的热损失。 解: λδA Ah A h T + +?= Φ2111 =57.5W

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

传热学答案 (5)

第五章 复习题 1、试用简明的语言说明热边界层的概念。 答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。 2、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα2 2 x A ,因此仅 适用于边界层内,不适用整个流体。 3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别? 答:0 =???- =y y t t h λ(5—4) ) ()( f w t t h h t -=??-λ (2—11) 式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。 4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用? 答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小 5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义? 答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。 基本概念与定性分析 5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度 的如下变化关系式: x x Re 1~ δ 解:对于流体外标平板的流动,其动量方程为: 22 1xy u v dx d y u v x y u ?+- =??+??ρ ρ

高等传热学作业

高等传热学作业Revised on November 25, 2020

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6) 第二章 2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组

哈工大-传热学虚拟仿真实验报告

哈工大-传热学虚拟仿真实验报告

Harbin Institute of Technology 传热学虚拟仿真实验报告 院系:能源科学与工程学院 班级:设计者: 学号: 指导教师:董士奎 设计时间:2016.11.7

传热学虚拟仿真实验报告 1 应用背景 数值热分析在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、以及日用家电等各个领域都有广泛的应用。 2 二维导热温度场的数值模拟 2.1 二维稳态导热实例 假设一用砖砌成的长方形截面的冷空气通道,其截面如图2.1所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。 图2.1一用砖砌成的长方形截面的冷空气通道截面 2.2二维数值模拟 基于模型的对称性,简化为如图所示的四分之一模

型。 图2.2 二维数值模拟 2.3 建立离散方程 此时对于内部节点,如图2.3: ,1,,1,,,1,,1=? ? - +??-+??-+??--++-x y t t x y t t y x t t y x t t j t j i j t j i j t j i j t j i λ λ λ λ 对于平直边界上的节点,如图2.4: 2 22,,1,,1,,,1=?+Φ??+??-+??-+??-? -+-w j i j t j i j t j i j t j i yq y x x y t t x y t t y x t t λλλ 对于外部和内部角点,如图2.5: 2 43220 2422,,,1,1,,1,,,1,,1,,,1=?+?+Φ??+??-+??-+??-+??-=?+?+Φ??+??-+??-?+-+-?--w n m n m n m n m n m n m n m n m n m w n m n m n m n m n m q y x y x y x t t x y t t x y t t y x t t q y x y x x y t t y x t t λλλλλλ

传热学实验报告

传 热 学 实 验 报 告 班级:安全工程(单)0901班 姓名:雷轩 学号:01 第一节稳态平板法测定绝热材料导热系数实验

一、实验目的 1.巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的试验方法和技能。 2.测定试验材料的导热系数。 3.确定试验材料导热系数与温度的关系。 二、实验原理 导热系数是表征材料导热能力的物理量。对于不同的材料,导热系数是各不相同的,对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。各种材料的导热系数都用试验方法来测定,如果要分别考虑不同因素的影响,就需要针对各种因素加以试验,往往不能只在一种实验设备上进行。稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定试验,测定材料的导热系数及其和温度的关系。 实验设备是根据在一维稳态情况下通过平板的到热量Q 和平板两面的温差t ?成正比,和平板的厚度h 成反比,以及和导热系数λ成反比的关系来设计的。 我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热量为: S t h Q *?*= λ (1) 其中:Q 为传到平板的热量,w ; λ为导热系数,w/m ℃; h 为平板厚度,m ; t ?为平板两面温差,℃; S 为平板表面积;m 2; 测试时,如果将平板两面温差t ?、平板厚度h 、垂直热流力向的导热面积S 和通过平板的热流量Q 测定后,就可以根据下式得出导热系数: S t h Q *?*= λ (2) 其中:d u T -T t =?,T u 为平板上测温度,T d 为平板下侧温度,℃; 这里,公式2所得出的导热系数是在当时的平均温度下材料的导热系数值,此平均温度

相关文档
最新文档