水源热泵技术在供热空调工程中的应用

水源热泵技术在供热空调工程中的应用
水源热泵技术在供热空调工程中的应用

浅谈水源热泵技术在供热空调工程中的应用

【关键词】水源;热泵;供热;空调;工程;应用

1.热泵技术的由来与发展

当今社会环境污染和能源危机已成为全人类面对并要加以解决的重大课题,在这种背景下,以环保和节能为主要特征的绿色建筑及相应的供热空调系统应运而生,而热泵技术正是满足这些要求的新兴供热空调技术。我国热泵事业近几年发展势头看好,国内企业开发出了中国品牌的热泵系统,并已建成了数个示范工程,越来越多的中国用户开始熟悉热泵,并对其产生了浓厚的兴趣。

2.热泵的工作原理及种类

(1)根据热力学第二定律,热可以自发地由高温物体传向低温物体,而由低温物体传向高温物体则必须作功,正如水能够通过水泵从低处向高处流动一样,热泵系统实现了把能量由低温物体向高温物体的传递,它是以花费一部分高质能为代价,从自然环境中获取能量,并连同所花费的高质能一起向用户供热,也就是说热泵的供热量永远大于所消耗的功量,所以是综合利用能源的一种很有价值的措施。热泵的硬件组成和制冷系统大致相同,也是由压缩机、蒸发器、冷凝器、膨胀阀等主要部件组成。只是制冷是从制冷房间吸热到冷凝器散发给冷却介质,热泵是制冷工况的逆过程,即把热量从冷凝器的介质吸收过来散发到制热房间中。

(2)热泵技术按所需热源的不同大体可分为气源热泵、地源热泵及水源热泵。气源热泵即通常所说的风冷热泵,是以室外空气作

水源热泵机组在供暖系统中的应用

水源热泵机组在供暖系统中的应用 [摘要] 针对目前地热供暖应用的现状,介绍了一种全新的地热+高温水源热泵的供暖方案。在比较了各种常规的供暖模式的经济及环保效益的同时,为低温地热水、地热尾水中低品位余热水资源提供了一种高效、合理的利用途径。 [关键词] 水源热泵地热供暖地热尾水节能环保 一、概述 1、项目简介 某干休所共有建筑面积6万平方米,为满足冬季供热及生活热水的需求,建设方拟采用地热井水+水源热泵技术联合供暖方式为住宅小区冬季采暖提供热源,根据当地的地质结构及有关技术资料,现计划打地热井1口(井深3800米),单井出水量55T/h,温度90℃。综合考虑初投资及运行费用,并本着最大限度利用地热水资源的原则,拟定采暖方式为:用地热水给小区一次供暖,供热后的尾水由水源热泵进行能量提升为采暖系统再次供热,从而降低尾水排放温度适合生活用热水要求,最大限度的利用水资源。从长期运行的角度出发,对该方案的节能效益进行以下技术经济分析。 2、热泵技术原理 热泵是一种能从自然界的空气、水或者土壤中获取低品位热量,经过电力做功,输出可用的高品位热能的设备。热泵可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。本文所要叙述的热泵系统是利用水源热泵机组从中低温水中吸收热量供采暖用热,可以实现能源的二次利用,大大提高能源利用率,节约地热水的用量,是一条变废为宝的节能途径。 由于热泵是取之自然界中的能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已在全世界范围内受到广泛关注和重视。在我国热泵技术是国家重点推广的能源技术之一,目前在国内已经获得了广泛的应用。 二、技术方案 小区建筑冬季采暖热负荷为3000KW,生活热水负荷为1200KW。采暖末端使用地幅热,因此要求供水温度为55℃,回水温度为45℃。采用水源热泵供暖系统的原理示意图如图1所示。 本系统中,地热井出来的90℃、55T/h的地热水由除砂器处理后,经过供暖一级板式换热器和生活热水换热器换热后的水温降为46℃;再经过采暖二级板式换热器换热后出水温度降为20℃排出。活塞式水源热泵机组水源侧进水温度

污水源热泵用于集中供暖的技术经济分析

污水源热泵用于集中供暖的技术经济分析 摘要:污水源热泵技术正在越来越得到人们的关注。本文提出了利用污水源热泵技术代替传统供热锅炉方案用于集中供暖的方案。并且以武汉某居住小区为例,评价了污水源热泵用于冬季集中供暖的经济性,和其它供暖形式相比较得出了乐观的结论。并且根据污水源热泵的特点对污水源热泵技术应用于集中供暖提出了具体可行的改进方法,以进一步提高污水源热泵机组的经济性和可行性。 关键词: 污水源热泵;集中供暖;技术经济分析 0 引言 年来,在暖通空调领域,污水源热泵的发展越来越得到人们的关注。虽然污水源热泵技术在国外早有应用[1],但其在国内也是近年来才有了长足的发展。污水源热泵是利用城市污水作为冷热源的水源热泵,由于城市污水的一系列特点[2],使得污水源热泵在节能性和环保性等方面较传统热泵机组形式有较大的优势。 由于城市污水在冬季的温度较其它热泵空调的热源要高很多,在使用高温水源热泵机组的情况下,热泵机组出水温度可达到直接供暖的要求,所以在冬季利用污水源热泵供暖是一项非常有潜力的技术。本文以在冬季利用污水源热作为小区供暖热源方案,和普通供暖锅炉方案作一个定量的技术经济分析。比较对象为现在比较常用的几种集中采暖形式:燃煤锅炉、燃气锅炉和燃油锅炉。 1集中供暖条件的确定 1.1集中供暖概况 武汉市是我国著名的重工业特大城市,每年污水排放量非常大。而且武汉市气候特征为夏季炎热,冬季湿冷。但是由于武汉市一般累年日平均温度低于或等于5℃的日数为59天[3],没有达到60天的最低供暖要求,所以不属于国家强制冬季集中采暖城市。但是随着人民生活水平的日益提高,对冬季采暖的要求也日渐强烈。在当前大规模的城市供热管网没有修建之前,在各小区建设集中供暖使用的锅炉房或热泵房是最佳选择。 本章以武汉市已建成的某小区为研究对象,该小区总供暖面积为50000m 2,供暖热指标按60W/m 2计算[4]。 1.2计算供暖热负荷 为正确计算该小区在采暖时期的热负荷,采用绘制热负荷延续时间图[5]的方法。供暖热负荷延续时间图的数学表达式如下。 () ?????-='0'1n n Q R Q Q b n n β zh N N N ≤<≤55 (1) ' ' 05w n w t t t --=β (2)

河南某小区水源热泵中央空调工程投标文件_secret

灵宝市XXX小区 水源热泵中央空调工 技 术 方 案 与 预 算 编制单位: 单位地址: 联系电话: 编制日期:二0一0年三月

目录 一、工程概况 (2) 1.1 工程说明 (2) 1.2 设计依据 (2) 1.3 工程安装说明 (3) 二、空调系统及组成说明 (5) 2.1空调系统说明 (5) 2.2 空调相关图纸(见附页) (5) 2.3 建筑空调面积汇总、冷负荷及末端的确定 (5) 2.4空调系统组成说明 (6) 2.5主要设备表 (9) 2.6工程预算 (10) 2.6.1概算汇总表 (10) 2.6.2机房设备及安装预算 (11) 2.6.3室外管网及深井预算 (17) 2.6.4末端设备及安装预算 (22) 2.6.5分户计量工程预算 (27) 2.7 工程运行分析 (31)

一、工程概况 1.1 工程说明 本工程由住宅和商业楼组成,1#、7#楼为综合楼,一到二层为商业楼,三层以上为住宅楼, 3#--5#楼为六层住宅楼,,外加一栋二层商业楼。总建筑空调面积29988平方米(不含6#楼),本建筑属常规民用建筑舒适性空调,采用概算法进行设计。 本小区住户188户;商业门面房22套,商场一栋(二层) 1.2 设计依据 1.2.1 室内外计算参数 名称干球温度(℃)湿球温度(℃)室外平均风(m/s) 夏季37.20 25.90 2.90 冬季-7 - 4.4 名称夏:温度 (℃) 相对湿 度(%) 冬:温度 (℃) 相对湿 度(%) 新风量 (m3/h) 住宅24-26 《65 18-20 》40 30 商场26-27 55-65 15-18 30-40 20 1.2.3 设计依据 《办公建筑节能设计标准》 GB50189-2005。 《河南省公共建筑节能设计标准实施细则》DBJ41/075-2006。 《采暖通风与空气调节设计规范》GB50019-2003(2003年版)。 《高层民用建筑设计防火规范》GB50045-95(2005版)。 《办公建筑设计规范》JGJ67-2006。

水源热泵技术介绍及工作原理

水源热泵技术介绍及工作原理 水源热泵技术是利用地球表面浅层水源中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。 地球表面浅层水源(地下水、河流、湖泊、海洋等)中吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵中央空调系统是由末端系统,水源热泵中央空调主机系统和水源热泵水系统三部分组成。冬季为用户供热时,水源热泵中央空调系统从水源中提取低品位热能,通过电能驱动的水源热泵中央空调主机(热泵)“泵”送到高温热源,以空气或水作为载冷剂提升温度后送到建筑物中满足用户供热需求。夏季为用户供冷时,水源热泵中央空调系统将用户室内的余热通过水源中央空调主机(制冷)转移到水源水中,由于水源温度低,所以可以高效地带走热量,以满足用户制冷需求。通常水源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。 水源热泵的特点及优势 属于可再生能源利用技术 水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说水源热泵是一种清洁的可再生能源的技术。 高效节能 水源热泵机组可利用的水体温度冬季为12-22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。

海水源热泵空调工程应用实例

1工程概况 该工程位于青岛发电厂内,建筑共2层,一层为职工食 堂,二层为工会办公楼,层高均为4.5m,建筑面积2400m2,空调总面积为1871.5m2(不计算浴室面积)。此热泵空调系 统同时供应洗澡热水,按100m2 /d计。 一层为职工食堂,分就餐区和厨房灶间两部分,24h正常营业。厨房灶间由于有蒸汽锅等散热量较大的设施、设 备,冬季白天温度大约在26! ̄28!,需要制冷运行;晚上需要制热运行。二层为工会办公室、歌舞厅、健身活动室以及会议室,各自冷热温度需求不同,使用时间分散且不固定。 2空调设计参数 2.1室内空气设计参数 室内空气设计参数按照采暖通风与空调设计规范选 取,其参数见表1。 表1室内空气设计参数表 2.2海水设计温度 青岛沿海海水温度水下5m处,冬夏海水温度变化不 大,因此本设计海水温度按照最低水位水下5m计算,其数 值夏季(7月"9月)25.2!;冬季(12月)6.39!,冬季(1月"2月) 3.74!。2.3空调负荷 1)夏季冷负荷:!L=231.5kW;冬季热负荷:!R=187.2kW。2)浴室热负荷: !R=273.5kW。3海水源热泵系统 3.1海水处理 海水中含有一些生物活性和高含量的固体粒子(砂子、 有机物质等),含盐量也很高。这些颗粒可能会在表面形成沉淀物,结果会增加生物活性以及微生物腐蚀的可能性。为了避免这些,在海水引入口安装一个机械过滤器来过滤掉这些颗粒,还要通过杀死细菌的方法减少生物活性。 3.2蒸发器 为了避免海水直接进入热泵机组,而对蒸发器产生腐蚀,该系统设计中我们引入了抗海水腐蚀的二级换热器,换热器采用钛板制作,其示意图如图1所示。 图1二级闭式循环换热器设计 3.3海水管道设计 海水管道采用硬聚氯乙烯给水管材(U—PVC),海面下管道在海底开槽挖沟安装,陆地上管道直埋敷设。 4空调系统设计 为满足不同区域在同一时间对冷热的不同需求,该工程中在室内采用水—空气热泵机组,保证机组可以随时冷热切换,用“二管制”替代了“四管制”,从而节省了水管路的费用,而且方便运行管理。 每台热泵机组根据室内新风需求,在回风管道上引入适量的新风,新风入口装有电动调节阀,风阀的开启与关闭与热泵机组的风机连锁。 每台机组具有制冷、制热与通风功能,并且均配有室内控制器。过度季节,可根据实际需要制冷、制热或通风运行。 水系统为异程设计,每台水—— —空气机组进水管上装有过滤器,回水管上装有自动排气阀。每层水管路连接的第 二次网循环系统 蒸发器 二级闭式循环换热器 海水 ?¢ ?¢ ?¢ ?¢ ?¢ ?¢/? ?¢£¤/(%) ?¢/? ?¢£¤/?%? NC ?¢ 23~26 55~60 21~23 20~30 ? ?¢ 26~28 ? 21~23 ? ? ?¢£ 24~26 40~50 20~22 20~30 33~35 ?¢£ 25~27 40~50 18~20 20~30 34~36 工程建设与设计#$$%年第&期地源热泵专题 [作者简介]祁俊山(1972"),男,山东陵县人,助理工程师,从事海水源热泵的研究与推广应用. 海水源热泵空调工程应用实例 祁俊山1,薛越霞2 (1.青岛新天地环境保护有限公司,山东青岛266003; 2.青岛市环境监察支队,山东青岛266003) [摘要]通过目前国内建成的海水源热泵空调系统示范工程的实施,介绍海水源热泵空调系统工作原理、工程设计、运行参数、节能效益分析,为实施大型海水源热泵区域供热供冷提供理论和实践样板。 [关键词]海水源热泵;示范工程;系统设计;节能环保 [中图分类号]TU833.+3[文献标识码]A[文章编号]1007-9467(2005) 09-0012-02’#

地热联合水源热泵供暖工程设计方案

地热联合水源热泵供暖工程设计方案 二0一九年十二月

目录 前言 (3) 第一章工程基本情况 (4) 一、工程概况 (4) 二、方案设计理念 (4) 三、热泵的优良特性 (5) 第二章地源热泵工程配置设计 (9) 一、方案设计依据 (9) 二、负荷计算 (9) 三、机房设备配置 (9) 四、系统自动化控制 (10) 第三章系统投资预算及运行成本分析 (12) 一、机房系统整体投资概算 (12) 三、系统运行成本分析 (13) 第四章工程设计施工与售后服务保障 (14) 一、产品质量保障 (14) 二、技术服务保障................................................... 错误!未定义书签。

前言 本工程是地热水联合水源热泵采暖工程,工程位于********。 本方案按本工程特点,采用地热水和地下水式地源热泵实现整体供暖的设计方案。通过总体技术方案论证与分析,主要经济技术指标如下:

第一章工程基本情况 一、工程概况 1、项目简介 本工程为位于******,总建筑面积为130000㎡,末端采用地板辐射采暖。根据甲方提供的信息,现有65℃的地热井水80m3/h可供使用,为小区供暖。 2、气候条件 清苑区年平均气温12℃,年降水量550毫米,属于温带季风性气候。四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,秋季凉爽舒适。冬冷夏热,雨热同期,来此旅游一般以夏秋季为宜。 3、工程要求 设计冬季室温18℃-20℃。 二、方案设计理念 本工程为居住建筑,设计与施工必须符合我国现行建筑节能措施的节能型建筑规范。按地质条件,本工程具备采用热泵新能源绿色环保空调采暖供热的热源条件,在保证室内环境舒适度的条件下,保障小区清洁与低碳人文环境。因此,本工程设计方针是环保、节能、高效、稳定、耐用。设计原则是充分、合理、安全利用岩土层自然资源。设计宗旨是实现国家可再生能源综合应用绿色建筑要求,达到最佳投资性价比。 依据地理位置、气象条件、建筑类型、建筑规模、岩土层、舒适度条件等要求:第一,按照负荷指标法计算冷热负荷;第二,按地下水源热泵系统特有的比压、比焓、比熵参量计算热泵机组理论循环焓值与理论动力配置,计算热泵机组理论能效比。系统方案将全程贯穿科学有据、节能节省、实效优化的设计理念,达到用户满意的最佳设计与施工效果。

水源热泵中央空调(免费).

勤诫创业 技术文件Page 1 of 4 bm.moq -lcr^ro-hu.ma:. r 水源热泵中央空调 水系统存在问题及解决方案 1 .水源热泵概念 水源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)或再生水源(包括生活污水、工业废水、热电厂冷却水,油田废水等)的,既可供热又可制冷的高效节能空调系统。水源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常水源热泵消耗1KW勺能量,用户可以得到4KW以上的热量或冷量。 2. 水源热泵中央空调工作原理 “热泵”是借鉴“水泵”一词得来。在自然环境中,水向低处流动,热向低温位传递。水泵将水从低处送至高处,而热泵可将低温位热能交换至高温位提供利用。热泵在本质上是与制冷机相同的,只是运行工况不同。其工作原理是,由电能驱动压缩机,使水质循环运动反复发生,在蒸发器吸热,冷凝器放热,使热量不断交换传递,并通过阀门切换使机组实现制热式制冷式功能。水源热泵工程是一项系统工程,一般由水源系统,水源热泵机组和末端散热器三部分组成。水源系统包括水源、取水构筑物、输水管网和水处理设备。 3. 水源热泵中央空调水系统存在的问题 a. 由于水源热泵机组采用地下水来做为外循环水,地下水含有一定量的泥砂和悬浮物,使其在进入设备时会对机组和管、阀造成磨损,含砂量高和浑浊度高的地下水,若在使用过程中未处理,则回灌时会造成含水层堵塞,使回水量逐渐降低。 b. 地下水还含有不同的离子、分子、化合物和气体,使地下水具有酸碱度、硬度、腐蚀性等化学性质,会对机组材质造成一定的影响。特别是在冬季制热工况下,水温常常在50C以上,水中的钙、镁离子容易析出结垢,影响换热效果。 4. 水源热泵中央空调水系统存在问题之水处理方案 如果水源的水质不适宜地源热泵机组使用时可以采取相应的技术措施进行水质处理,使其符合机组要求。 在水源系统中经常采用的水处理技术有以下几种:

水源热泵工作原理

水源热泵工作原理 地下水井系统,即水源热泵。它以水为介质来提取能量实现制热和制冷的一个或一组系统。针对水源热泵机组,就是通过消耗少量高品位能量,将地表水中不可直接利用的低品味热量提取出来,变成可以直接利用的高品位能源的装置。水源热泵是利用太阳能和地热能来制冷、供热,应该说其属热泵中“地源热泵”的一种。经过严格测试及不同地区热泵的应用实例测算,。水源热泵制热的性能系数在3.1–4.7之间,制冷的性能系数在3.5–6.7之间。 地球表面浅层水源(如深度在1000米以内的地下水、地表的河流、湖泊和海洋)吸收了太阳进入地球的辐射能量,这些水源的温度一般都十分稳定。 水源热泵机组工作原理就是在夏季将建筑物中的热量转移到水源中,由于水源温度低,所以可以高效地带走热量,而冬季,则从水源中提取能量,由热泵原理通过空气或水作为制冷剂提升温度后送到建筑物中,通常水源热泵水泵消耗1kw的能量,用户可以得到4kw 以上的热量或冷量。水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热盘管,该组盘管一般水平或垂直埋于湖水或海水中,通过与湖水或海水换热来实现能量转移(该组盘管直接埋于土壤中的系统称为土壤源热泵,也是地源热泵的一种);开式系统是指从地下或地表中抽水后经过换热器直接排放的系统。 水源热泵无论是在制热还是制冷过程中均以水为热源和冷却介质,即用切换工质回路来实现制热和制冷的运行。然而,更为方便的是由水回路中的三通阀来完成。虽然在水源热泵系统中水源直接进入蒸发器(制冷时为冷凝器),在某些场合,为避免污染封闭的冷水系统(通常是处理过的),需间接地用一个换热器来供水;另一种方法是利用封闭回路的冷凝器水系统,水作为热泵制热、制冷过程的介质,满足以下两个条件即可利用:一是水的温度在7℃~30℃之间,二是水量要充足。水源水可以是各种工业用废水、生活用水、海水、江、河水等,甚至是各种工业余热。 提取水中的热(冷)量比较简单易行的方式是打井,利用井泵提取地下水作为循环介质。冬季时,以地下水为“热源”,源源不断的将7℃以上的地下水通过热泵机组的蒸发器提出大约4℃以上的热量,使其降至3℃再注回地下,水在地下渗流过程中又吸收地下热量,温度又升至7℃以上,然后又被提升上来,如此不断循环,机组吸收的热量再被机组的冷凝器释放出来,用以加热供暖的水系统,使供水温度可达55℃以上,此温度称为空调供暖(国家标准45℃)的最佳温度,;夏季时,利用地下水(水温低于14℃)做冷却水,而常规制冷设备是利用冷却塔循环冷却,水温一般都在30℃~40℃,夏季的地下水只有14℃~18℃,

水冷螺杆机组与水源热泵机组工程应用实例比较.

水冷螺杆机组与水源热泵机组工程应用实例比较 以下是某单位发电站办公楼中央空调的冷水螺杆机组与节能水源热泵冷热水机组的设计实例与应用上的理论对比: 广州惠州抽水蓄能电站指挥部大楼总建筑面积11000m2,建筑高度为6层,其功能分别为:宾馆、办公楼、会议中心。发电站稍低于建筑,可以利用自然高差供水或使用水泵直接从发电站中引用水源进能冷热源交换。 该项目设计空调冷负荷1800kW,空调热负荷600kW,同时使用系统数为0.9,选主机制冷量为810kw*2= 1620kw,选用电热锅炉480kw,宾馆部分生活热水负荷400kW。空调冷热负荷采用水冷螺杆机组两台/电热锅炉一台,冷冻水泵三台(两用一备),冷却水泵三台(两用一备),冷却塔一台,风柜21台,风机盘管180台。生活热水采用太阳能热水器一批。供冷运行能耗为:主机179*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+冷却塔4kw+风柜21*2.2+风机盘管180*0.08kw=526.6kw。 供热运行能耗为:电锅炉480kw+冷冻水泵22kw*1+风柜21*2.2+风机盘管约180*0.08kw=562.6kw。 计算结果如下: ① 制冷工况:系统总制冷量:Q0=1620kW;系统总功率:Pi=526.6kW;系统制冷系数:Cop=3.08。 ② 热泵工况:系统总制热量:Qk=480kW;系统总功率:Pi=562.6kW;系统制热系数:Cop=0.85。 如果选用水源热泵机组,则选用水源热泵水机组wps230.1A,制冷量为861.5kw,输入功率116.2 kw, 制热量为880.9 kw,输入功率161.9 kw;冷冻冷却水泵均按螺杆机组方按选型。那么计算结果为供冷运行能耗为:主机116.2*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=397kw。 供热运行能耗为(一台主机就可以提供热源):161.9*1kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=326.5kw① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW;系统制冷系数:Cop=4.34。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW;系统制热系数:Cop=2.69。 如果冷却水泵直接采用发电站的高位差做动力,那么就省去冷却水泵的输入功率,这时运行能耗比为: ① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW-30*2kw=337kw;系统制冷系数:Cop=5.11。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW-30*2kw=266.5kw;系统制热系数:Cop=3.31。 同时,如果系统采用水源热水机组,还能为生活用热水提供足量的水源。节省了太阳能的初投初,又节省了大量的电能浪费。 水源热泵式中央空调是市场上最节能环保的中央空调系统之一。它具有供热、制冷、生活热水三联供的作用、无视觉污染、减少配电容量,减少资源浪费等特点,适用地区比较广[9]。近几年,水源热泵空调系统已经在我国得到了

江水源热泵的应用及设计研究现状

江水源热泵的应用与研究现状 1前言 江水具有很好的宏观热能特征,将其作为热泵冷热源为建筑物供暖供冷前景巨大,在国内引起了广泛关注,目前也有一些应用案例。相比各类空气源热泵,江水源热泵能够获得更高的能效,并能缓解城市热岛效应。 长江流域处于夏热冬冷地区[1],冬夏季空调负荷较大。随着经济的增长、人民生活水平的提高,空调系统必将普及,空调负荷必将大幅增长。水源热泵机组在冬季采集来自湖水、河水、地下水及地热尾水,甚至工业废水污水中的低品位热能供给室内取暖;在夏季则把室内的热量取山,释放到水中,制取冷水达到夏季空调供冷的目的。江水源热泵利用长江水作为系统的冷热源,效率高,且不需冷却塔和锅炉等设备,机房占用面积小,不向大气排放污染物及热量,改善室内环境及城市环境。充分利用长江水资源不仪能够人幅度降低冬夏季空调能耗,而且降低电网及燃气的供应尖峰,达到高效、节能、环保的目的。本文还综述了该领域目前的应用与研究现状。 2对江水作为冷热源的分析 由于江河水年四季温度变化较小,水量丰富稳定,是水源热泵良好的低位能源。长江、嘉陵江流经整个重庆主城区,常年年均水流量长江为8500m3/s,嘉陵江为2430m3/s,两江合流后为10930m3/s;冬(12-2月)夏(6-9月)季平均江水温度(水下0.5m处),冬季12.8℃,夏季23.5℃;冬夏季平均含砂量,夏季745mg/l,冬季30.6mg/l;嘉陵江夏季504mg/l,冬季5.34mg/l。 以嘉陵江冬季江水温度和大气温度的测量分析结果为例,见表1,得出冬季嘉陵江水温分布稳定,平均在9.2~13.1℃之间,且变化非常平稳,没有大的波动,最冷月平均水温8.8℃;而空气温度则存在较大的波动,月平均气温波动范围虽不大,在8.6~12.8℃,但日平均温度波动频繁,最低只有6.6℃,最高达17.7℃,分布极不稳定。通过测量得知,冬季水温沿深度方向呈递增的趋势,经分析,水面以下2~3m处水温已很接近。因此,江水用作空调冷热源在温度和稳定性方面都较空气有明显的优势。

水源热泵分析

水源热泵供暖系统供水温度的确定 因为水源热泵供暖系统能够将通常情况下不能被直接利用的低位热能从水源中取出,提升后并加以利用,具有良好的节能环保特性。现针对利用水源热泵系统进行供暖时,其供水温度的选择问题进行分析。 1、供水温度对水源热泵机组运行的影响 在冬季供暖工况下,如果水源热泵低温热源侧的进出口水温不变,则水源热泵的供水温度越高,其制热性能系数(cop值)就越低,提供相同的热量所需的运行费用就越高。COP=38.126△t-0.633,△t=(th.i+th.o)/2-(tc.i+tc.o)/2 2、合理的供水温度选择 通过上面的计算可知,利用水源热泵机组进行冬季供暖时,供水温度越低,机组的cop值就越大,经济性越好,但供水温度也不能太低,否则将导致末端散热设备过大或无法满足散热设备对供水温度的内在要求。显然合理的供水温度应该是既能满足用户的用热需求,同时又有最佳的经济性。 3、如果水源热泵机组供水温度过高,水流量不变的情况下,蒸发压力即吸气压力会增加,同样的对应的制热量也会增加,消耗功率也会增加。,主要原因是因为对机组而言,过高的蒸发器水体温度,会导致蒸发压力过高,而对特定的冷煤系统在应用过程中,冷凝压力是一个定值,这个时候压差比就比较小,压差比小就意味着压缩机而言回油会受到很大的影响,无法保证热泵系统的正常工作,温度过高也会烧坏压缩机。

解决设想方案 日本在1980年代开展了超级热泵计划,开发出4类热泵,其中有利用45度余热水,制热出水温度85的中高温热泵,以及利用80度余热水,产出150度蒸汽的高温热泵。 欧洲有采用改进离心压缩机性能技术路线的高温热泵,采用R134a制冷剂,三级离心压缩模式,制热出水温度可以达到85度。 一般需要解决以下几个关键技术问题。 1.压缩机的选择:热泵设备常用的压缩机类型主要是螺杆压缩机、全封闭涡旋压缩机与半封闭活塞压缩机等,经过对不同类型压缩机工作特性进行比较研究,高温热泵设备一般选用全封闭涡旋压缩机。 2.工质的选择:为保证高温热泵设备在稳定的可允许的工作压力下运用,采用特殊的制冷剂为工质,换热效率高并对环境无污染,对臭氧层无破坏作用。 3.氟路系统控制的优化:保证整体机组的长时间高温稳定运行和使用寿命,并根据环境温度和蒸发温度,自动调节高温空气热泵设备运行工作状态和调件。

水源热泵设计方案

水源热泵热水机组 设 计 方 案 方案目录 方案概述................................ 第一章水源热泵中央空调介绍........................ 第二章水源热泵中央空调相关政策依据................ 第三章方案设计.................................... 第四章工程概算.................................... 第五章水源热泵系统技术特点........................ 第六章公司简介.................................... 第七章工程清单目录................................

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。 1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。2005年2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理 水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调

海水源热泵工程案例

海水源热泵的现状及工程案例 1、国内外研究现状和发展趋势 国外有很多应用海水做热泵冷热源的实例。如20世纪70年代初建成的悉尼歌剧院,日本20世纪90年代初建成的大阪南港宇宙广场区域供热供冷工程,利用海水为23300kW的热泵提供冷热源。北欧诸国在利用海水热源方面具有丰富的实践经验,其中瑞典就是一个典型应用海水源热泵集中供冷/暖的国家。瑞典首都斯德哥尔摩建设了总能力为180MW的世界上最大的海水热泵站,用于区域供热,占城市中心网输送总量的60%。热泵站由6台供热能力为30MW/台热泵机组组成,1984-1986年调试完成,投入运行。 我国第一个海水源热泵项目于2004年在青岛发电厂建成使用。该厂总面积达1871平方米的职工食堂,成为我国第一个供热不需要煤炭、油料,只使用海水提供采暖的建筑。此外,大连市星海假日酒店海水源热泵中央空调工程也已正式启动,此次海水源热泵中央空调将为4万平方米的建筑提供制冷和采暖。 日前,经过申报和专家评审等程序,大连市被国家选为全国唯一的水源热泵技术规模化应用示范城市,这标志着大连市今后将有望以海水为能源,进行室内空气的冷热调节。 日照港青岛千禧龙花园居民小区7.2万平米,冬夏收费标准22元/平方米,青岛的采暖标准30.4元/平方米;青岛海天大酒店周围海水源热泵区域供热供冷站。和瑞典AF公司合作,承担山东路以西约100万平方米的区域供热供冷站作更深一步的可研。小港湾和记黄埔93万平方米已确定用海水源热泵。 2、政策支持 按照国家《建筑节能实施方案》要求,“十一五”期间,示范城市的水源热泵供热、制冷面积要达到500万平方米以上。示范内容包括水源热泵供热、供冷和相关的技术研发集成及产业化。对示范城市的示范项目,国家将提供专项资金,用于补贴70%的增量成本。目前,大连市正积极推进小平岛新区、星海湾商务区、软件产业带等区域实施海水热泵技术的前期工作。以水源热泵技术供热(制冷)主要是利用大型热泵对事先抽取的海水进行处理,将其中的热量提取出来,用于供热和制冷,并将能量通过城市原有的供热(制冷)系统输送到户,这就完

海水源热泵为养殖池加热Word版

青岛科创新能源科技有限公司 海水源热泵供热系统简介 海水养殖目前在渔业领域中占据着很大的一部分,对于海水养殖的收获成果,水温的控制占据着十分重要的位置,适宜物种生存的温度会增加养殖户的收入。针对水温过低会致使海产品生长缓慢甚至死亡的现象,需要对养殖池中的水温进行控制。目前水产养殖冬季加温或保温的传统措施主要有:电热棒加热,锅炉加热(燃油、煤、柴等)、搭建塑料大棚保温等。这些传统的加热方式不但效率低,而且会造成环境污染以及浪费,并且运行成本也比较高。而近几年随着热泵技术的快速发展,利用水源热泵技术采暖空调变得普及起来,因此实施应用海水源热泵供热系统为养殖池供热提供了新的途径。在水产养殖的应用中,海水源热泵系统并不是直接给养殖用水加热。而是利用热泵技术从海水中提取低温热量供热,实现海水热能资源化。通过热泵的运转,以消耗25%左右的电能,从该温度的海水中提取75%的热量,可得到100%的供热量,进而加热系统内部的末端水的温度,变热后的末端水,经过铺设在养殖池中的换热器用热传递的原理使养殖水体慢慢升温,从而达到保持水温的目的。海水源热泵供热系统属于当前国家重点鼓励和扶持的海洋新能源和高效节能减排、环保领域。 项目背景及公司简介

海水源热泵技术的开发为利用可再生能源提供了强有力的手段,从而满足了节约能源和环境保护的要求。由于海水的质量热容大,传热性能好,因此沿海地区拥有大量海水的地方,海水是理想的冷热源,而且与传统的加热方式相比,设计安装良好的海水源热泵具有明显的优势。但由于海水源热泵系统属于新兴产业,虽然从事本行业的相关企业众多,但这些企业又大多没有自主知识产权和工程技术经验,造成大量海水源热泵供热工程项目出现一系列问题,包括运行效果不好、运行成本过高、不节能、甚至以失败告终等。而科创公司的技术团队是我国较早从事海水源热泵系统研究与应用的研发队伍,有一批教授、研究员、博士等组成的高层次研究团队,具有丰富的研究开发和工程实施经验(其中,西德博士1名,省部级突贡专家1名),同时联合哈尔滨工业大学、青岛大学、哈尔滨机械研究所等,具备高能力、高水平的人员背景和产学研支撑条件。先后开发了近50项相关专利技术与设备,并进行了投产转化,建设了我国大型热泵供热系统示范工程50余项,累计建筑面积达千万平方米以上,承担了十二五科技支撑、科技惠民等大量的国家、省部级科研项目,并获得了省部级技术发明一等奖、专利奖等。公司还承担建设了山东省低值能源供热工程技术研究中心、青岛市热泵供热工程技术研究中心以及青岛市余热利用与热泵专家工作站等平台的建设。工作原理 相对其他热泵系统而言,海水水质条件极其恶劣,利用过程中又

污水源热泵系统与集中供热系统对比

污水源热泵系统与集中供热系统对比 原生污水源热泵原理: 在高位能的拖动下,将热量从低位热源流向高位热源的技术。它可以把不直接利用的低品位热能(如空气、土壤、水、太阳能、工业废热等)转化为可利用的高位能,从而达到节约部分高位能(煤、石油、天然气、电能等)的目的。 在制冷状态下,污水源热泵原理是通过压缩机对冷媒做工,使其进行汽——液转化的循环。通过蒸发器内冷媒的蒸发将由风机盘管循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至城市原生污水里。在室内热量不断转移至地下的过程中,通过风机盘管,以13℃一下的冷风的形式为房间供冷。 在制热状态下,污水源热泵原理是通过压缩机对冷媒做功,并通过换向阀将冷媒流动方向换向。由地下的水路循环吸收地下水或土壤里的热量,通过冷凝器内的冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过蒸发器内冷媒的冷凝,由风机盘管循环将冷媒所携带的热量吸收。在城市原生污水中的热量不断转移至室内的过程中,以35℃以上热风的形式向内供暖。 污水源热泵原理优势特点: 1)利用可再生能源,环保效益好 污水源热泵原理利用了城市原生污水中丰富的热量资源作为冷热源,进行能量转换的供暖制冷空调系统。城市原生污水是一个巨大的能量采集器,巨大的城市废热从市政污水管路中排出,这种储存于城市原生污水中的能源数以清洁的,可再生能源。 2)高效节能,运行费用低 污水源热泵原理是采用温度恒定的城市原生污水作为能源,能效比COP在4.5~5.0之间,比空气源热泵高出40%左右,污水源热泵机组运行费用比常规中央空调低30%~40%左右。 3)运行安全稳定,可靠性高 无燃烧设备,无爆炸隐患,使用安全。如使用燃油、燃气锅炉供暖,其燃烧产物对居住环境污染极重,影响人们的生命健康。污水源热泵机组利用常年温度稳定的城市原生污水,夏季不会向大气中排除废热,加剧城市的“热岛效应”;冬季不受外界气候影响,运行稳定可靠,不存在空气源热泵除霜和供热不足的问题。4)空调主机以及多用,便于布置,使用范围广泛 空调主机体积小,污水源热泵机组安装在储藏室等辅助空间,既可制冷,又可制热,也不需要高的入户电容量。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可替换原来的锅炉加空调的2套装置或系统;可应用于宾馆、

什么是水源热泵中央空调 水源热泵机组原理及优缺点

什么是水源热泵中央空调水源热泵机组原理及优缺点 水源热泵中央空调是一项节能环保新技术,与地源热泵从大地中提取冷热量相比,水源热泵机组是利用地表水作为冷热源,然后进行能量转换的供暖空调系统。简单来说,水源热泵和地源热泵都是冷暖空调,不存在传统空调冬季化霜等难点问题,只不过水源热泵是通过地下水达到冷却制冷剂的效果,不占建筑面积。下面,我一起来看看水源热泵中央空调的定义、水源热泵机组原理及优缺点。 什么是水源热泵中央空调 水源热泵中央空调是一种利用地下浅层地热资源(如地下水、河流和湖泊中吸收地太阳能和地热能等)的既可供热又可制冷的高效节能空调系统。水源热泵机组以水为载体,在冬季采集来自湖水、河水、地下水的低品位热能,取得能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调供冷的目的。 水源热泵机组原理

夏季制冷时,水源热泵中央空调井水为机组的排热源。制冷剂在蒸发器内吸热蒸发,制取7℃冷水,送入房间使用,由于水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高;制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,由井水带走热量并排至井中。 冬季制热时,水源热泵中央空调井水为机组的吸热源。制冷剂在蒸发器内吸取井水的热量蒸发,井水回灌井内,由于水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,加热循环水,制取45℃到50℃(最高可达65℃)的热水。 水源热泵机组原理的优缺点 水源热泵中央空调具有可再生能源利用技术、高效节能、制冷采暖生活热水三位一体、节省建筑空间、环境效益显著等多种优点,其缺点是对地下水质量要求比较高,需要良好的地下水源条件,用户在装水源热泵之前,需要先向各地水资委申请,申请通过之后才能装,

水源热泵与地源热泵优缺点的比较

水源热泵与地源热泵优缺点的比较 一、水源热泵深井技术介绍 1、水源热泵原理 地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。 为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。 1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:

分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。 开式系统也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。. 水源热泵原理图:

深井回灌开式环路

地下水平式封闭环路 2.水源热泵优点 2.1高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。4~6,实际运行为7理论计算可达到. 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温

风冷热泵与水源热泵制供热方案

风冷热泵方案与水源热泵制冷供暖方案 一、项目概况 北京某办公楼位于城南,该办公楼为改造项目,地上五层,地下一层,总建筑面积约8000平米。需解决夏季空调制冷,冬季供暖问题,全年保持室温在18℃-25℃。 二、制冷供暖解决方案 1、风冷热泵加辅助电加热方案 利用风冷热泵实现夏季制冷,冬季供暖考虑到风冷热泵机组在室外温度-8℃时启动困难,需增加辅助电加热。 2、水源热泵方案 该方案要求在建筑物附近打三口井,井深80-100米,一口抽水,出水量为100M3/h,两口井回灌,保持地下水资源稳定,利用井水作为冷热源,水源热泵机组夏季制冷,冬季供暖满足办公楼要求。 三、负荷计算及机组 1. 设计依据、范围及原则 本方案包含某办公楼的空调制冷供暖系统,包括冷热源、设备选型及末端系统方案。能够独立实现夏季制冷,冬季供暖。保证大楼的正常使用。 2. 空调冷热负荷计算 考虑到该建筑主要为办公室,根据国家标准单位建筑面积制冷负荷选取100W/M2, 建筑总冷负荷约为800KW。单位建筑面积供暖热负荷选取60W/M2, 建筑总热负荷约为480KW。3. 机组设备选型及技术参数 选择方案时应该考虑节省投资和保障该建筑正常制冷供暖要求。风冷热泵机组设计装机容量为835.2KW,配置风冷热泵机组MTD-80SH叁台。水源热泵机组设计装机容量为930KW,配置水源热泵机组MSRB80壹台。 表一机组选型 项目风冷热泵水源热泵 设备名称风冷冷(热)水机组水源热泵机组 设备型号 MTD-80SH MSRB80 数量 3台 1台

单台制冷量 278.4KW 930KW 单台制热量 304KW 1116KW 总制冷量 835.2KW 930KW 总制热量 912KW 1116KW 总耗电量 262.2KW 178.8KW 单台外形尺寸长 4320mm 3640mm 宽 2110mm 1300mm 高 2130mm 2200mm 表中机组的设计装机容量基本满足大楼的需求。 4.风冷热泵机组由于存在在室外温度-8℃时启动困难,需增加功率为480KW的辅助电加热设备,解决在严寒情况下供暖问题。 5.水源热泵机组对水资源要求严格,需要井水温度、流量稳定。必要时,应设置独立换热站,把井水与机组隔离。 四、风冷热泵机组与水源热泵机组的特点 1、风冷热泵机组的特点 (1)风冷冷(热)水机组采用模块化设计,完全不必设置备用机组,运行过程中电脑自动控制,调节机组的运行状态,使输出功率与工作环境的实际利用率相协调。 (2)模块化机组的可靠性高,该机组由数个模块组成,任何模块的临时检修停运都不会影响整机的正常运行,大大提高了整个空调系统的合理性和可靠性。 (3)机组可任意放置屋顶或地面,没有机房设施和冷却水塔系统,不占用有效使用面积。同时安装施工工作大为简便。 (4)由于机组在运行过程中是全电脑自动控制,所以日常不需要专业技术人员管理维护。(5)风冷热泵有不足之处,由于在室外温度-8℃时启动困难,需增加辅助电加热。 2、水源热泵的特点 水源热泵机组以水为载体,冬季采集来自湖水、河水、地下水及地热尾水,甚至工业废水、污水的低品位热能,借助热泵系统,通过消耗部分电能,将所取得的能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。该机组具有设计标准、选择优良、操作简便、安全可靠等优点。由于水源热泵技术利用地表水作为空调机组的制冷制热的源,所以其具有以下优点: (1)环保效益显著

相关文档
最新文档